A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de...A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.展开更多
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ...Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.展开更多
Phage display technology is a unique gene recombination expression technology, and it is also a simple and effective screening tool. Through panning, a protein or peptide with high affinity and selectivity to the targ...Phage display technology is a unique gene recombination expression technology, and it is also a simple and effective screening tool. Through panning, a protein or peptide with high affinity and selectivity to the target is obtained. Antibody phage display has become the first and most widely used <i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> screening technology. Phage display derivatives play an important role in the diagnosis and treatment of diseases. This article reviews the phage display system of phage display technology, the size and classification of antibody libraries and their applications, and discusses the application prospects and challenges of phage display technology.</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">This thesis lays the foundation for the theoretical and experimental research of bacteriophages.</span>展开更多
This paper presents the development of numerical prediction products(NPP) correction and display system(NPPCDS) for rapid and effective post-processing and displaying of the T213 NPP(numerical prediction products of t...This paper presents the development of numerical prediction products(NPP) correction and display system(NPPCDS) for rapid and effective post-processing and displaying of the T213 NPP(numerical prediction products of the medium range numerical weather prediction spectral model T213L31) through instant correction method. The NPPCDS consists of two modules: an automatic correction module and a graphical display module. The automatic correction module automatically corrects the T213 NPP at regularly scheduled time intervals, while the graphical display module interacts with users to display the T213 NPP and its correction results. The system helps forecasters extract the most relevant information at a quick glance without extensive post-processing. It is simple, easy to use, and computationally efficient, and has been running stably at Huludao Meteorological Bureau in Liaoning Province of China for the past three years. Because of its low computational costs, it is particularly useful for meteorological departments that lack advanced computing capacity and still need to make short-range weather forecasting.展开更多
To model a true three-dimensional(3D)display system,we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system.For the distribution of each voxel,we proposed a four-dimensional(4D...To model a true three-dimensional(3D)display system,we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system.For the distribution of each voxel,we proposed a four-dimensional(4D)Givone–Roessor(GR)model for state-space representation—that is,we established a local state-space model with the 3D position and one-dimensional time coordi-nates to describe the system.First,we extended the original elementary operation approach to a 4D condition and proposed the implementation steps of the realiza-tion matrix of the 4D GR model.Then,we described the working process of a true 3D display system,analyzed its real-time performance,introduced the fixed-point quantization model to simplify the system matrix,and derived the conditions for the global asymptotic stability of the system after quantization.Finally,we provided an example to prove the true 3D display system’s feasibility by simulation.The GR-model-representation method and its implementation steps proposed in this paper simplified the system’s mathematical expression and facilitated the microcon-troller software implementation.Real-time and stability analyses can be used widely to analyze and design true 3D display systems.展开更多
In this study, a multipurpose M13KE phage display vector was constructed from wild-type M13KE phage for long peptide or protein display libraries without helper phage to expand the scope of targeted high-throughput sc...In this study, a multipurpose M13KE phage display vector was constructed from wild-type M13KE phage for long peptide or protein display libraries without helper phage to expand the scope of targeted high-throughput screening. Based on the relationship between the structure and function of minor coat protein of wild-type MI3KE (wt-plII), a truncated gene III (tglll) encoding minor coat protein from M13KE phage was cloned. A fusion gene fragment harboring a hw/tac promoter, signal peptide and C-terminal region sequence of gill was assembled with SOEing-PCR (splice-overlapping-extension polymerase chain reaction) method and inserted into M13KE vector. SDS-PAGE and Western blot analysis with anti-M13 pIII moneclonal antibody were employed to detect the expression of re- combinant protein, c-Myc and HA tag sequences were fused into the recombinant protein. The results showed that tglll was inserted into an unessential region of M13KE. According to the results of SDS-PAGE and Western blot with anti-M13 pIII antibody, pIII was expressed by wt-gIII and tgIII, glII harboring two tags ex- pressed both c-Myc and HA peptides using SDS-PAGE and Western blot with the corresponding monoclonal antibodies. In this study, a multipurpose M13KE phage display system was successfully constructed, which could express both short and long peptide libraries without helper phage. In future, the obtained M13KE phage display system may be used for targeted high-throughput screening of long peptide libraries without helper phage.展开更多
