In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA ...In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA repeats,of which 496762 and 495977 were identified on the forward and reverse DNA strands,respectively.The detected DRs were,on average,374 bp in length and occupied 66.4%of the O.sativa genome.Totally 61%of DRs,identified by the IP method,overlapped with previously annotated dispersed repeats(ADRs)detected using the Extensive De Novo TE Annotator(EDTA)pipeline.展开更多
The high incidence of hand,foot,and mouth disease(HFMD)in children,coupled with improper management,can lead to complications,causing significant distress to both patients and their parents.This article reports on the...The high incidence of hand,foot,and mouth disease(HFMD)in children,coupled with improper management,can lead to complications,causing significant distress to both patients and their parents.This article reports on the successful treatment of a case of HFMD with dampness-heat accumulation in the spleen type using a therapeutic approach of applying herbal patches to acupoints to disperse dampness,promote heat dissipation,and unblock the fu organs.The herbs selected primarily include honeysuckle,Forsythia,and mint to relieve the exterior and promote heat dissipation;Agastache and magnolia bark to transform and dry dampness;Scutellaria,blackberry lily,and licorice to clear heat,detoxify,and benefit the throat;and magnolia bark and bitter orange to unblock the fu organs and purge heat.The flexible combination of these herbs with acupoints such as Shenque,Zhongwan,Tiantu,and Feishu fully leverages the synergistic effects of both the herbs and acupoints,resulting in a significant therapeutic effect.This approach provides valuable insights and methodologies for the prevention and treatment of HFMD in children.展开更多
Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suita...Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.展开更多
The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Eff...The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.展开更多
CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voir...CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.展开更多
Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants f...Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants fromwater via catalyst-contaminant interaction.The elimination performance of Fe_(1)/OPCN towards acid red 9,acidred 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increasesgradually.The amaranth degradation rate of Fe_(1)/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton andOPCN,respectively.In addition,Fe_(1)/OPCN also has more outstanding removal activities towards other con-taminantswith sulfonic acid and azo groups alone.The considerable enhancement for removing sulfonic azocontaminants of Fe_(1)/OPCN is mainly ascribed to the following aspects:(1)The modified Fe could enhance theadsorption towards sulfonic azo compounds to accelerate the mass transfer,act as e^(-)acceptor to promoteinterfacial charge separation,and trigger the self-Fenton reaction to convert in-situ generated H_(2)O_(2)into·OH.(2)Fe(Ⅲ)could coordinate with-N=N-to form d-πconjugation,which could attract e^(-)transfer to attack-N=N-bond.Meanwhile,the inhibited charge recombination could release more free h^(þ)to oxidize sulfonicacid groups into SO4^(-)·.(3)Under the cooperation of abundant multiple active species(·O_(2)^(-),h^(þ),e^(-),·OH,SO4^(-)·)formed during the degradation reaction,sulfonic azo compounds could be completely mineralized into harmlesssmall molecules(CO_(2),H_(2)O,etc.)by means of-N=N-cleavage,hydroxyl substitution,and aromatic ringopening.This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds fromwastewater.展开更多
Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuo...Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuous seed color,hard seed coat,certain toxic secondary metabolites,and perhaps smooth waxy layer.In this review,we discuss the global distribution of mimetic seeds,the interaction of mimetic seeds with bird dispersers,and secondary metabolites that underlie key characteristics of mimetic seeds.Mimetic-seed species mainly occur in the tropics,with large numbers distributed along coastal areas.The interaction between mimetic-seed species and bird dispersers can be antagonistic,mutualistic,or both.These interactions are generally established by conspicuous visual cues and hard tactile cues from mimetic seeds.The formation and variation of key characteristics of mimetic seeds may contribute to the metabolism of several kind of secondary compounds.Here,we also discuss mimetic-seed dispersal in the context of an evolutionary game,and propose several aspects of mimetic-seed dispersal that remain unstudied.While this review is based on preliminary findings and does not account for other potential influencing factors such as climate,it is expected to contribute to an improved understanding of mimetic-seed dispersal.展开更多
Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Euleri...Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Eulerian method,combining population balance equations with statistical models to forecast droplet breakage.Conversely,the Eulerian-Lagrangian(E-L)method provides precise tracking of individual droplets,which is crucial for simulating dispersion processes.However,E-L simulation faces challenges in integrating droplet breakage effectively.To address this issue,our research introduces a probabilistic approach for droplet breakages.It assumes that a longer time increases the likelihood of breakup;a droplet breaks if the calculated probability exceeds a random value from 0 to 1.Consequently,the simulated breakage frequency becomes independent of the Lagrangian time step.The Sauter mean diameter and droplet size distribution can be accurately predicted by this probabilistic approach.By closely monitoring droplet motion,we reveal the complexity of droplet trajectories and the detailed patterns of circulation in stirred tanks.These insights contribute to a deeper understanding of liquidliquid dispersion dynamics.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
Hydrogen has emerged as a promising environmentally friendly energy source. The development of lowcost, highly active, stable, and easily synthesized catalysts for hydrogen evolution reactions(HER) remains a significa...Hydrogen has emerged as a promising environmentally friendly energy source. The development of lowcost, highly active, stable, and easily synthesized catalysts for hydrogen evolution reactions(HER) remains a significant challenge. This study explored the synthesis of nitrogen-doped MXene-based composite catalysts for enhanced HER performance. By thermally decomposing RuCl_(3) coordinated with melamine and formaldehyde resin, we successfully introduced nitrogen-doped carbon(N–C) with highly dispersed ruthenium(Ru) onto the MXene surface. The calcination temperature played a crucial role in controlling the size of Ru nanoparticles(Ru NPs) and the proportion of Ru single-atom(Ru SA), thereby facilitating the synergistic enhancement of HER performance by Ru NPs and Ru SA. The resulting catalyst prepared with a calcination temperature of 600℃, Ti_(3)C_(2)T_x-N/C-Ru-600(TNCR-600), exhibited exceptional HER activity(η10= 17 m V) and stability(160 h) under alkaline conditions. This work presented a simple and effective strategy for synthesizing composite catalysts, offering new insights into the design and regulation of high-performance Ru-based catalysts for hydrogen production.展开更多
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult...Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based on...With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios.展开更多
Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction is of importance for further applications.Herein,the concept of holding atomic...Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction is of importance for further applications.Herein,the concept of holding atomically dispersed NiO_(x)cluster supported on Pt-based high-index facets(NiO_(x)/Pt)is proposed to build O-bridged Pt–Ni dual sites.Strikingly,the obtained NiO_(x)/Pt dual sites show 4.97 times specific activity higher than that of commercial Pt/C(0.35 mA cm^(-2)),as well as outstanding CO-tolerance and durability.The advanced electrochemical in-situ characterizations reveal that the NiO_(x)/Pt can accelerate rapid dehydroxylation and C–C bondcleavage over the Pt–Ni dual sites.Theoretical calculations disclose that the atomically dispersed NiO_(x)species can lower the adsorption/reaction energy barriers of intermediates.This tactic provides a promising methodology on regulating the surface synergistic sites via engineering atomically dispersed oxide site.展开更多
Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient.Because of the unique properties of supercritical carbon dioxide,however,leakage occurring in suc...Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient.Because of the unique properties of supercritical carbon dioxide,however,leakage occurring in such conditions can be extremely intricate,resulting in the dispersion area following leakage being influenced by numerous factors.In this study,this problem is addressed in the frame of the so-called Unified Dispersion Model(UDM),and various influential parameters are considered,namely,leakage pressure,leakage temperature,leakage aperture,leakage angle,atmospheric stability,wind speed,and surface roughness.The results show that the supercritical carbon dioxide dispersion is primarily influenced by high air temperatures,low wind speeds,reduced surface roughness,and release temperatures slightly below the critical temperature.Additionally,leak apertures also contribute to the dispersion.The dispersion is maximized under atmospheric stable D conditions,and when the leakage angle is 0°,the farthest downwind distance is 10 times greater than that at a leakage angle of 90°under the same conditions.展开更多
