Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suita...Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.展开更多
CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voir...CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.展开更多
In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA ...In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA repeats,of which 496762 and 495977 were identified on the forward and reverse DNA strands,respectively.The detected DRs were,on average,374 bp in length and occupied 66.4%of the O.sativa genome.Totally 61%of DRs,identified by the IP method,overlapped with previously annotated dispersed repeats(ADRs)detected using the Extensive De Novo TE Annotator(EDTA)pipeline.展开更多
Objective:To clarify the preferences and core demands of professional Master’s students in Tuina at Yunnan University of Chinese Medicine regarding“concentrated”versus“dispersed”rotation schedules in the Tuina de...Objective:To clarify the preferences and core demands of professional Master’s students in Tuina at Yunnan University of Chinese Medicine regarding“concentrated”versus“dispersed”rotation schedules in the Tuina department,as well as their preferred year for primary rotation,providing evidence for optimizing rotation programs and improving the quality of standardized training.Methods:Paper questionnaires,including two multiple-choice questions and one open-ended question,were distributed to 30 professional Tuina Master’s students,completed on site,and collected immediately.Descriptive statistics were used to analyze preference distributions.Results:A total of 30 questionnaires were distributed and 30 valid responses were collected,achieving a 100%response rate.Among them,23 students(76.7%)supported“concentrated training,”while seven students(23.3%)preferred“dispersed training.”Regarding rotation year preference,18 students(60.0%)selected the second year for concentrated Tuina rotations,eight students(26.7%)selected the third year,and four students(13.3%)selected the first year.The core demands supporting concentrated training were“skill continuity,deep involvement in diagnosis and treatment,and smooth mentorship transition,”whereas those supporting dispersed training were“integration of multi-department knowledge,coordination of research time,and avoidance of fatigue from a single department.”Conclusion:Most professional Tuina Master’s students prefer concentrated Tuina rotations in the second year.It is recommended that institutions adopt a“second-year core department concentrated+auxiliary department flexible dispersed”model and establish flexible coordination and feedback mechanisms to balance clinical skill development with individualized growth needs.展开更多
Heteroatom doping is a promising strategy for designing cost-effective and stable electrocatalysts toward the oxygen evolution reaction(OER),but the enhancement mechanism remains unclear.Herein,atomic Ir-O-Cu and Ir-O...Heteroatom doping is a promising strategy for designing cost-effective and stable electrocatalysts toward the oxygen evolution reaction(OER),but the enhancement mechanism remains unclear.Herein,atomic Ir-O-Cu and Ir-O-Ir motifs are engineered into CuO nanowires via cation exchange and dehydration to elucidate the OER mechanism.Systematic characterizations confirm the atomic dispersion of Ir within the CuO lattice and the electron transfer from Ir to CuO while preserving the host structure.The asprepared single-atom Ir-doped CuO(IrSA-CuO),featuring predominant Cu-O-Ir motifs and coexisting IrO-Ir motifs,achieves a low OER overpotential of 204 mV at 10 mA cm^(-2)in 1 M KOH,coupled with a 69-fold higher mass activity than commercial IrO_(2).Furthermore,the Ir_(SA)-CuO maintains long-term stability for 300 h at 200 mA cm^(-2)with minimal overpotential alteration and an additional 120 h at500 mA cm^(-2)with overpotential increased by 15 mV.In situ Raman spectroscopy reveals that the Ir-O-Ir motifs suppress Cu^(Ⅱ) oxidation to Cu^(Ⅲ) by delaying the onset potential,enhancing the structural stability during OER.Density functional theory calculations demonstrate the Cu-O-Ir motifs lower the adsorption energy of bridged ^(*)O via asymmetric bonding,accelerating ^(*)OOH formation in the ratedetermining step.This work presents a heteroatom engineering strategy to balance electrocatalytic activity and durability,providing a blueprint for industrial electrocatalyst design.展开更多