Rotavirus(RV) is a major foodborne pathogen. For RV prevention and control, it is a key to uncover the interaction mechanism between virus and its receptors. However, it is hard to specially purify the viral receptors...Rotavirus(RV) is a major foodborne pathogen. For RV prevention and control, it is a key to uncover the interaction mechanism between virus and its receptors. However, it is hard to specially purify the viral receptors, including histo-blood group antigens(HBGAs). Previously, the protruding domain protein(P protein) of human norovirus(genotype Ⅱ.4) was displayed on the surface of Escherichia coli, and it specifically recognized and captured the viral ligands. In order to further verify the feasibility of the system, P protein was replaced by VP8* of RV(G9 P[8]) in this study. In the system, VP8*could be correctly released by thrombin treatment with antigenicity retaining, which was confirmed by Western blot and Enzyme-Linked Immunosorbent Assays. Type A HBGAs from porcine gastric mucin(PGM) were recognized and captured by this system. From saliva mixture, the captured viral receptor bound with displayed VP8* was confirmed positive with monoclonal antibody against type A HBGAs. It indicated that the target ligands could be easily separated from the complex matrix. These results demonstrate that the bacterial surface display system will be an effective platform to explore viral receptors/ligands from cell lines or food matrix.展开更多
In this paper, a scalable hardware and software architecture for tiled display systems (a.k.a. videowalls), which can be implemented by using low-cost devices, together with a dynamic web-based management and configur...In this paper, a scalable hardware and software architecture for tiled display systems (a.k.a. videowalls), which can be implemented by using low-cost devices, together with a dynamic web-based management and configuration service are proposed. It has been designed to support both stored and live broadcast/broadband content, in mosaic or warp distributions. The displays and devices can be dynamically configured via web in different ways: the displays can create a single display of a larger size;or they can be configured in a customized way in order to playout different media contents in different display combinations. As display renderers, low-cost devices are proposed as the main hardware element to obtain affordable videowall systems. As a proof of concept, two prototypes have been implemented, including an accurate synchronization mechanism based on a Master/Slave control scheme and aggressive and smooth playout adjustment techniques. To evidence the good performance of the prototypes and configuration service, both objective and subjective evaluations have been conducted regarding synchronization accuracy and usability. On the one hand, the mean values of the asynchronies between the video playout processes in each display are kept below 25ms (i.e., frame accuracy). On the other hand, the obtained usability score in the System Usability Scale (SUS) test has been 88.65, which is considered as excellent.展开更多
Holography is an interesting tool in creating real objects and scenes which can be projected anywhere with accurate details and depth impression. It is also found to be more attractive to the artists than other altern...Holography is an interesting tool in creating real objects and scenes which can be projected anywhere with accurate details and depth impression. It is also found to be more attractive to the artists than other alternatives. For that reason, digital holography is being used as a display technology in cartoon movies. Since this application is dependent on the performance and the simplicity of the available display technology, it becomes very useful to improve the display technique in order to become fast, simple, and attractive by being combined with computer graphical effects. This paper discusses a simulation of a digital holographic model as a three dimensional (3D) display system and its application in making cartoon holography.展开更多
Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and ...Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and yeast surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins,that are widely applied as the core elements in the field of biosensors due to their advantages,including enhanced stability,high yield,good safety,expression of larger and more complex proteins.To further promote the performance of biosensors,the biomineralized microbial surface display technology was proposed.This review summarized the different microbial surface display systems and the biomineralized surface display systems,where the mechanisms of surface display and biomineralization were introduced.Then we described the recent progress of their applications on biosensors for different types of detection targets.Finally,the outlooks and tendencies were discussed and forecasted with the expectation to provide some general functions and enlightenments to this aspect of research.展开更多