Oxide dispersion strengthening(ODS)is an effective method to improve the mechanical properties of Mo-based materials.However,the mechanical properties of traditional ODS-Mo composites are always lim-ited by the coarse...Oxide dispersion strengthening(ODS)is an effective method to improve the mechanical properties of Mo-based materials.However,the mechanical properties of traditional ODS-Mo composites are always lim-ited by the coarsening and intergranular distribution of second-phase particles.In this work,an effective nano-reinforcement dispersion strategy was developed to fabricate an ODS-Mo composite with ultrafine grain and intragranular distribution of second-phase particles.Core-shell structural Mo nanocomposite powders,with internally distributed sub-10 nm Al_(2)O_(3)dispersoids,were prepared by nano atomization doping(AD)followed by a chemical vapor transport growth strategy.Then,ODS-Mo composites with ultra-fine Mo grain(below 700 nm)and high-density intragranularκ-Al_(2)O_(3)(below 20 nm)nanoparti-cles were prepared via spark plasma sintering(SPS),in which a coherent interface betweenκ-Al_(2)O_(3)and Mo matrix was formed.The composites present remarkably improved hardness(above 500 HV),bend strength,and compressive yield strength(above 1664 MPa)at room temperature,with a suitable strain to fracture of 27.1%.The calculation of strengthening mechanisms indicates that the enhancement was mainly attributed to the intragranularκ-Al_(2)O_(3)nanoparticles.This nano-sized reinforcement distributed within the grain can more effectively pin dislocations and achieve dispersion strengthening in ODS-Mo composites.Therefore,this strategy can efficiently construct intragranular second-phase nanoparticles and open up new avenues to fabricate high-performance ODS-Mo composites.展开更多
Designing heterogeneous grain structure(HGS)has been proven to be an effective strategy for overcoming the strength-plasticity dilemma in copper and copper alloys.However,the construction of HGS in dispersionstrengthe...Designing heterogeneous grain structure(HGS)has been proven to be an effective strategy for overcoming the strength-plasticity dilemma in copper and copper alloys.However,the construction of HGS in dispersionstrengthened copper(DSC)for enhancing strength-plasticity synergy remains challenging.Here,we proposed a novel method,multistep ball milling and reduction process followed by spark plasma sintering,to prepare DSC with an HGS to ameliorate the strength-plasticity dilemma in DSC.Micron-and nano-CuO and nano-Y_(2)O_(3)powders were chosen as raw materials in this new method.The Cu-7vol%Y_(2)O_(3)composite,exhibiting a compressive yield strength of 438 MPa and a failure strain of 46.3%,exhibits a superior strength-plasticity tradeoff in comparison with other DSC materials.Systematic experiments indicate that the back-stress at the heterointerfaces between coarse grains and fine grains maybe not only raise the yield strength of Cu-Y_(2)O_(3)composite,but also significantly enhance the strain hardening to increase the plasticity of the material.The new HGS designing route in this study offers a feasible pathway to develop DSC with a remarkable enhancement in strength and plasticity.展开更多
The solubility of disperse dyes and their mixture in supercritical carbon dioxide is an important property in study and development of supercritical fluid dyeing technology.In this study,solubilities of C.I.Disperse R...The solubility of disperse dyes and their mixture in supercritical carbon dioxide is an important property in study and development of supercritical fluid dyeing technology.In this study,solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183 and their mixture in supercritical CO2 are measured at temperatures from 343.2 to 383.2 K and pressures from 12 to 28 MPa with a static recirculation method.Under the experimental conditions for the binary(C.I.Disperse Red 73+CO2 or C.I.Disperse Blue 183+CO2) and ternary(C.I.Disperse Red 73+C.I.Disperse Blue 183+CO2) systems,the solubilities increase with pressure.The solubility of C.I.Disperse Blue 183 decreases with the increase of temperature when the pressure is lower than 16 MPa,and the trend is opposite when the pressure is higher than 16 MPa.However,there is no crossover pressure for C.I.Disperse Red 73.The solubilities are also affected by molecular polarity of dyes.The co-solvent effect exhibited in the dissolving process of mixed dyes promotes their dissolution in supercritical CO2.The experimental data of solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183,and their mixture are correlated with the Chrastil model and Mendez-Santiago/Teja model. The former is more accurate.展开更多
Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels u...Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.展开更多
For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraq...For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraquinone type) and C. I. disperse orange 25 (azo type) in supercritieal CO2 were carried out with a high-pressure dyeing apparatus at temperatures from 80 to 130℃ and pressure up to 31 MPa. The effect of operating conditions on color yield (K/S) was investigated in SFD experiment, and the optimum operating conditions for the above two disperse dyes were obtained as follows: the temperature 120℃, the pressure 25 MPa and the dyeing time 100 min. As compared with SFD, the conventional water dyeing (CWD) was carried out with the same dyes and textile. The results show that the better fastness, levelness and apparent color can be achieved in SFD and the SFD process has many significant advantages over the CWD process.展开更多
基金supported by the Russian Science Foundation,Russia(Grant No.24-24-00031).
