Dispersal is an important life history trait with signifcant consequences for spatially structured populations,as the exchange of individuals between habitat patches is crucial for maintaining metapopulation connectiv...Dispersal is an important life history trait with signifcant consequences for spatially structured populations,as the exchange of individuals between habitat patches is crucial for maintaining metapopulation connectivity.In this study,we used a long-term data set(2005–2023)to describe dispersal patterns in a patchy population of the Western Yellow Wagtail Motacilla fava within a large(approximately 1,300 km2)study area in the boreal zone of European Russia.We quantifed dispersal distances for birds that dispersed outside their natal or breeding habitat patches and applied a multistate capture–recapture approach to estimate natal and breeding dispersal probabilities.Of 395 adult wagtails and 1,610 nestlings ringed,3%of birds ringed as adults and 3%of birds ringed as nestlings were resighted outside their natal or breeding patches.The probability of natal dispersal(0.29±0.05)was signifcantly higher than the probability of breeding dispersal(0.05±0.01).The median natal dispersal distances(2.8 km for males,3.9 km for females)were the same as the median breeding dispersal distances(2.7 km for males,3.9 km for females).We did not fnd a signifcant effect of the fedging date on either the natal dispersal distance or the natal dispersal probability.Similarly,we did not fnd a signifcant effect of the previous reproductive success on either the breeding dispersal distance or the breeding dispersal probability.Our results indicate that strong breeding site fdelity and short-distance natal dispersal are the dominant dispersal strategies in a patchy population of the western yellow wagtail.展开更多
Dispersals,colonisation,immigration and population assimilation or replacement are fundamental themes in the Palaeolithic record of East Asia.Some of these issues can be studied within a biogeographic framework that e...Dispersals,colonisation,immigration and population assimilation or replacement are fundamental themes in the Palaeolithic record of East Asia.Some of these issues can be studied within a biogeographic framework that explains why and how the distribution of hominin species changed over time and space in response to climatic and environmental change.Because hominins(and especially humans)can change their behaviour through technical,social and cognitive developments,biogeographic models also have to incorporate this factor when investigating dispersals.This is particularly important with the dispersals in East Asia by Homo sapiens into rainforests,across open sea to off-shore islands,to the Arctic and the highest parts of the Tibetan Plateau.This paper suggests how hominin and human dispersals in East Asia might be investigated by using a biogeographic framework that can incorporate changes in hominin adaptability and behaviour.展开更多
Natal dispersal is a critical trait for individual ftness and the viability,structure,and genetic identity of populations.However,there is a pronounced information gap for large and long-lived species due to the diffc...Natal dispersal is a critical trait for individual ftness and the viability,structure,and genetic identity of populations.However,there is a pronounced information gap for large and long-lived species due to the diffculty of monitoring individuals at appropriate spatio-temporal scales.Here we study how individual traits and social and environmental characteristics infuence natal dispersal decisions of griffon vultures(Gypsfulvus)using long-term(30 years)monitoring of a large number of individuals marked as nestlings in Spain.Our results show a strong philopatryin both sexes,with some individuals recruiting as breeders on the same cliffs,and even the same nests,where they were born.This philopatrictendency was modulated by the effect of conspecifc density on individual parameters and emphasized the importance of conspecifc attraction and changes in food availability that may have infuenced the increment in colony size and the colonization of new areas.Although furtherresearch is needed considering smaller colonies and more isolated population nuclei,our results highlight the importance of long-term studieson long-lived species to understand the factors that determine their population dynamics and their relationship with anthropogenic activities,whose effects should be predicted and managed using conservation criteria.展开更多
Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuo...Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuous seed color,hard seed coat,certain toxic secondary metabolites,and perhaps smooth waxy layer.In this review,we discuss the global distribution of mimetic seeds,the interaction of mimetic seeds with bird dispersers,and secondary metabolites that underlie key characteristics of mimetic seeds.Mimetic-seed species mainly occur in the tropics,with large numbers distributed along coastal areas.The interaction between mimetic-seed species and bird dispersers can be antagonistic,mutualistic,or both.These interactions are generally established by conspicuous visual cues and hard tactile cues from mimetic seeds.The formation and variation of key characteristics of mimetic seeds may contribute to the metabolism of several kind of secondary compounds.Here,we also discuss mimetic-seed dispersal in the context of an evolutionary game,and propose several aspects of mimetic-seed dispersal that remain unstudied.While this review is based on preliminary findings and does not account for other potential influencing factors such as climate,it is expected to contribute to an improved understanding of mimetic-seed dispersal.展开更多