Drying operations are of grave importance to realize the reduction and utilization of sewage sludge resources,but the conventional thermal evaporation drying(TED)technology presents challenges due to the need for a la...Drying operations are of grave importance to realize the reduction and utilization of sewage sludge resources,but the conventional thermal evaporation drying(TED)technology presents challenges due to the need for a large amount of thermal energy to conquer the phase-change latent heat of moisture.Herein,we report a non-phase change technology based on particle high-speed self-rotation in a cyclone for fast,low-temperature drying of viscous sludge with high-moisture contents.Dispersed phase medium(DPM)is introduced into the cyclone self-rotation drying(CSRD)reactor to enhance the dispersion of the viscous sludge.The effects of carrier gas temperature,feeding rate,size,and proportion of DPM particles in the drying process are systematically examined.Under optimal operating conditions,the weighted content of moisture in the viscous sludge could be reduced from 80%to 15.01%in less than 5 s,achieving a high drying efficiency of 95.79%.Theoretical calculations also reveal that 89.26%of the moisture is removed through non-phase change pathway,contributing to a 522-fold increase in the drying rate of CSRD compared to TED technology.This investigation presents a sustainable effective approach for high moisture viscous sludge treatment with low energy consumption and carbon emissions.展开更多
The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Eff...The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.展开更多
Single-atom Fe catalysts show significant promise in the electrocatalytic reduction of CO_(2)(CO_(2)RR),while their performance remains inferior to that of precious metal catalysts due to the overly strong binding of^...Single-atom Fe catalysts show significant promise in the electrocatalytic reduction of CO_(2)(CO_(2)RR),while their performance remains inferior to that of precious metal catalysts due to the overly strong binding of^(*)CO intermediates.Although the introduction of heteroatoms or transition metal sites can modulate the binding strength of^(*)CO on Fe sites,these regulators often induce competitive hydrogen evolution reaction(HER)with reduced Faraday efficiency(FE).In this work,we employ HER-inert Sn as a regulator to tune the electronic structure of Fe,weakening^(*)CO adsorption and enhancing CO_(2)RR performance.Diatomic Fe-Sn pairs supported on N-doped carbon(Fe-Sn/NC)were synthesized,achieving FE for CO exceeding 90%over a broad potential range from−0.4 to−0.9 V versus the reversible hydrogen electrode.Fe-Sn/NC shows a high turnover frequency of 1.5×10^(4)h^(-1),much higher than that of Fe/NC.Characterization results and theoretical calculations demonstrate that bonding Sn site to Fe generates electron-rich Fe centers,effectively reducing the adsorption strength of^(*)CO without triggering HER.Additionally,Fe-Sn/NC exhibits exceptional activity in hydrazine oxidation performance(HzOR).The HzOR-assisted CO_(2)RR system using Fe-Sn/NC as electrodes reduces energy consumption by 38%compared with the conventional CO_(2)RR coupled oxygen evolution reaction system.展开更多
1.Introduction Al-Zn-Mg-Cu alloy is a typical age-hardening aluminum alloy,its strength and toughness are significantly influenced by precipita-tion behavior.The nucleation mechanisms of precipitates in this alloy are...1.Introduction Al-Zn-Mg-Cu alloy is a typical age-hardening aluminum alloy,its strength and toughness are significantly influenced by precipita-tion behavior.The nucleation mechanisms of precipitates in this alloy are generally categorized into homogeneous and heterogeneous nucleation.Homogeneous nucleation relies on structural and energy fluctuations within the solution to generate the driving force necessary for direct nucleation.展开更多
