In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA ...In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA repeats,of which 496762 and 495977 were identified on the forward and reverse DNA strands,respectively.The detected DRs were,on average,374 bp in length and occupied 66.4%of the O.sativa genome.Totally 61%of DRs,identified by the IP method,overlapped with previously annotated dispersed repeats(ADRs)detected using the Extensive De Novo TE Annotator(EDTA)pipeline.展开更多
CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voir...CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.展开更多
The high incidence of hand,foot,and mouth disease(HFMD)in children,coupled with improper management,can lead to complications,causing significant distress to both patients and their parents.This article reports on the...The high incidence of hand,foot,and mouth disease(HFMD)in children,coupled with improper management,can lead to complications,causing significant distress to both patients and their parents.This article reports on the successful treatment of a case of HFMD with dampness-heat accumulation in the spleen type using a therapeutic approach of applying herbal patches to acupoints to disperse dampness,promote heat dissipation,and unblock the fu organs.The herbs selected primarily include honeysuckle,Forsythia,and mint to relieve the exterior and promote heat dissipation;Agastache and magnolia bark to transform and dry dampness;Scutellaria,blackberry lily,and licorice to clear heat,detoxify,and benefit the throat;and magnolia bark and bitter orange to unblock the fu organs and purge heat.The flexible combination of these herbs with acupoints such as Shenque,Zhongwan,Tiantu,and Feishu fully leverages the synergistic effects of both the herbs and acupoints,resulting in a significant therapeutic effect.This approach provides valuable insights and methodologies for the prevention and treatment of HFMD in children.展开更多
Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suita...Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.展开更多
The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Eff...The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.展开更多
Propylene,a pivotal chemical feedstock,is extensively used in synthesizing high-value derivatives such as polypropylene and acrylonitrile[1].Although propylene is predominantly produced via naphtha cracking,a persiste...Propylene,a pivotal chemical feedstock,is extensively used in synthesizing high-value derivatives such as polypropylene and acrylonitrile[1].Although propylene is predominantly produced via naphtha cracking,a persistent supply-demand gap exists[2].Non-oil routes,such as propane dehydrogenation(PDH),are increasingly attractive,particularly with the availability of shale gas[3].Modern non-oxidative PDH heavily relies on Pt nanoparticle catalysts promoted with SnOx(e.g.,PtSn/Al2O3 used in Honeywell UOP's Oleflex process)[4].However,these systems suffer from inherent limitations:high Pt costs,coke formation via deep dehydrogenation,and sintering during regeneration-necessitating environmentally detrimental oxychlorination treatments to restore activity[5].展开更多
Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants f...Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants fromwater via catalyst-contaminant interaction.The elimination performance of Fe_(1)/OPCN towards acid red 9,acidred 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increasesgradually.The amaranth degradation rate of Fe_(1)/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton andOPCN,respectively.In addition,Fe_(1)/OPCN also has more outstanding removal activities towards other con-taminantswith sulfonic acid and azo groups alone.The considerable enhancement for removing sulfonic azocontaminants of Fe_(1)/OPCN is mainly ascribed to the following aspects:(1)The modified Fe could enhance theadsorption towards sulfonic azo compounds to accelerate the mass transfer,act as e^(-)acceptor to promoteinterfacial charge separation,and trigger the self-Fenton reaction to convert in-situ generated H_(2)O_(2)into·OH.(2)Fe(Ⅲ)could coordinate with-N=N-to form d-πconjugation,which could attract e^(-)transfer to attack-N=N-bond.Meanwhile,the inhibited charge recombination could release more free h^(þ)to oxidize sulfonicacid groups into SO4^(-)·.(3)Under the cooperation of abundant multiple active species(·O_(2)^(-),h^(þ),e^(-),·OH,SO4^(-)·)formed during the degradation reaction,sulfonic azo compounds could be completely mineralized into harmlesssmall molecules(CO_(2),H_(2)O,etc.)by means of-N=N-cleavage,hydroxyl substitution,and aromatic ringopening.This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds fromwastewater.展开更多
Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuo...Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuous seed color,hard seed coat,certain toxic secondary metabolites,and perhaps smooth waxy layer.In this review,we discuss the global distribution of mimetic seeds,the interaction of mimetic seeds with bird dispersers,and secondary metabolites that underlie key characteristics of mimetic seeds.Mimetic-seed species mainly occur in the tropics,with large numbers distributed along coastal areas.The interaction between mimetic-seed species and bird dispersers can be antagonistic,mutualistic,or both.These interactions are generally established by conspicuous visual cues and hard tactile cues from mimetic seeds.The formation and variation of key characteristics of mimetic seeds may contribute to the metabolism of several kind of secondary compounds.Here,we also discuss mimetic-seed dispersal in the context of an evolutionary game,and propose several aspects of mimetic-seed dispersal that remain unstudied.While this review is based on preliminary findings and does not account for other potential influencing factors such as climate,it is expected to contribute to an improved understanding of mimetic-seed dispersal.展开更多
Metal-based catalysts are prevalent in the CO_(2) hydrogenation to methanol owing to their remarkable catalytic activity.Herein,Ru/In_(2)O_(3) catalysts with different morphologies obtained by doping Ru into In_(2)O_(...Metal-based catalysts are prevalent in the CO_(2) hydrogenation to methanol owing to their remarkable catalytic activity.Herein,Ru/In_(2)O_(3) catalysts with different morphologies obtained by doping Ru into In_(2)O_(3) with irregular,rod-like,and flower-like morphologies are used for catalytic CO_(2) hydrogenation to methanol.Results indicate that the flower-like Ru/In_(2)O_(3)(Ru/In_(2)O_(3)-F)exhibits higher catalytic performance than Ru/In_(2)O_(3) with other morphologies,achieving a 12.9%CO_(2) conversion,74.02%methanol selectivity,and 671.36 mg_(MeOH) h^(−1) g_(cat)^(−1) methanol spatiotemporal yield.Furthermore,Ru/In_(2)O_(3)-F maintains its catalytic stability over 200 h at 5 MPa and 290℃.The promotional effect mainly stems from the fact that electronic structure of Ru can be effectively adjusted by modulating the morphology of In_(2)O_(3).The strong interaction between atomically dispersed Ru and In_(2)O_(3)-F enhances the structural stability of Ru,inhibiting the agglomeration of the catalyst during the reaction process.Furthermore,density-functional theory calculations reveal that highly dispersed Ru atoms not only perform efficient and rapid electronic gain and loss processes,facilitating the catalytic activation of H_(2) into H intermediates.It also enables the generated reactive H to rapidly overflow to the surrounding In sites to participate in CO_(2) reduction.These findings provide a theoretical basis for the development of high-performance catalysts for CO_(2) hydrogenation.展开更多
Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Euleri...Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Eulerian method,combining population balance equations with statistical models to forecast droplet breakage.Conversely,the Eulerian-Lagrangian(E-L)method provides precise tracking of individual droplets,which is crucial for simulating dispersion processes.However,E-L simulation faces challenges in integrating droplet breakage effectively.To address this issue,our research introduces a probabilistic approach for droplet breakages.It assumes that a longer time increases the likelihood of breakup;a droplet breaks if the calculated probability exceeds a random value from 0 to 1.Consequently,the simulated breakage frequency becomes independent of the Lagrangian time step.The Sauter mean diameter and droplet size distribution can be accurately predicted by this probabilistic approach.By closely monitoring droplet motion,we reveal the complexity of droplet trajectories and the detailed patterns of circulation in stirred tanks.These insights contribute to a deeper understanding of liquidliquid dispersion dynamics.展开更多
Ultrafine metal nanoparticles are crucial for various applications,such as energy storage,catalysis,electronics,and biomedicine,owing to their high surfaceto-volume ratio and unique electronic properties.However,conve...Ultrafine metal nanoparticles are crucial for various applications,such as energy storage,catalysis,electronics,and biomedicine,owing to their high surfaceto-volume ratio and unique electronic properties.However,conventional nanoparticle synthesis methods often face challenges like irregular shapes and agglomeration,leading to compromised functionality.To address these challenges,this paper introduces a novel,rapid,high-temperature thermal radiation heating for the ultrafast synthesis and dispersion of metal nanoparticles.Utilizing the heating properties of carbon materials,the direct Joule heating generated by them rises to 1800-2000 K within~200 ms,followed by cooling to room temperature at a rate of 2×10^(3)K s^(-1).展开更多