The formation of pantropical intercontinental disjunction(PID)in plants has generally been attributed to vicariance,boreotropical migration,and long-distance dispersal.However,this pattern has primarily been examined ...The formation of pantropical intercontinental disjunction(PID)in plants has generally been attributed to vicariance,boreotropical migration,and long-distance dispersal.However,this pattern has primarily been examined in herbs,shrubs,and trees,and less commonly studied in interlayer plant taxa.Here we examined evolutionary processes that resulted in the PID of a pantropical woody liana,Uncaria(Rubiaceae).We first constructed a comprehensive phylogeny by employing 73 plastid protein-coding sequences from 29 accessions of Uncaria(including 16 newly sequenced)from different continents.We then inferred divergence time,history and ecological niche evolution of this genus.Our results showed that Uncaria consisted of four well-supported clades that belonged to two geographically distinct lineages:the Asia-Oceania lineage and the Afro-Neotropical lineage.Biogeographic reconstruction showed this genus likely originated in Asia during the early Miocene(ca.19.03 Ma)and the Middle Miocene Climatic Optimum may have triggered the early diversification of Uncaria.Due to its recent origin and small seeds with long wings,wind or water-mediated long-distance dispersal may have contributed to the distribution of Uncaria in tropical Oceania(via stepping-stone dispersal)and tropical Africa and America(by transoceanic dispersal).Our findings also indicate that diversification of Uncaria was primarily driven by ecological niche divergence,particularly climatic factors.Our study emphasizes the dual role of climatic niche divergence and long-distance dispersal in shaping the PID of Uncaria,providing references for many other extant lineages with similar distributions.展开更多
Elucidating the mechanisms underlying community assembly remains a central question in community ecology,especially in aquatic ecosystems disrupted by human activities.Understanding the causes and consequences of comm...Elucidating the mechanisms underlying community assembly remains a central question in community ecology,especially in aquatic ecosystems disrupted by human activities.Understanding the causes and consequences of community responses to changing environment is essential for revealing the ecological effects of anthropogenic disturbances and proposing practical strategies for ecological restoration.While stochastic dispersal and species sorting are known to influence local biological communities,most studies have focused on horizontal dispersal,often neglecting the vertical exchange of organisms between planktonic and sedimentary communities when studying stochastic dispersal.We used a highly disturbed urban river in Beijing as a model system to investigate the relative roles of stochastic dispersal versus species sorting driven by local pollution,as well as two components of stochastic dispersal,vertical exchange and horizontal dispersal,in structuring local bacterial communities.Our integrated analyses of planktonic and sedimentary bacterial communities revealed that,despite different spatial patterns along the river,both types of bacterial communities were primarily shaped by stochastic dispersal processes rather than species sorting influenced by the environmental gradient.Notably,in addition to the effect of horizontal dispersal along the river,the vertical exchange between planktonic and sedimentary bacterial communities significantly contributed to the formation of local communities.These findings suggest that both vertical exchange and horizontal dispersal should be considered when assessing the role of stochastic dispersal in shaping local community structure in microbial communities.展开更多
A predator-prey model with prey dispersal and Holling type-Ⅱ functional response is investigated.In this model,the time delay due to the gestation of the predator and stagestructure for the predator are considered.By...A predator-prey model with prey dispersal and Holling type-Ⅱ functional response is investigated.In this model,the time delay due to the gestation of the predator and stagestructure for the predator are considered.By analyzing the corresponding characteristic equations,the local stability of each of the nonnegative equilibria is discussed.The existence of Hopf bifurcations at the positive equilibrium is established.By using Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions are obtained for the global stability of the positive equilibrium,the nonnegative boundary equilibrium and the trivial equilibrium of the model,respectively.Numerical simulations are carried out to illustrate the main results.展开更多
This paper examines an epidemic predator-prey model with prey dispersal and Holling type-II functional response. In this model, it is assumed that the predator population suffers a transmissible disease. By analyzing ...This paper examines an epidemic predator-prey model with prey dispersal and Holling type-II functional response. In this model, it is assumed that the predator population suffers a transmissible disease. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the coexistence equilibrium is addressed. Using Lyapunov functionals and LaSalle's invariance principle, we obtained the sufficient conditions for the global stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the coexistence equilibrium, respectively. The paper also includes numerical simulations to illustrate the analytical results.展开更多