Single-atom catalysts (SACs) have emerged as a transformative class of materials in heterogeneous catalysis owing to their atomically dispersed metal centers, maximal atom utilization, and well-defined coordination en...Single-atom catalysts (SACs) have emerged as a transformative class of materials in heterogeneous catalysis owing to their atomically dispersed metal centers, maximal atom utilization, and well-defined coordination environments. In the energy sector, SACs have shown exceptional performance in electrocatalytic reactions such as the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and carbon dioxide reduction (CO2RR), where their tunable local electronic structures facilitate high activity and selectivity under mild conditions. Meanwhile, in the environmental domain, SACs are increasingly explored for advanced oxidation processes (AOPs), particularly in water purification applications, due to their ability to generate reactive species from green oxidants like hydrogen peroxide or peroxymonosulfate (PMS). Among various AOP strategies, PMS-based Fenton-like reactions have gained attention due to the high oxidation potential and stability of PMS in a wide pH range.展开更多
Propylene,a pivotal chemical feedstock,is extensively used in synthesizing high-value derivatives such as polypropylene and acrylonitrile[1].Although propylene is predominantly produced via naphtha cracking,a persiste...Propylene,a pivotal chemical feedstock,is extensively used in synthesizing high-value derivatives such as polypropylene and acrylonitrile[1].Although propylene is predominantly produced via naphtha cracking,a persistent supply-demand gap exists[2].Non-oil routes,such as propane dehydrogenation(PDH),are increasingly attractive,particularly with the availability of shale gas[3].Modern non-oxidative PDH heavily relies on Pt nanoparticle catalysts promoted with SnOx(e.g.,PtSn/Al2O3 used in Honeywell UOP's Oleflex process)[4].However,these systems suffer from inherent limitations:high Pt costs,coke formation via deep dehydrogenation,and sintering during regeneration-necessitating environmentally detrimental oxychlorination treatments to restore activity[5].展开更多
Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants f...Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants fromwater via catalyst-contaminant interaction.The elimination performance of Fe_(1)/OPCN towards acid red 9,acidred 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increasesgradually.The amaranth degradation rate of Fe_(1)/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton andOPCN,respectively.In addition,Fe_(1)/OPCN also has more outstanding removal activities towards other con-taminantswith sulfonic acid and azo groups alone.The considerable enhancement for removing sulfonic azocontaminants of Fe_(1)/OPCN is mainly ascribed to the following aspects:(1)The modified Fe could enhance theadsorption towards sulfonic azo compounds to accelerate the mass transfer,act as e^(-)acceptor to promoteinterfacial charge separation,and trigger the self-Fenton reaction to convert in-situ generated H_(2)O_(2)into·OH.(2)Fe(Ⅲ)could coordinate with-N=N-to form d-πconjugation,which could attract e^(-)transfer to attack-N=N-bond.Meanwhile,the inhibited charge recombination could release more free h^(þ)to oxidize sulfonicacid groups into SO4^(-)·.(3)Under the cooperation of abundant multiple active species(·O_(2)^(-),h^(þ),e^(-),·OH,SO4^(-)·)formed during the degradation reaction,sulfonic azo compounds could be completely mineralized into harmlesssmall molecules(CO_(2),H_(2)O,etc.)by means of-N=N-cleavage,hydroxyl substitution,and aromatic ringopening.This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds fromwastewater.展开更多
Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels u...Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.展开更多
In this paper, a cluster validity index called CDV index is presented. The CDV index is capable of providing a quality measurement for the goodness of a clustering result for a data set. The CDV index is composed of t...In this paper, a cluster validity index called CDV index is presented. The CDV index is capable of providing a quality measurement for the goodness of a clustering result for a data set. The CDV index is composed of three major factors, including a statistically calculated external diameter factor, a restorer factor to reduce the effect of data dimension, and a number of clusters related punishment factor. With the calculation of the product of the three factors under various number of clusters settings, the best clustering result for some number of clusters setting is able to be found by searching for the minimum value of CDV curve. In the empirical experiments presented in this research, K-Means clustering method is chosen for its simplicity and execution speed. For the presentation of the effectiveness and superiority of the CDV index in the experiments, several traditional cluster validity indexes were implemented as the control group of experiments, including DI, DBI, ADI, and the most effective PBM index in recent years. The data sets of the experiments are also carefully selected to justify the generalization of CDV index, including three real world data sets and three artificial data sets which are the simulation of real world data distribution. These data sets are all tested to present the superior features of CDV index.展开更多
Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1...Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.展开更多
The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for t...The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.展开更多
Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recogn...Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during展开更多
Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) we...Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.展开更多
Vertical distributions of void fraction in gas-liquid and gas-liquid-solid stirred tanks have been measured in a fully baffled dished base vessel of 0.48 m diameter, using a conductivity probe. The impeller configurat...Vertical distributions of void fraction in gas-liquid and gas-liquid-solid stirred tanks have been measured in a fully baffled dished base vessel of 0.48 m diameter, using a conductivity probe. The impeller configuration (a hollow half elliptical blade dispersing turbine below two up-pumping wide blade hydrofoils, identified as HEDT+2WHu) recommended in previous work has been used in this work. The operating temperatures were 24℃ and 81℃, identified as cold and hot respectively. The effects of superficial gas velocity, agitator speed and the corresponding power input on the local void fraction in two-phase systems are .investigated and discussed. Results show thatth-e increasing of agitator speed or gas flow rate leads to an increase in local-void fraction at the majority of measurement points in both cold and hot systems. However, the unifo,rmity of gas dispersion does not always in crease as the raising of agitator speed and power input. In either cold or hot sparged conditions, the two- and three-phase systems.have similar vertical profiles for void fraction, with maxima in similar locations; however, the void fractions are significantly lower in hot sparging than with cold. In cold operation the presence of particles leads to a lower void fraction at most points, although the local void fractions increase a little with the addition of solid particles at high temperature, in good agreement with the global gas holdup results, and the possible reasons are discussed in this paper. This work can give a better understanding of the differences between cold-gassed and hot-sparged three phase'stirred tanks.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
基金supported by the National Natural Science Foundation of China(22005072,21965006)Guizhou Provincial Key Technology R&D Program(Qian Ke He support(2023)General 122)+3 种基金Guiyang Guian Science and Technology Personnel Training Project([2024]2-13)Youth Science and Technology Talent Development Project from Guizhou Provincial Department of Education(KY[2022]163)Guizhou Provincial Science and Technology Foundation(KYJZ[2024]029)the ETS Marcelle-Gauvreau Engineering Research Chair program.
文摘Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.
基金Lin Du acknowledges the financial support provided by China Scholarship Council(CSC)via a Ph.D.Scholarship(202008510128)supported by Core Technology Project of China National Petroleum Corporation(CNPC)"Research on Thermal Miscible Flooding Technology"(2023ZG18)。
文摘CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.
基金supported by the Russian Science Foundation,Russia(Grant No.24-24-00031).
文摘In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA repeats,of which 496762 and 495977 were identified on the forward and reverse DNA strands,respectively.The detected DRs were,on average,374 bp in length and occupied 66.4%of the O.sativa genome.Totally 61%of DRs,identified by the IP method,overlapped with previously annotated dispersed repeats(ADRs)detected using the Extensive De Novo TE Annotator(EDTA)pipeline.