In order to achieve a clear and steady swept-volume display,the method of swept-volume display based on cylindrical space projection was presented. One projector generated the image volume in π× 70 mm × 70 ...In order to achieve a clear and steady swept-volume display,the method of swept-volume display based on cylindrical space projection was presented. One projector generated the image volume in π× 70 mm × 70 mm × 150 mm space. Experimentally,the resolution of images was 800 pixel × 600 pixel × 360 pixel,which resulted in almost 345 million voxels. In order to achieve space voxels with uniform brightness, curved reflectors were also designed. In addition,the match conditions between triangles and the scanning planes in the volume space were classified and a sweptvolume graphics engine based on embedded platform was designed.The image rendering the hardware foundation for three-dimensional( 3D) dynamic images generation was achieved. Demonstrated in the experiments,light source utilization of the second-generation system based on curved mirror is about three times brighter than the firstgeneration 3D minitor based on flat mirror,and this system is able to display color,clear and well-proportioned 3D images in brighter room light.展开更多
By providing real-time updates of essential information, airports not only display and disseminate information but also help control the flow of traffic. In order to maximize available space, particularly in high traf...By providing real-time updates of essential information, airports not only display and disseminate information but also help control the flow of traffic. In order to maximize available space, particularly in high traffic areas, Airport Display Information Systems should be integrated into the overall design of the airport and their positioning should be carefully planned to deliver optimal results. Airport Display Information Systems can help airports maximize space, increase customer satisfaction, and generate new revenue opportunities. The technology is designed not only to comply with environmental regulations, but also to help airports keep budgets in check. This paper discusses airport display systems, their connections and interoperability with other systems and who the key airport users of these airport display systems are.展开更多
The near-eye display feature in emerging spatial computing systems produces a distinctive visual effect of mixing virtual and real worlds.However,its application for all-day wear is greatly limited by the bulky struct...The near-eye display feature in emerging spatial computing systems produces a distinctive visual effect of mixing virtual and real worlds.However,its application for all-day wear is greatly limited by the bulky structure,energy expenditure,and continuous battery heating.Here,we propose a lightweight holographic near-eye display system that takes advantage of solar energy for self-charging.To guarantee the collection of solar energy and near-eye display without crosstalk,we implement holographic optical elements(HOEs)to diffract sunlight and signal light into a common waveguide.Then,small-area solar cells convert the collected solar energy and power the system.Compact power supply components replace heavy batteries,thus contributing to the lightweight design.The simple acquisition and management of solar energy provide the system with sustainable self-charging capability.We believe that the lightweight design and continuous energy input solution will significantly promote the popularity of near-eye display in our daily lives.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—red...Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—reduces power consumption but is hindered by image flicker.While negative dielectric anisotropy liquid crystals(nLCs)mitigate flicker,their high driving voltages and production costs limit adoption.Positive dielectric anisotropy liquid crystals(pLCs)offer lower operating voltages,faster response times,and broader applicability,making them a more viable alternative.This study introduces a novel approach to minimizing flexoelectric effects in pLCs by investigating how single components influence flexoelectric behavior in mixtures through an effective experimental methodology.Two innovative measurement techniques—(1)flexoelectric coefficient difference analysis and(2)displacement-current measurement(DCM)—are presented,marking the first application of DCM for verifying flexoelectric effects.The proposed system eliminates uncertainties associated with previous methods,providing a reliable framework for selecting liquid crystal components with minimal flexoelectric effects while preserving key electro-optic properties.Given pLCs'higher reliability,lower production costs,and broader material selection,these advancements hold significant potential for low-power displays.We believe this work enhances flexoelectric analysis in nematic liquid crystals and contributes to sustainable innovation in the display industry,aligning with global energy-saving goals.展开更多
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement...Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.展开更多
The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technolo...The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions.展开更多