文摘In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA repeats,of which 496762 and 495977 were identified on the forward and reverse DNA strands,respectively.The detected DRs were,on average,374 bp in length and occupied 66.4%of the O.sativa genome.Totally 61%of DRs,identified by the IP method,overlapped with previously annotated dispersed repeats(ADRs)detected using the Extensive De Novo TE Annotator(EDTA)pipeline.
文摘The high incidence of hand,foot,and mouth disease(HFMD)in children,coupled with improper management,can lead to complications,causing significant distress to both patients and their parents.This article reports on the successful treatment of a case of HFMD with dampness-heat accumulation in the spleen type using a therapeutic approach of applying herbal patches to acupoints to disperse dampness,promote heat dissipation,and unblock the fu organs.The herbs selected primarily include honeysuckle,Forsythia,and mint to relieve the exterior and promote heat dissipation;Agastache and magnolia bark to transform and dry dampness;Scutellaria,blackberry lily,and licorice to clear heat,detoxify,and benefit the throat;and magnolia bark and bitter orange to unblock the fu organs and purge heat.The flexible combination of these herbs with acupoints such as Shenque,Zhongwan,Tiantu,and Feishu fully leverages the synergistic effects of both the herbs and acupoints,resulting in a significant therapeutic effect.This approach provides valuable insights and methodologies for the prevention and treatment of HFMD in children.
基金supported by the National Natural Science Foundation of China(22005072,21965006)Guizhou Provincial Key Technology R&D Program(Qian Ke He support(2023)General 122)+3 种基金Guiyang Guian Science and Technology Personnel Training Project([2024]2-13)Youth Science and Technology Talent Development Project from Guizhou Provincial Department of Education(KY[2022]163)Guizhou Provincial Science and Technology Foundation(KYJZ[2024]029)the ETS Marcelle-Gauvreau Engineering Research Chair program.
文摘Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.
基金supported by the National Natural Science Foundation of China(22179034,22279030)the Natural Science Foundation of Heilongjiang Province(ZD2023B002).
文摘The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.
基金Lin Du acknowledges the financial support provided by China Scholarship Council(CSC)via a Ph.D.Scholarship(202008510128)supported by Core Technology Project of China National Petroleum Corporation(CNPC)"Research on Thermal Miscible Flooding Technology"(2023ZG18)。
文摘CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221541)National Natural Science Foundation of China(21707052)Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)3108).
文摘Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants fromwater via catalyst-contaminant interaction.The elimination performance of Fe_(1)/OPCN towards acid red 9,acidred 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increasesgradually.The amaranth degradation rate of Fe_(1)/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton andOPCN,respectively.In addition,Fe_(1)/OPCN also has more outstanding removal activities towards other con-taminantswith sulfonic acid and azo groups alone.The considerable enhancement for removing sulfonic azocontaminants of Fe_(1)/OPCN is mainly ascribed to the following aspects:(1)The modified Fe could enhance theadsorption towards sulfonic azo compounds to accelerate the mass transfer,act as e^(-)acceptor to promoteinterfacial charge separation,and trigger the self-Fenton reaction to convert in-situ generated H_(2)O_(2)into·OH.(2)Fe(Ⅲ)could coordinate with-N=N-to form d-πconjugation,which could attract e^(-)transfer to attack-N=N-bond.Meanwhile,the inhibited charge recombination could release more free h^(þ)to oxidize sulfonicacid groups into SO4^(-)·.(3)Under the cooperation of abundant multiple active species(·O_(2)^(-),h^(þ),e^(-),·OH,SO4^(-)·)formed during the degradation reaction,sulfonic azo compounds could be completely mineralized into harmlesssmall molecules(CO_(2),H_(2)O,etc.)by means of-N=N-cleavage,hydroxyl substitution,and aromatic ringopening.This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds fromwastewater.