文摘Objective:To clarify the preferences and core demands of professional Master’s students in Tuina at Yunnan University of Chinese Medicine regarding“concentrated”versus“dispersed”rotation schedules in the Tuina department,as well as their preferred year for primary rotation,providing evidence for optimizing rotation programs and improving the quality of standardized training.Methods:Paper questionnaires,including two multiple-choice questions and one open-ended question,were distributed to 30 professional Tuina Master’s students,completed on site,and collected immediately.Descriptive statistics were used to analyze preference distributions.Results:A total of 30 questionnaires were distributed and 30 valid responses were collected,achieving a 100%response rate.Among them,23 students(76.7%)supported“concentrated training,”while seven students(23.3%)preferred“dispersed training.”Regarding rotation year preference,18 students(60.0%)selected the second year for concentrated Tuina rotations,eight students(26.7%)selected the third year,and four students(13.3%)selected the first year.The core demands supporting concentrated training were“skill continuity,deep involvement in diagnosis and treatment,and smooth mentorship transition,”whereas those supporting dispersed training were“integration of multi-department knowledge,coordination of research time,and avoidance of fatigue from a single department.”Conclusion:Most professional Tuina Master’s students prefer concentrated Tuina rotations in the second year.It is recommended that institutions adopt a“second-year core department concentrated+auxiliary department flexible dispersed”model and establish flexible coordination and feedback mechanisms to balance clinical skill development with individualized growth needs.
基金supported by the Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR124)。
文摘Heteroatom doping is a promising strategy for designing cost-effective and stable electrocatalysts toward the oxygen evolution reaction(OER),but the enhancement mechanism remains unclear.Herein,atomic Ir-O-Cu and Ir-O-Ir motifs are engineered into CuO nanowires via cation exchange and dehydration to elucidate the OER mechanism.Systematic characterizations confirm the atomic dispersion of Ir within the CuO lattice and the electron transfer from Ir to CuO while preserving the host structure.The asprepared single-atom Ir-doped CuO(IrSA-CuO),featuring predominant Cu-O-Ir motifs and coexisting IrO-Ir motifs,achieves a low OER overpotential of 204 mV at 10 mA cm^(-2)in 1 M KOH,coupled with a 69-fold higher mass activity than commercial IrO_(2).Furthermore,the Ir_(SA)-CuO maintains long-term stability for 300 h at 200 mA cm^(-2)with minimal overpotential alteration and an additional 120 h at500 mA cm^(-2)with overpotential increased by 15 mV.In situ Raman spectroscopy reveals that the Ir-O-Ir motifs suppress Cu^(Ⅱ) oxidation to Cu^(Ⅲ) by delaying the onset potential,enhancing the structural stability during OER.Density functional theory calculations demonstrate the Cu-O-Ir motifs lower the adsorption energy of bridged ^(*)O via asymmetric bonding,accelerating ^(*)OOH formation in the ratedetermining step.This work presents a heteroatom engineering strategy to balance electrocatalytic activity and durability,providing a blueprint for industrial electrocatalyst design.
基金supported by the National Key Research and Development Program of China(2019YFA0705800)the National Natural Science Foundation of China(52030001)the Science&Technology Commission of Shanghai Municipality(20dz1207600).
文摘Drying operations are of grave importance to realize the reduction and utilization of sewage sludge resources,but the conventional thermal evaporation drying(TED)technology presents challenges due to the need for a large amount of thermal energy to conquer the phase-change latent heat of moisture.Herein,we report a non-phase change technology based on particle high-speed self-rotation in a cyclone for fast,low-temperature drying of viscous sludge with high-moisture contents.Dispersed phase medium(DPM)is introduced into the cyclone self-rotation drying(CSRD)reactor to enhance the dispersion of the viscous sludge.The effects of carrier gas temperature,feeding rate,size,and proportion of DPM particles in the drying process are systematically examined.Under optimal operating conditions,the weighted content of moisture in the viscous sludge could be reduced from 80%to 15.01%in less than 5 s,achieving a high drying efficiency of 95.79%.Theoretical calculations also reveal that 89.26%of the moisture is removed through non-phase change pathway,contributing to a 522-fold increase in the drying rate of CSRD compared to TED technology.This investigation presents a sustainable effective approach for high moisture viscous sludge treatment with low energy consumption and carbon emissions.
基金supported by the National Natural Science Foundation of China(22179034,22279030)the Natural Science Foundation of Heilongjiang Province(ZD2023B002).
文摘The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.