In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration...In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration of AI,these technologies are experiencing unprecedented innovation and industrial transformation,garnering significant attention.These advancements provide a solid foundation for displays with higher color gamut and resolution.In addition,the integration of deep learning with dimming technologies has enabled new display systems to deliver superior viewing experiences with reduced energy consumption.This review highlights recent progress in four key areas of AI application in full-color display technologies:epitaxial structure design,defect detection and repair,perovskite synthesis,and dynamic dimming.AI-driven advancements in these domains are paving the way for smarter,more efficient display technologies.By leveraging AI’s powerful data processing and optimization capabilities,full-color display systems are poised to achieve enhanced performance,energy efficiency,and user satisfaction,marking a significant step toward a more intelligent and innovative future.展开更多
Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventi...Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventional liquid electrolytes are unsuitable for the integration of sensing devices.To address these constraints,wearable biofuel cells and flexible electrochromic displays have been introduced,which can improve integration with other devices,safety,and color-coded display data.Meanwhile,electrode chips prepared through screen printing technology can further improve portability.In this work,a wearable sensor device with screen-printed chips was constructed and used for non-invasive detection of glucose.Agarose gel electrolytes doped with PDA-CNTs were prepared,and the mechanical strength and moisture retention were significantly improved compared with traditional gel electrolytes.Glucose in interstitial fluid was non-invasive extracted to the skin surface using reverse iontophoresis.As a biofuel for wearable biofuel cells,glucose drives self-powered sensor and electrochromic display to produce color change,allowing for visually measurement of glucose levels in body fluids.Accurate detection results can be visualized by reading the RGB value with a cell phone.展开更多
文摘A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2007AA01Z338)the National Science Foundation for Post-doctoral Scientists of China(20080441051)the Jiangsu Province Science Foundation for Post-doctoral Scientists(0802014c)~~
文摘Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.
文摘Phage display technology is a unique gene recombination expression technology, and it is also a simple and effective screening tool. Through panning, a protein or peptide with high affinity and selectivity to the target is obtained. Antibody phage display has become the first and most widely used <i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> screening technology. Phage display derivatives play an important role in the diagnosis and treatment of diseases. This article reviews the phage display system of phage display technology, the size and classification of antibody libraries and their applications, and discusses the application prospects and challenges of phage display technology.</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">This thesis lays the foundation for the theoretical and experimental research of bacteriophages.</span>
基金Under the auspices of National Natural Science Foundation of China(No.91125010)
文摘This paper presents the development of numerical prediction products(NPP) correction and display system(NPPCDS) for rapid and effective post-processing and displaying of the T213 NPP(numerical prediction products of the medium range numerical weather prediction spectral model T213L31) through instant correction method. The NPPCDS consists of two modules: an automatic correction module and a graphical display module. The automatic correction module automatically corrects the T213 NPP at regularly scheduled time intervals, while the graphical display module interacts with users to display the T213 NPP and its correction results. The system helps forecasters extract the most relevant information at a quick glance without extensive post-processing. It is simple, easy to use, and computationally efficient, and has been running stably at Huludao Meteorological Bureau in Liaoning Province of China for the past three years. Because of its low computational costs, it is particularly useful for meteorological departments that lack advanced computing capacity and still need to make short-range weather forecasting.
基金This work was supported by the Key Research and Development Projects of Science and Technology Development Plan of Jilin Provincial Department of Science and Technology(20180201090gx).
文摘To model a true three-dimensional(3D)display system,we introduced the method of voxel molding to obtain the stereoscopic imaging space of the system.For the distribution of each voxel,we proposed a four-dimensional(4D)Givone–Roessor(GR)model for state-space representation—that is,we established a local state-space model with the 3D position and one-dimensional time coordi-nates to describe the system.First,we extended the original elementary operation approach to a 4D condition and proposed the implementation steps of the realiza-tion matrix of the 4D GR model.Then,we described the working process of a true 3D display system,analyzed its real-time performance,introduced the fixed-point quantization model to simplify the system matrix,and derived the conditions for the global asymptotic stability of the system after quantization.Finally,we provided an example to prove the true 3D display system’s feasibility by simulation.The GR-model-representation method and its implementation steps proposed in this paper simplified the system’s mathematical expression and facilitated the microcon-troller software implementation.Real-time and stability analyses can be used widely to analyze and design true 3D display systems.