基金supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-017)the National Natural Science Foundation of China(32371564)+2 种基金the Key Project of Basic Research of Yunnan Province,China(202101AS070035202301AS070001)to G.ChenYunnan Provincial Science and Technology Talent and Platform Plan(202305AM070005).
文摘Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuous seed color,hard seed coat,certain toxic secondary metabolites,and perhaps smooth waxy layer.In this review,we discuss the global distribution of mimetic seeds,the interaction of mimetic seeds with bird dispersers,and secondary metabolites that underlie key characteristics of mimetic seeds.Mimetic-seed species mainly occur in the tropics,with large numbers distributed along coastal areas.The interaction between mimetic-seed species and bird dispersers can be antagonistic,mutualistic,or both.These interactions are generally established by conspicuous visual cues and hard tactile cues from mimetic seeds.The formation and variation of key characteristics of mimetic seeds may contribute to the metabolism of several kind of secondary compounds.Here,we also discuss mimetic-seed dispersal in the context of an evolutionary game,and propose several aspects of mimetic-seed dispersal that remain unstudied.While this review is based on preliminary findings and does not account for other potential influencing factors such as climate,it is expected to contribute to an improved understanding of mimetic-seed dispersal.
基金support from the National Key Research and Development Program of China,China(2023YFE0106600)the National Natural Science Foundation of China,China(22421003,22178354,21925805)funding from FFG(Austria)under project“ABATE”(903872).
文摘Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Eulerian method,combining population balance equations with statistical models to forecast droplet breakage.Conversely,the Eulerian-Lagrangian(E-L)method provides precise tracking of individual droplets,which is crucial for simulating dispersion processes.However,E-L simulation faces challenges in integrating droplet breakage effectively.To address this issue,our research introduces a probabilistic approach for droplet breakages.It assumes that a longer time increases the likelihood of breakup;a droplet breaks if the calculated probability exceeds a random value from 0 to 1.Consequently,the simulated breakage frequency becomes independent of the Lagrangian time step.The Sauter mean diameter and droplet size distribution can be accurately predicted by this probabilistic approach.By closely monitoring droplet motion,we reveal the complexity of droplet trajectories and the detailed patterns of circulation in stirred tanks.These insights contribute to a deeper understanding of liquidliquid dispersion dynamics.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
基金financially supported by the National Key R&D Program of China (No.2018YFA0209402)the National Natural Science Foundation of China (Nos.22088101, 22175132, 22072028)。
文摘Hydrogen has emerged as a promising environmentally friendly energy source. The development of lowcost, highly active, stable, and easily synthesized catalysts for hydrogen evolution reactions(HER) remains a significant challenge. This study explored the synthesis of nitrogen-doped MXene-based composite catalysts for enhanced HER performance. By thermally decomposing RuCl_(3) coordinated with melamine and formaldehyde resin, we successfully introduced nitrogen-doped carbon(N–C) with highly dispersed ruthenium(Ru) onto the MXene surface. The calcination temperature played a crucial role in controlling the size of Ru nanoparticles(Ru NPs) and the proportion of Ru single-atom(Ru SA), thereby facilitating the synergistic enhancement of HER performance by Ru NPs and Ru SA. The resulting catalyst prepared with a calcination temperature of 600℃, Ti_(3)C_(2)T_x-N/C-Ru-600(TNCR-600), exhibited exceptional HER activity(η10= 17 m V) and stability(160 h) under alkaline conditions. This work presented a simple and effective strategy for synthesizing composite catalysts, offering new insights into the design and regulation of high-performance Ru-based catalysts for hydrogen production.
基金This work was supported by National Key R&D Program of China(2021YFF0500503)National Natural Science Foundation of China(21925202,U22B2071)International Joint Mission on Climate Change and Carbon Neutrality.
文摘Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery.