文摘Single-atom Fe catalysts show significant promise in the electrocatalytic reduction of CO_(2)(CO_(2)RR),while their performance remains inferior to that of precious metal catalysts due to the overly strong binding of^(*)CO intermediates.Although the introduction of heteroatoms or transition metal sites can modulate the binding strength of^(*)CO on Fe sites,these regulators often induce competitive hydrogen evolution reaction(HER)with reduced Faraday efficiency(FE).In this work,we employ HER-inert Sn as a regulator to tune the electronic structure of Fe,weakening^(*)CO adsorption and enhancing CO_(2)RR performance.Diatomic Fe-Sn pairs supported on N-doped carbon(Fe-Sn/NC)were synthesized,achieving FE for CO exceeding 90%over a broad potential range from−0.4 to−0.9 V versus the reversible hydrogen electrode.Fe-Sn/NC shows a high turnover frequency of 1.5×10^(4)h^(-1),much higher than that of Fe/NC.Characterization results and theoretical calculations demonstrate that bonding Sn site to Fe generates electron-rich Fe centers,effectively reducing the adsorption strength of^(*)CO without triggering HER.Additionally,Fe-Sn/NC exhibits exceptional activity in hydrazine oxidation performance(HzOR).The HzOR-assisted CO_(2)RR system using Fe-Sn/NC as electrodes reduces energy consumption by 38%compared with the conventional CO_(2)RR coupled oxygen evolution reaction system.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A20130 and 52475357).
文摘1.Introduction Al-Zn-Mg-Cu alloy is a typical age-hardening aluminum alloy,its strength and toughness are significantly influenced by precipita-tion behavior.The nucleation mechanisms of precipitates in this alloy are generally categorized into homogeneous and heterogeneous nucleation.Homogeneous nucleation relies on structural and energy fluctuations within the solution to generate the driving force necessary for direct nucleation.
文摘Single-atom catalysts (SACs) have emerged as a transformative class of materials in heterogeneous catalysis owing to their atomically dispersed metal centers, maximal atom utilization, and well-defined coordination environments. In the energy sector, SACs have shown exceptional performance in electrocatalytic reactions such as the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and carbon dioxide reduction (CO2RR), where their tunable local electronic structures facilitate high activity and selectivity under mild conditions. Meanwhile, in the environmental domain, SACs are increasingly explored for advanced oxidation processes (AOPs), particularly in water purification applications, due to their ability to generate reactive species from green oxidants like hydrogen peroxide or peroxymonosulfate (PMS). Among various AOP strategies, PMS-based Fenton-like reactions have gained attention due to the high oxidation potential and stability of PMS in a wide pH range.
文摘Propylene,a pivotal chemical feedstock,is extensively used in synthesizing high-value derivatives such as polypropylene and acrylonitrile[1].Although propylene is predominantly produced via naphtha cracking,a persistent supply-demand gap exists[2].Non-oil routes,such as propane dehydrogenation(PDH),are increasingly attractive,particularly with the availability of shale gas[3].Modern non-oxidative PDH heavily relies on Pt nanoparticle catalysts promoted with SnOx(e.g.,PtSn/Al2O3 used in Honeywell UOP's Oleflex process)[4].However,these systems suffer from inherent limitations:high Pt costs,coke formation via deep dehydrogenation,and sintering during regeneration-necessitating environmentally detrimental oxychlorination treatments to restore activity[5].
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221541)National Natural Science Foundation of China(21707052)Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)3108).