The solubility of disperse dyes and their mixture in supercritical carbon dioxide is an important property in study and development of supercritical fluid dyeing technology.In this study,solubilities of C.I.Disperse R...The solubility of disperse dyes and their mixture in supercritical carbon dioxide is an important property in study and development of supercritical fluid dyeing technology.In this study,solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183 and their mixture in supercritical CO2 are measured at temperatures from 343.2 to 383.2 K and pressures from 12 to 28 MPa with a static recirculation method.Under the experimental conditions for the binary(C.I.Disperse Red 73+CO2 or C.I.Disperse Blue 183+CO2) and ternary(C.I.Disperse Red 73+C.I.Disperse Blue 183+CO2) systems,the solubilities increase with pressure.The solubility of C.I.Disperse Blue 183 decreases with the increase of temperature when the pressure is lower than 16 MPa,and the trend is opposite when the pressure is higher than 16 MPa.However,there is no crossover pressure for C.I.Disperse Red 73.The solubilities are also affected by molecular polarity of dyes.The co-solvent effect exhibited in the dissolving process of mixed dyes promotes their dissolution in supercritical CO2.The experimental data of solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183,and their mixture are correlated with the Chrastil model and Mendez-Santiago/Teja model. The former is more accurate.展开更多
Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels u...Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.展开更多
For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraq...For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraquinone type) and C. I. disperse orange 25 (azo type) in supercritieal CO2 were carried out with a high-pressure dyeing apparatus at temperatures from 80 to 130℃ and pressure up to 31 MPa. The effect of operating conditions on color yield (K/S) was investigated in SFD experiment, and the optimum operating conditions for the above two disperse dyes were obtained as follows: the temperature 120℃, the pressure 25 MPa and the dyeing time 100 min. As compared with SFD, the conventional water dyeing (CWD) was carried out with the same dyes and textile. The results show that the better fastness, levelness and apparent color can be achieved in SFD and the SFD process has many significant advantages over the CWD process.展开更多
以C.I.Reactive Red 241、C.I.Disperse Blue 56模拟染料废水为对象,研究了电解法处理该类染料废水的优化条件。考察了起始电压、电解时间、溶液初始p H对处理效果的影响。结果表明,在p H=7,U=14V、I=3.2A、t=30min的条件下,C.I.Reactiv...以C.I.Reactive Red 241、C.I.Disperse Blue 56模拟染料废水为对象,研究了电解法处理该类染料废水的优化条件。考察了起始电压、电解时间、溶液初始p H对处理效果的影响。结果表明,在p H=7,U=14V、I=3.2A、t=30min的条件下,C.I.Reactive Red241模拟染料废水的脱色率可达到86%以上;在p H=7,U=14V、I=3.2A、t=25min的条件下,C.I.Disperse Blue 56模拟染料废水的脱色率可达到79以上%。展开更多
Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1...Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.展开更多
The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for t...The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.展开更多
以Disperse Red 3B染料废水为对象,研究了电催化-光化物化组合技术处理该类染料废水的优化条件。考察了电解温度、电解质NaCl浓度、流速、染液初始pH值对处理效果的影响,且后续加入紫外光汞灯探究物化组合技术对处理效果的影响。结果表...以Disperse Red 3B染料废水为对象,研究了电催化-光化物化组合技术处理该类染料废水的优化条件。考察了电解温度、电解质NaCl浓度、流速、染液初始pH值对处理效果的影响,且后续加入紫外光汞灯探究物化组合技术对处理效果的影响。结果表明,在T=30℃、C_(NaCl)=0.20g/L、V=65.46μl/min、pH=3的条件下,Disperse Red 3B染料废水的脱色率可达到88%以上,继续光照30mins后,COD去除率可以提升3%左右。展开更多
Some disperse dyes were microencapsulated by means of in- situ polymerization. These microencapsulated disperse dyes was extracted respectively by ethanol under certain conditions. The controlled-release properties of...Some disperse dyes were microencapsulated by means of in- situ polymerization. These microencapsulated disperse dyes was extracted respectively by ethanol under certain conditions. The controlled-release properties of disperse dyes through the shell of microcapsules were measured by spectrophotometer. According to the results, it was drawn that the type of disperse dyes, the auxiliaries contained in disperse dyes, the quantity of system controlling medium used and the core/shell ratio of microcapsules play important roles in controlling the release properties of microcapsules. The different controlled- release properties of microcapsules, which were prepared under given conditions, however, would in turn influence the performance of microcapsules in multiple-transfer printing.展开更多
The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 r...The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.展开更多
基金supported by the Russian Science Foundation,Russia(Grant No.24-24-00031).