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
文摘With the rapid development of urban rail transit,the existing track detection has some problems such as low efficiency and insufficient detection coverage,so an intelligent and automatic track detectionmethod based onUAV is urgently needed to avoid major safety accidents.At the same time,the geographical distribution of IoT devices results in the inefficient use of the significant computing potential held by a large number of devices.As a result,the Dispersed Computing(DCOMP)architecture enables collaborative computing between devices in the Internet of Everything(IoE),promotes low-latency and efficient cross-wide applications,and meets users’growing needs for computing performance and service quality.This paper focuses on examining the resource allocation challenge within a dispersed computing environment that utilizes UAV inspection tracks.Furthermore,the system takes into account both resource constraints and computational constraints and transforms the optimization problem into an energy minimization problem with computational constraints.The Markov Decision Process(MDP)model is employed to capture the connection between the dispersed computing resource allocation strategy and the system environment.Subsequently,a method based on Double Deep Q-Network(DDQN)is introduced to derive the optimal policy.Simultaneously,an experience replay mechanism is implemented to tackle the issue of increasing dimensionality.The experimental simulations validate the efficacy of the method across various scenarios.
基金supported by the National Natural Science Foundation of China(22305101)the Natural Science Foundation of Jiangsu Province(BK20231032)+1 种基金the Fundamental Research Funds for the Central Universities(JUSRP123020)Startup Funding at Jiangnan University(1045219032220100).
文摘Constructing the desired long-range dual sites to enhance the C–C bond-cleavage and CO-tolerate ability during ethanol oxidation reaction is of importance for further applications.Herein,the concept of holding atomically dispersed NiO_(x)cluster supported on Pt-based high-index facets(NiO_(x)/Pt)is proposed to build O-bridged Pt–Ni dual sites.Strikingly,the obtained NiO_(x)/Pt dual sites show 4.97 times specific activity higher than that of commercial Pt/C(0.35 mA cm^(-2)),as well as outstanding CO-tolerance and durability.The advanced electrochemical in-situ characterizations reveal that the NiO_(x)/Pt can accelerate rapid dehydroxylation and C–C bondcleavage over the Pt–Ni dual sites.Theoretical calculations disclose that the atomically dispersed NiO_(x)species can lower the adsorption/reaction energy barriers of intermediates.This tactic provides a promising methodology on regulating the surface synergistic sites via engineering atomically dispersed oxide site.
基金supported by the Postdoctoral Applied Research Project of Qingdao(Grant No.qdyy20210020).
文摘Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient.Because of the unique properties of supercritical carbon dioxide,however,leakage occurring in such conditions can be extremely intricate,resulting in the dispersion area following leakage being influenced by numerous factors.In this study,this problem is addressed in the frame of the so-called Unified Dispersion Model(UDM),and various influential parameters are considered,namely,leakage pressure,leakage temperature,leakage aperture,leakage angle,atmospheric stability,wind speed,and surface roughness.The results show that the supercritical carbon dioxide dispersion is primarily influenced by high air temperatures,low wind speeds,reduced surface roughness,and release temperatures slightly below the critical temperature.Additionally,leak apertures also contribute to the dispersion.The dispersion is maximized under atmospheric stable D conditions,and when the leakage angle is 0°,the farthest downwind distance is 10 times greater than that at a leakage angle of 90°under the same conditions.
基金supported by the Natural Science Foundation of Shaanxi Province,China(No.2020JC-50)the National Natural Science Foundation of China(Nos.52304386 and 52203382)+2 种基金the Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.2021-1-2)the Key Research and Development Program of Shaanxi(No.2024GX-YBXM-355)the Innovation Ca-pacity Support Projects of Shaanxi Province(No.2023KJXX-096).