基金Supported by Youth Fund of Suzhou Chien-shiung Institute of Technology(2013QNJJ38)
文摘In this study, a multipurpose M13KE phage display vector was constructed from wild-type M13KE phage for long peptide or protein display libraries without helper phage to expand the scope of targeted high-throughput screening. Based on the relationship between the structure and function of minor coat protein of wild-type MI3KE (wt-plII), a truncated gene III (tglll) encoding minor coat protein from M13KE phage was cloned. A fusion gene fragment harboring a hw/tac promoter, signal peptide and C-terminal region sequence of gill was assembled with SOEing-PCR (splice-overlapping-extension polymerase chain reaction) method and inserted into M13KE vector. SDS-PAGE and Western blot analysis with anti-M13 pIII moneclonal antibody were employed to detect the expression of re- combinant protein, c-Myc and HA tag sequences were fused into the recombinant protein. The results showed that tglll was inserted into an unessential region of M13KE. According to the results of SDS-PAGE and Western blot with anti-M13 pIII antibody, pIII was expressed by wt-gIII and tgIII, glII harboring two tags ex- pressed both c-Myc and HA peptides using SDS-PAGE and Western blot with the corresponding monoclonal antibodies. In this study, a multipurpose M13KE phage display system was successfully constructed, which could express both short and long peptide libraries without helper phage. In future, the obtained M13KE phage display system may be used for targeted high-throughput screening of long peptide libraries without helper phage.
基金the National Key Research and Development Program of China(2017YFF0210200)the National Natural Science Foundation of China(31772078).
文摘Rotavirus(RV) is a major foodborne pathogen. For RV prevention and control, it is a key to uncover the interaction mechanism between virus and its receptors. However, it is hard to specially purify the viral receptors, including histo-blood group antigens(HBGAs). Previously, the protruding domain protein(P protein) of human norovirus(genotype Ⅱ.4) was displayed on the surface of Escherichia coli, and it specifically recognized and captured the viral ligands. In order to further verify the feasibility of the system, P protein was replaced by VP8* of RV(G9 P[8]) in this study. In the system, VP8*could be correctly released by thrombin treatment with antigenicity retaining, which was confirmed by Western blot and Enzyme-Linked Immunosorbent Assays. Type A HBGAs from porcine gastric mucin(PGM) were recognized and captured by this system. From saliva mixture, the captured viral receptor bound with displayed VP8* was confirmed positive with monoclonal antibody against type A HBGAs. It indicated that the target ligands could be easily separated from the complex matrix. These results demonstrate that the bacterial surface display system will be an effective platform to explore viral receptors/ligands from cell lines or food matrix.
基金partially funded by "Vicerrectorado de Investigación de la Universitat Politècnica de València" under projects with references PAID-1121 and PAID-12-21
文摘In this paper, a scalable hardware and software architecture for tiled display systems (a.k.a. videowalls), which can be implemented by using low-cost devices, together with a dynamic web-based management and configuration service are proposed. It has been designed to support both stored and live broadcast/broadband content, in mosaic or warp distributions. The displays and devices can be dynamically configured via web in different ways: the displays can create a single display of a larger size;or they can be configured in a customized way in order to playout different media contents in different display combinations. As display renderers, low-cost devices are proposed as the main hardware element to obtain affordable videowall systems. As a proof of concept, two prototypes have been implemented, including an accurate synchronization mechanism based on a Master/Slave control scheme and aggressive and smooth playout adjustment techniques. To evidence the good performance of the prototypes and configuration service, both objective and subjective evaluations have been conducted regarding synchronization accuracy and usability. On the one hand, the mean values of the asynchronies between the video playout processes in each display are kept below 25ms (i.e., frame accuracy). On the other hand, the obtained usability score in the System Usability Scale (SUS) test has been 88.65, which is considered as excellent.