文摘Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants fromwater via catalyst-contaminant interaction.The elimination performance of Fe_(1)/OPCN towards acid red 9,acidred 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increasesgradually.The amaranth degradation rate of Fe_(1)/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton andOPCN,respectively.In addition,Fe_(1)/OPCN also has more outstanding removal activities towards other con-taminantswith sulfonic acid and azo groups alone.The considerable enhancement for removing sulfonic azocontaminants of Fe_(1)/OPCN is mainly ascribed to the following aspects:(1)The modified Fe could enhance theadsorption towards sulfonic azo compounds to accelerate the mass transfer,act as e^(-)acceptor to promoteinterfacial charge separation,and trigger the self-Fenton reaction to convert in-situ generated H_(2)O_(2)into·OH.(2)Fe(Ⅲ)could coordinate with-N=N-to form d-πconjugation,which could attract e^(-)transfer to attack-N=N-bond.Meanwhile,the inhibited charge recombination could release more free h^(þ)to oxidize sulfonicacid groups into SO4^(-)·.(3)Under the cooperation of abundant multiple active species(·O_(2)^(-),h^(þ),e^(-),·OH,SO4^(-)·)formed during the degradation reaction,sulfonic azo compounds could be completely mineralized into harmlesssmall molecules(CO_(2),H_(2)O,etc.)by means of-N=N-cleavage,hydroxyl substitution,and aromatic ringopening.This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds fromwastewater.
基金Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.20673107 and No.20873133), the National Basic Research Program of China (No.2007CB815203 and No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
文摘Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.
文摘In this paper, a cluster validity index called CDV index is presented. The CDV index is capable of providing a quality measurement for the goodness of a clustering result for a data set. The CDV index is composed of three major factors, including a statistically calculated external diameter factor, a restorer factor to reduce the effect of data dimension, and a number of clusters related punishment factor. With the calculation of the product of the three factors under various number of clusters settings, the best clustering result for some number of clusters setting is able to be found by searching for the minimum value of CDV curve. In the empirical experiments presented in this research, K-Means clustering method is chosen for its simplicity and execution speed. For the presentation of the effectiveness and superiority of the CDV index in the experiments, several traditional cluster validity indexes were implemented as the control group of experiments, including DI, DBI, ADI, and the most effective PBM index in recent years. The data sets of the experiments are also carefully selected to justify the generalization of CDV index, including three real world data sets and three artificial data sets which are the simulation of real world data distribution. These data sets are all tested to present the superior features of CDV index.
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA09030104)the National Basic Research Program of China(973 Program,2012CB215500)+1 种基金the National Natural Science Foundation of China(2157625850823008)~~
文摘Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.
文摘The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.
文摘Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during
基金Supported by the National Natural Science Foundation of China (20776086)
文摘Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
基金Supported by the National Natural Science Foundation of China (20576009, 20821004) and the National Basic Research Program of China (2007CB714300). ACKNOWLEDGEMENTS The authors sincerely acknowledge the helpful discussion with Prof John M. Smith [Fluids and Systems Research Centre, School of Engineering (J2), University of Surrey, Guildford, GU2 7XH, UK].
文摘Vertical distributions of void fraction in gas-liquid and gas-liquid-solid stirred tanks have been measured in a fully baffled dished base vessel of 0.48 m diameter, using a conductivity probe. The impeller configuration (a hollow half elliptical blade dispersing turbine below two up-pumping wide blade hydrofoils, identified as HEDT+2WHu) recommended in previous work has been used in this work. The operating temperatures were 24℃ and 81℃, identified as cold and hot respectively. The effects of superficial gas velocity, agitator speed and the corresponding power input on the local void fraction in two-phase systems are .investigated and discussed. Results show thatth-e increasing of agitator speed or gas flow rate leads to an increase in local-void fraction at the majority of measurement points in both cold and hot systems. However, the unifo,rmity of gas dispersion does not always in crease as the raising of agitator speed and power input. In either cold or hot sparged conditions, the two- and three-phase systems.have similar vertical profiles for void fraction, with maxima in similar locations; however, the void fractions are significantly lower in hot sparging than with cold. In cold operation the presence of particles leads to a lower void fraction at most points, although the local void fractions increase a little with the addition of solid particles at high temperature, in good agreement with the global gas holdup results, and the possible reasons are discussed in this paper. This work can give a better understanding of the differences between cold-gassed and hot-sparged three phase'stirred tanks.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.