文摘In this study,we searched for dispersed repeats(DRs)in the rice(Oryza sativa)genome using the iterative procedure(IP)method.The results revealed that the O.sativa genome contained 79 DR families,comprising 992739 DNA repeats,of which 496762 and 495977 were identified on the forward and reverse DNA strands,respectively.The detected DRs were,on average,374 bp in length and occupied 66.4%of the O.sativa genome.Totally 61%of DRs,identified by the IP method,overlapped with previously annotated dispersed repeats(ADRs)detected using the Extensive De Novo TE Annotator(EDTA)pipeline.
基金Lin Du acknowledges the financial support provided by China Scholarship Council(CSC)via a Ph.D.Scholarship(202008510128)supported by Core Technology Project of China National Petroleum Corporation(CNPC)"Research on Thermal Miscible Flooding Technology"(2023ZG18)。
文摘CO_(2)-responsive gels,which swell upon contact with CO_(2),are widely used for profile control to plug high-permeability gas flow channels in carbon capture,utilization,and storage(CCUS)applications in oil reser-voirs.However,the use of these gels in high-temperature CCUS applications is limited due to their rever-sible swelling behavior at elevated temperatures.In this study,a novel dispersed particle gel(DPG)suspension is developed for high-temperature profile control in CCUS applications.First,we synthesize a double-network hydrogel consisting of a crosslinked polyacrylamide(PAAm)network and a crosslinked sodium alginate(SA)network.The hydrogel is then sheared in water to form a pre-prepared DPG suspen-sion.To enhance its performance,the gel particles are modified by introducing potassium methylsilan-etriolate(PMS)upon CO_(2) exposure.Comparing the particle size distributions of the modified and pre-prepared DPG suspension reveals a significant swelling of gel particles,over twice their original size.Moreover,subjecting the new DPG suspension to a 100℃ environment for 24 h demonstrates that its gel particle sizes do not decrease,confirming irreversible swelling,which is a significant advantage over the traditional CO_(2)-responsive gels.Thermogravimetric analysis further indicates improved thermal sta-bility compared to the pre-prepared DPG particles.Core flooding experiments show that the new DPG suspension achieves a high plugging efficiency of 95.3%in plugging an ultra-high permeability sandpack,whereas the pre-prepared DPG suspension achieves only 82.8%.With its high swelling ratio,irreversible swelling at high temperatures,enhanced thermal stability,and superior plugging performance,the newly developed DPG suspension in this work presents a highly promising solution for profile control in high-temperature CCUS applications.
文摘The high incidence of hand,foot,and mouth disease(HFMD)in children,coupled with improper management,can lead to complications,causing significant distress to both patients and their parents.This article reports on the successful treatment of a case of HFMD with dampness-heat accumulation in the spleen type using a therapeutic approach of applying herbal patches to acupoints to disperse dampness,promote heat dissipation,and unblock the fu organs.The herbs selected primarily include honeysuckle,Forsythia,and mint to relieve the exterior and promote heat dissipation;Agastache and magnolia bark to transform and dry dampness;Scutellaria,blackberry lily,and licorice to clear heat,detoxify,and benefit the throat;and magnolia bark and bitter orange to unblock the fu organs and purge heat.The flexible combination of these herbs with acupoints such as Shenque,Zhongwan,Tiantu,and Feishu fully leverages the synergistic effects of both the herbs and acupoints,resulting in a significant therapeutic effect.This approach provides valuable insights and methodologies for the prevention and treatment of HFMD in children.
基金supported by the National Natural Science Foundation of China(22005072,21965006)Guizhou Provincial Key Technology R&D Program(Qian Ke He support(2023)General 122)+3 种基金Guiyang Guian Science and Technology Personnel Training Project([2024]2-13)Youth Science and Technology Talent Development Project from Guizhou Provincial Department of Education(KY[2022]163)Guizhou Provincial Science and Technology Foundation(KYJZ[2024]029)the ETS Marcelle-Gauvreau Engineering Research Chair program.
文摘Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.
基金supported by the National Natural Science Foundation of China(22179034,22279030)the Natural Science Foundation of Heilongjiang Province(ZD2023B002).
文摘The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.