文摘Holography is an interesting tool in creating real objects and scenes which can be projected anywhere with accurate details and depth impression. It is also found to be more attractive to the artists than other alternatives. For that reason, digital holography is being used as a display technology in cartoon movies. Since this application is dependent on the performance and the simplicity of the available display technology, it becomes very useful to improve the display technique in order to become fast, simple, and attractive by being combined with computer graphical effects. This paper discusses a simulation of a digital holographic model as a three dimensional (3D) display system and its application in making cartoon holography.
基金the National Natural Science Foundation of China(Grant No.21705087)Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province(096-1622002)+2 种基金Research Foundation for Distinguished Scholars of Qingdao Agricultural University(663-1117015)the Postgraduate Innovation Program of Qingdao Agricultural University(QNYCX21069)the National Innovation Training Program for College Students(No.202210435030).
文摘Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and yeast surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins,that are widely applied as the core elements in the field of biosensors due to their advantages,including enhanced stability,high yield,good safety,expression of larger and more complex proteins.To further promote the performance of biosensors,the biomineralized microbial surface display technology was proposed.This review summarized the different microbial surface display systems and the biomineralized surface display systems,where the mechanisms of surface display and biomineralization were introduced.Then we described the recent progress of their applications on biosensors for different types of detection targets.Finally,the outlooks and tendencies were discussed and forecasted with the expectation to provide some general functions and enlightenments to this aspect of research.
基金Shanghai Committee of Science and Technology,China(No.14511108200)
文摘In order to achieve a clear and steady swept-volume display,the method of swept-volume display based on cylindrical space projection was presented. One projector generated the image volume in π× 70 mm × 70 mm × 150 mm space. Experimentally,the resolution of images was 800 pixel × 600 pixel × 360 pixel,which resulted in almost 345 million voxels. In order to achieve space voxels with uniform brightness, curved reflectors were also designed. In addition,the match conditions between triangles and the scanning planes in the volume space were classified and a sweptvolume graphics engine based on embedded platform was designed.The image rendering the hardware foundation for three-dimensional( 3D) dynamic images generation was achieved. Demonstrated in the experiments,light source utilization of the second-generation system based on curved mirror is about three times brighter than the firstgeneration 3D minitor based on flat mirror,and this system is able to display color,clear and well-proportioned 3D images in brighter room light.
文摘By providing real-time updates of essential information, airports not only display and disseminate information but also help control the flow of traffic. In order to maximize available space, particularly in high traffic areas, Airport Display Information Systems should be integrated into the overall design of the airport and their positioning should be carefully planned to deliver optimal results. Airport Display Information Systems can help airports maximize space, increase customer satisfaction, and generate new revenue opportunities. The technology is designed not only to comply with environmental regulations, but also to help airports keep budgets in check. This paper discusses airport display systems, their connections and interoperability with other systems and who the key airport users of these airport display systems are.
基金National Natural Science Foundation of China(U22A2079,62035003,61975014)Beijing Municipal Science and Technology Commission,Adminitrative Commission of Zhongguancun Science Park(Z211100004821012).
文摘The near-eye display feature in emerging spatial computing systems produces a distinctive visual effect of mixing virtual and real worlds.However,its application for all-day wear is greatly limited by the bulky structure,energy expenditure,and continuous battery heating.Here,we propose a lightweight holographic near-eye display system that takes advantage of solar energy for self-charging.To guarantee the collection of solar energy and near-eye display without crosstalk,we implement holographic optical elements(HOEs)to diffract sunlight and signal light into a common waveguide.Then,small-area solar cells convert the collected solar energy and power the system.Compact power supply components replace heavy batteries,thus contributing to the lightweight design.The simple acquisition and management of solar energy provide the system with sustainable self-charging capability.We believe that the lightweight design and continuous energy input solution will significantly promote the popularity of near-eye display in our daily lives.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金supported by Basic Science Research Program through the National Research Foundation(NRF)of Korea,funded by the Ministry of Science and ICT(MSIT),Korea[2022R1A2C2091671]by ITECH R&D Program of MOTIE/KEIT(Ministry of Trade,Industry&Energy/Korea Evaluation Institute of Industrial Technology)[20016808].