文摘Oxide dispersion strengthening(ODS)is an effective method to improve the mechanical properties of Mo-based materials.However,the mechanical properties of traditional ODS-Mo composites are always lim-ited by the coarsening and intergranular distribution of second-phase particles.In this work,an effective nano-reinforcement dispersion strategy was developed to fabricate an ODS-Mo composite with ultrafine grain and intragranular distribution of second-phase particles.Core-shell structural Mo nanocomposite powders,with internally distributed sub-10 nm Al_(2)O_(3)dispersoids,were prepared by nano atomization doping(AD)followed by a chemical vapor transport growth strategy.Then,ODS-Mo composites with ultra-fine Mo grain(below 700 nm)and high-density intragranularκ-Al_(2)O_(3)(below 20 nm)nanoparti-cles were prepared via spark plasma sintering(SPS),in which a coherent interface betweenκ-Al_(2)O_(3)and Mo matrix was formed.The composites present remarkably improved hardness(above 500 HV),bend strength,and compressive yield strength(above 1664 MPa)at room temperature,with a suitable strain to fracture of 27.1%.The calculation of strengthening mechanisms indicates that the enhancement was mainly attributed to the intragranularκ-Al_(2)O_(3)nanoparticles.This nano-sized reinforcement distributed within the grain can more effectively pin dislocations and achieve dispersion strengthening in ODS-Mo composites.Therefore,this strategy can efficiently construct intragranular second-phase nanoparticles and open up new avenues to fabricate high-performance ODS-Mo composites.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301401)the Major Science and Technology R&D Project of Jiangxi Province(No.20223AAG01009)+2 种基金the Qingjiang Young Talents Support Program of Jiangxi University of Science and Technology(No.JXUSTQJYX2020014)the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology(No.205200100523)the University Leading Talent Training Project of Jiangxi Province—Young Leading Talents(No.QN2023036)。
文摘Designing heterogeneous grain structure(HGS)has been proven to be an effective strategy for overcoming the strength-plasticity dilemma in copper and copper alloys.However,the construction of HGS in dispersionstrengthened copper(DSC)for enhancing strength-plasticity synergy remains challenging.Here,we proposed a novel method,multistep ball milling and reduction process followed by spark plasma sintering,to prepare DSC with an HGS to ameliorate the strength-plasticity dilemma in DSC.Micron-and nano-CuO and nano-Y_(2)O_(3)powders were chosen as raw materials in this new method.The Cu-7vol%Y_(2)O_(3)composite,exhibiting a compressive yield strength of 438 MPa and a failure strain of 46.3%,exhibits a superior strength-plasticity tradeoff in comparison with other DSC materials.Systematic experiments indicate that the back-stress at the heterointerfaces between coarse grains and fine grains maybe not only raise the yield strength of Cu-Y_(2)O_(3)composite,but also significantly enhance the strain hardening to increase the plasticity of the material.The new HGS designing route in this study offers a feasible pathway to develop DSC with a remarkable enhancement in strength and plasticity.
基金Supported by the Natural Science Foundation of Zhejiang Province(M203035)
文摘The solubility of disperse dyes and their mixture in supercritical carbon dioxide is an important property in study and development of supercritical fluid dyeing technology.In this study,solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183 and their mixture in supercritical CO2 are measured at temperatures from 343.2 to 383.2 K and pressures from 12 to 28 MPa with a static recirculation method.Under the experimental conditions for the binary(C.I.Disperse Red 73+CO2 or C.I.Disperse Blue 183+CO2) and ternary(C.I.Disperse Red 73+C.I.Disperse Blue 183+CO2) systems,the solubilities increase with pressure.The solubility of C.I.Disperse Blue 183 decreases with the increase of temperature when the pressure is lower than 16 MPa,and the trend is opposite when the pressure is higher than 16 MPa.However,there is no crossover pressure for C.I.Disperse Red 73.The solubilities are also affected by molecular polarity of dyes.The co-solvent effect exhibited in the dissolving process of mixed dyes promotes their dissolution in supercritical CO2.The experimental data of solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183,and their mixture are correlated with the Chrastil model and Mendez-Santiago/Teja model. The former is more accurate.
基金Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.20673107 and No.20873133), the National Basic Research Program of China (No.2007CB815203 and No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
文摘Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.
基金Supported by National Natural Science Foundation of China(No.20277004)
文摘For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraquinone type) and C. I. disperse orange 25 (azo type) in supercritieal CO2 were carried out with a high-pressure dyeing apparatus at temperatures from 80 to 130℃ and pressure up to 31 MPa. The effect of operating conditions on color yield (K/S) was investigated in SFD experiment, and the optimum operating conditions for the above two disperse dyes were obtained as follows: the temperature 120℃, the pressure 25 MPa and the dyeing time 100 min. As compared with SFD, the conventional water dyeing (CWD) was carried out with the same dyes and textile. The results show that the better fastness, levelness and apparent color can be achieved in SFD and the SFD process has many significant advantages over the CWD process.