文摘Propylene,a pivotal chemical feedstock,is extensively used in synthesizing high-value derivatives such as polypropylene and acrylonitrile[1].Although propylene is predominantly produced via naphtha cracking,a persistent supply-demand gap exists[2].Non-oil routes,such as propane dehydrogenation(PDH),are increasingly attractive,particularly with the availability of shale gas[3].Modern non-oxidative PDH heavily relies on Pt nanoparticle catalysts promoted with SnOx(e.g.,PtSn/Al2O3 used in Honeywell UOP's Oleflex process)[4].However,these systems suffer from inherent limitations:high Pt costs,coke formation via deep dehydrogenation,and sintering during regeneration-necessitating environmentally detrimental oxychlorination treatments to restore activity[5].
基金supported by the Natural Science Foundation of Jiangsu Province(BK20221541)National Natural Science Foundation of China(21707052)Jiangsu Agriculture Science and Technology Innovation Fund(CX(20)3108).
文摘Herein,an oxygen-doped porous g-C_(3)N_(4)photocatalyst modified with atomically dispersed Fe(Fe_(1)/OPCN)issuccessfully prepared and exhibits significant superiority in removing refractory sulfonic azo contaminants fromwater via catalyst-contaminant interaction.The elimination performance of Fe_(1)/OPCN towards acid red 9,acidred 13 and amaranth containing similar azonaphthalene structure and increasing sulfonic acid groups increasesgradually.The amaranth degradation rate of Fe_(1)/OPCN is 17.7 and 6.1 times as that of homogeneous Fenton andOPCN,respectively.In addition,Fe_(1)/OPCN also has more outstanding removal activities towards other con-taminantswith sulfonic acid and azo groups alone.The considerable enhancement for removing sulfonic azocontaminants of Fe_(1)/OPCN is mainly ascribed to the following aspects:(1)The modified Fe could enhance theadsorption towards sulfonic azo compounds to accelerate the mass transfer,act as e^(-)acceptor to promoteinterfacial charge separation,and trigger the self-Fenton reaction to convert in-situ generated H_(2)O_(2)into·OH.(2)Fe(Ⅲ)could coordinate with-N=N-to form d-πconjugation,which could attract e^(-)transfer to attack-N=N-bond.Meanwhile,the inhibited charge recombination could release more free h^(þ)to oxidize sulfonicacid groups into SO4^(-)·.(3)Under the cooperation of abundant multiple active species(·O_(2)^(-),h^(þ),e^(-),·OH,SO4^(-)·)formed during the degradation reaction,sulfonic azo compounds could be completely mineralized into harmlesssmall molecules(CO_(2),H_(2)O,etc.)by means of-N=N-cleavage,hydroxyl substitution,and aromatic ringopening.This work offers a novel approach for effectively eliminating refractory sulfonic azo compounds fromwastewater.
基金supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-017)the National Natural Science Foundation of China(32371564)+2 种基金the Key Project of Basic Research of Yunnan Province,China(202101AS070035202301AS070001)to G.ChenYunnan Provincial Science and Technology Talent and Platform Plan(202305AM070005).
文摘Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuous seed color,hard seed coat,certain toxic secondary metabolites,and perhaps smooth waxy layer.In this review,we discuss the global distribution of mimetic seeds,the interaction of mimetic seeds with bird dispersers,and secondary metabolites that underlie key characteristics of mimetic seeds.Mimetic-seed species mainly occur in the tropics,with large numbers distributed along coastal areas.The interaction between mimetic-seed species and bird dispersers can be antagonistic,mutualistic,or both.These interactions are generally established by conspicuous visual cues and hard tactile cues from mimetic seeds.The formation and variation of key characteristics of mimetic seeds may contribute to the metabolism of several kind of secondary compounds.Here,we also discuss mimetic-seed dispersal in the context of an evolutionary game,and propose several aspects of mimetic-seed dispersal that remain unstudied.While this review is based on preliminary findings and does not account for other potential influencing factors such as climate,it is expected to contribute to an improved understanding of mimetic-seed dispersal.
基金financially supported by the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(No.2023008)Guizhou Provincial Science and Technology Projects(No.ZKZD2023004)+1 种基金One Hundred Person Project of Guizhou Province(No.GCC 2023013)Scientific and Technological Innovation Talents Team Project of Guizhou Province(No.CXTD2023029).