文摘Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—reduces power consumption but is hindered by image flicker.While negative dielectric anisotropy liquid crystals(nLCs)mitigate flicker,their high driving voltages and production costs limit adoption.Positive dielectric anisotropy liquid crystals(pLCs)offer lower operating voltages,faster response times,and broader applicability,making them a more viable alternative.This study introduces a novel approach to minimizing flexoelectric effects in pLCs by investigating how single components influence flexoelectric behavior in mixtures through an effective experimental methodology.Two innovative measurement techniques—(1)flexoelectric coefficient difference analysis and(2)displacement-current measurement(DCM)—are presented,marking the first application of DCM for verifying flexoelectric effects.The proposed system eliminates uncertainties associated with previous methods,providing a reliable framework for selecting liquid crystal components with minimal flexoelectric effects while preserving key electro-optic properties.Given pLCs'higher reliability,lower production costs,and broader material selection,these advancements hold significant potential for low-power displays.We believe this work enhances flexoelectric analysis in nematic liquid crystals and contributes to sustainable innovation in the display industry,aligning with global energy-saving goals.
基金supported by the Research Projects of Department of Education of Guangdong Province-024CJPT002Special Project of Guangdong Provincial Department of Education in Key Areas (No. 6021210075K)Shenzhen Polytechnic University Research Fund. (No. 6024310006K)
文摘Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.
基金supported in part by the National Research Foundation of Korea Grant Number:RS-2024-00448809National Research Foundation of Korea Grant Number:RS-2025-00517255+1 种基金National Research Foundation of Korea Grant Number:No.2021M3H4A1A02056037supported by Basic Science Research Program through the National Research Foundation of Korean(NRF)funded by the Ministry of Education(2020R1A6A1A03040516).
文摘The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions.
基金upported by the National Natural Science Foundation of China(Grant No.62274138)the Natural Science Foundation of Fujian Province of China(Grant No.2023J06012)+2 种基金the Science and Technology Plan Project in Fujian Province of China(Grant No.2021H0011)the Funda-mental Research Funds for the Central Universities(Grant No.20720230029)the Compound Semiconductor Technology Collaborative Innovation Platform Project of FuXiaQuan National Independent Innovation Demonstration Zone(Grant No.3502ZCQXT2022005).
文摘In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration of AI,these technologies are experiencing unprecedented innovation and industrial transformation,garnering significant attention.These advancements provide a solid foundation for displays with higher color gamut and resolution.In addition,the integration of deep learning with dimming technologies has enabled new display systems to deliver superior viewing experiences with reduced energy consumption.This review highlights recent progress in four key areas of AI application in full-color display technologies:epitaxial structure design,defect detection and repair,perovskite synthesis,and dynamic dimming.AI-driven advancements in these domains are paving the way for smarter,more efficient display technologies.By leveraging AI’s powerful data processing and optimization capabilities,full-color display systems are poised to achieve enhanced performance,energy efficiency,and user satisfaction,marking a significant step toward a more intelligent and innovative future.
基金supported by the National Natural Science Foundation of China(No.22174055)Key R&D Program of Zhenjiang City(No.NY2022012)。
文摘Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventional liquid electrolytes are unsuitable for the integration of sensing devices.To address these constraints,wearable biofuel cells and flexible electrochromic displays have been introduced,which can improve integration with other devices,safety,and color-coded display data.Meanwhile,electrode chips prepared through screen printing technology can further improve portability.In this work,a wearable sensor device with screen-printed chips was constructed and used for non-invasive detection of glucose.Agarose gel electrolytes doped with PDA-CNTs were prepared,and the mechanical strength and moisture retention were significantly improved compared with traditional gel electrolytes.Glucose in interstitial fluid was non-invasive extracted to the skin surface using reverse iontophoresis.As a biofuel for wearable biofuel cells,glucose drives self-powered sensor and electrochromic display to produce color change,allowing for visually measurement of glucose levels in body fluids.Accurate detection results can be visualized by reading the RGB value with a cell phone.