文摘Metal-based catalysts are prevalent in the CO_(2) hydrogenation to methanol owing to their remarkable catalytic activity.Herein,Ru/In_(2)O_(3) catalysts with different morphologies obtained by doping Ru into In_(2)O_(3) with irregular,rod-like,and flower-like morphologies are used for catalytic CO_(2) hydrogenation to methanol.Results indicate that the flower-like Ru/In_(2)O_(3)(Ru/In_(2)O_(3)-F)exhibits higher catalytic performance than Ru/In_(2)O_(3) with other morphologies,achieving a 12.9%CO_(2) conversion,74.02%methanol selectivity,and 671.36 mg_(MeOH) h^(−1) g_(cat)^(−1) methanol spatiotemporal yield.Furthermore,Ru/In_(2)O_(3)-F maintains its catalytic stability over 200 h at 5 MPa and 290℃.The promotional effect mainly stems from the fact that electronic structure of Ru can be effectively adjusted by modulating the morphology of In_(2)O_(3).The strong interaction between atomically dispersed Ru and In_(2)O_(3)-F enhances the structural stability of Ru,inhibiting the agglomeration of the catalyst during the reaction process.Furthermore,density-functional theory calculations reveal that highly dispersed Ru atoms not only perform efficient and rapid electronic gain and loss processes,facilitating the catalytic activation of H_(2) into H intermediates.It also enables the generated reactive H to rapidly overflow to the surrounding In sites to participate in CO_(2) reduction.These findings provide a theoretical basis for the development of high-performance catalysts for CO_(2) hydrogenation.
基金support from the National Key Research and Development Program of China,China(2023YFE0106600)the National Natural Science Foundation of China,China(22421003,22178354,21925805)funding from FFG(Austria)under project“ABATE”(903872).
文摘Liquid-liquid dispersion is often performed in stirred tanks,which are valued for their ease of operation,high droplet generation rate and effective droplet dispersion.Many relevant simulations use the Eulerian-Eulerian method,combining population balance equations with statistical models to forecast droplet breakage.Conversely,the Eulerian-Lagrangian(E-L)method provides precise tracking of individual droplets,which is crucial for simulating dispersion processes.However,E-L simulation faces challenges in integrating droplet breakage effectively.To address this issue,our research introduces a probabilistic approach for droplet breakages.It assumes that a longer time increases the likelihood of breakup;a droplet breaks if the calculated probability exceeds a random value from 0 to 1.Consequently,the simulated breakage frequency becomes independent of the Lagrangian time step.The Sauter mean diameter and droplet size distribution can be accurately predicted by this probabilistic approach.By closely monitoring droplet motion,we reveal the complexity of droplet trajectories and the detailed patterns of circulation in stirred tanks.These insights contribute to a deeper understanding of liquidliquid dispersion dynamics.
基金financially supported by the National Natural Science Foundation of China(Nos.22468029,52274408,52204314)the Major Science and Technology Projects in Yunnan Province(No.202402AF080005)+1 种基金Yunnan Fundamental Research Projects(No.202201AW070014)the Program for Innovative Research Team in the University of ministry of Education of China(No.IRT_17R48)
文摘Ultrafine metal nanoparticles are crucial for various applications,such as energy storage,catalysis,electronics,and biomedicine,owing to their high surfaceto-volume ratio and unique electronic properties.However,conventional nanoparticle synthesis methods often face challenges like irregular shapes and agglomeration,leading to compromised functionality.To address these challenges,this paper introduces a novel,rapid,high-temperature thermal radiation heating for the ultrafast synthesis and dispersion of metal nanoparticles.Utilizing the heating properties of carbon materials,the direct Joule heating generated by them rises to 1800-2000 K within~200 ms,followed by cooling to room temperature at a rate of 2×10^(3)K s^(-1).
基金Supported by the Natural Science Foundation of Zhejiang Province(M203035)
文摘The solubility of disperse dyes and their mixture in supercritical carbon dioxide is an important property in study and development of supercritical fluid dyeing technology.In this study,solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183 and their mixture in supercritical CO2 are measured at temperatures from 343.2 to 383.2 K and pressures from 12 to 28 MPa with a static recirculation method.Under the experimental conditions for the binary(C.I.Disperse Red 73+CO2 or C.I.Disperse Blue 183+CO2) and ternary(C.I.Disperse Red 73+C.I.Disperse Blue 183+CO2) systems,the solubilities increase with pressure.The solubility of C.I.Disperse Blue 183 decreases with the increase of temperature when the pressure is lower than 16 MPa,and the trend is opposite when the pressure is higher than 16 MPa.However,there is no crossover pressure for C.I.Disperse Red 73.The solubilities are also affected by molecular polarity of dyes.The co-solvent effect exhibited in the dissolving process of mixed dyes promotes their dissolution in supercritical CO2.The experimental data of solubilities of C.I.Disperse Red 73,C.I.Disperse Blue 183,and their mixture are correlated with the Chrastil model and Mendez-Santiago/Teja model. The former is more accurate.
基金Acknowledgment: This work was supported by the National Natural Science Foundation of China (No.20673107 and No.20873133), the National Basic Research Program of China (No.2007CB815203 and No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
文摘Based on previous laser-induced fluorescence excitation spectroscopy work, the vibrational constants of neutral FeS in the X5 △ electronic state were obtained by directly mapping the ground-state vibrational levels up to v"=3 using conventional laser-induced dispersed fluorescence spectroscopy. The vibrational frequency of FeS(X5 △) (518±5 cm-1) agrees well with that reported in a recent PES measurement (520±30 cm-1) [J. Phys. Chem. A 107, 2821 (2003)] which is the only one prior experimental vibrational frequency value for the 5 △ state of FeS. Careful comparisons of our experimental results and those documented in the literature (mainly from theoretical predictions) suggest that the ground state of FeS is 5 △ state.
基金Supported by National Natural Science Foundation of China(No.20277004)
文摘For a better understanding of the feasibility of supercritieal fluid dyeing (SFD) and more available information for the process development, the experiments of dyeing PET textile with C.I. disperse red 60 (anthraquinone type) and C. I. disperse orange 25 (azo type) in supercritieal CO2 were carried out with a high-pressure dyeing apparatus at temperatures from 80 to 130℃ and pressure up to 31 MPa. The effect of operating conditions on color yield (K/S) was investigated in SFD experiment, and the optimum operating conditions for the above two disperse dyes were obtained as follows: the temperature 120℃, the pressure 25 MPa and the dyeing time 100 min. As compared with SFD, the conventional water dyeing (CWD) was carried out with the same dyes and textile. The results show that the better fastness, levelness and apparent color can be achieved in SFD and the SFD process has many significant advantages over the CWD process.
文摘以C.I.Reactive Red 241、C.I.Disperse Blue 56模拟染料废水为对象,研究了电解法处理该类染料废水的优化条件。考察了起始电压、电解时间、溶液初始p H对处理效果的影响。结果表明,在p H=7,U=14V、I=3.2A、t=30min的条件下,C.I.Reactive Red241模拟染料废水的脱色率可达到86%以上;在p H=7,U=14V、I=3.2A、t=25min的条件下,C.I.Disperse Blue 56模拟染料废水的脱色率可达到79以上%。
基金supported by the“Strategic Priority Research Program”of the Chinese Academy of Sciences(XDA09030104)the National Basic Research Program of China(973 Program,2012CB215500)+1 种基金the National Natural Science Foundation of China(2157625850823008)~~
文摘Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance.
文摘The laser-induced fluorescence excitation spectra of jet-cooled NiB radicals have been recorded in the energy range of 19000-22100 cm-1. Eleven bands have been assigned to the [20.77]2П-X2∑+ transition system for the first time. The dispersed fluorescence spectra related to most of these bands have been investigated. Vibrationally excited levels of the ground electronic state, with v" up to 6, have been observed. In addition, the lifetimes for almost all the observed bands have also been measured.
文摘以Disperse Red 3B染料废水为对象,研究了电催化-光化物化组合技术处理该类染料废水的优化条件。考察了电解温度、电解质NaCl浓度、流速、染液初始pH值对处理效果的影响,且后续加入紫外光汞灯探究物化组合技术对处理效果的影响。结果表明,在T=30℃、C_(NaCl)=0.20g/L、V=65.46μl/min、pH=3的条件下,Disperse Red 3B染料废水的脱色率可达到88%以上,继续光照30mins后,COD去除率可以提升3%左右。
文摘Some disperse dyes were microencapsulated by means of in- situ polymerization. These microencapsulated disperse dyes was extracted respectively by ethanol under certain conditions. The controlled-release properties of disperse dyes through the shell of microcapsules were measured by spectrophotometer. According to the results, it was drawn that the type of disperse dyes, the auxiliaries contained in disperse dyes, the quantity of system controlling medium used and the core/shell ratio of microcapsules play important roles in controlling the release properties of microcapsules. The different controlled- release properties of microcapsules, which were prepared under given conditions, however, would in turn influence the performance of microcapsules in multiple-transfer printing.
文摘The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.