Geographical background and dispersal ability may strongly influence assemblage dissimilarity;however,these aspects have generally been overlooked in previous large-scale beta diversity studies.Here,we examined whethe...Geographical background and dispersal ability may strongly influence assemblage dissimilarity;however,these aspects have generally been overlooked in previous large-scale beta diversity studies.Here,we examined whether the patterns and drivers of taxonomic beta diversity(TBD)and phylogenetic beta diversity(PBD)of breeding birds in China vary across(1)regions on both sides of the Hu Line,which demarcates China’s topographical,climatic,economic,and social patterns,and(2)species with different dispersal ability.TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach.Variables representing climate,habitat heterogeneity,and habitat quality were employed to evaluate the effects of environmental filtering.Spatial distance was considered to assess the impact of dispersal limitation.Variance partitioning analysis was applied to assess the relative roles of these variables.In general,the values of TBD and PBD were high in mountainous areas and were largely determined by environmental filtering.However,different dominant environmental filters on either side of the Hu Line led to divergent beta diversity patterns.Specifically,climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions east and west of the line,respectively.Additionally,bird species with stronger dispersal ability were more susceptible to environmental filtering,resulting in more homogeneous assemblages.Our results indicated that regions with distinctive geographical backgrounds may present different ecological factors that lead to divergent assemblage dissimilarity patterns,and dispersal ability determines the response of assemblages to these ecological factors.Identifying a single universal explanation for the observed pattern without considering these aspects may lead to simplistic or incomplete conclusions.Consequently,a comprehensive understanding of large-scale beta diversity patterns and effective planning of conservation strategies necessitate the consideration of both geographical background and species dispersal ability.展开更多
The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species ...The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration.展开更多
The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation f...The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.展开更多
The sex-biased dispersal and kinship dynamics are important factors shaping the spatial distribution of individuals and are key parameters affecting a variety of ecological and evolutionary processes.Here,we studied t...The sex-biased dispersal and kinship dynamics are important factors shaping the spatial distribution of individuals and are key parameters affecting a variety of ecological and evolutionary processes.Here,we studied the spatial distribution of related individuals within a population of corn mice Calomys musculinus in a seasonal cycle to infer dispersal patterns.The sampling was carried out from spring 2005 to winter 2006 in field borders of intensively managed agroecosystems.Genotyping data from 346 individuals with 9 microsatellites showed spatial genetic structure was weak for males,but not for females.The results indicate a complex spatial kinship dynamic of related females across all seasons.Which,contrary to our expectations,dispersal distances decrease with the increase of the population abundance.Meanwhile,male dispersal distances were greater when population abundance increased and thus the availability of active females.Males disperse greater distances to mate and sire offspring with distant females as a possible inbreeding avoidance mechanism.This study shows that C.musculinus is capable of much greater scattering distances than previously reported and that dispersal occurs fluidly and without barriers across the agroecosystem.The indirect benefit of dispersal on individual fitness could be related to relaxing the competition in the natal area and increasing the mating rate.Our study highlights the value of combining genetic relatedness,fieldwork observations,and behavioral data to estimate dispersal at a fine geographical scale.展开更多
Dispersal is an important life history trait that plays a crucial role in avoiding inbreeding.Uncovering the dispersal pattern of a threatened species facilitates conservation efforts.Most species of Galliformes are f...Dispersal is an important life history trait that plays a crucial role in avoiding inbreeding.Uncovering the dispersal pattern of a threatened species facilitates conservation efforts.Most species of Galliformes are forest-dwelling terrestrial birds with a weak dispersal ability and high conservation priorities.However,little is known about the dispersal behavior and dispersal pattern of Galliformes species such as Reeves's pheasant Syrmaticus reevesi,a globally vulnerable species endemic to China.Here,we integrated behavioral and genetic analyses to inves-tigate the dispersal pattern of Reeves's pheasant.Our results revealed that both females and males would disperse,although the overall dispersal pattern was more likely to be male-biased.Reeves's pheasant population had a low level of genetic diversity and a mild level of inbreeding.Speculation low genetic diversity was resulted from fragmented habitat,and male-biased dispersal may reduce the opportunity of inbreeding.Our research indicated that sex-biased dispersal patterns may be a behavioral mechanism adopted by wildlife to avoid inbreeding inafragmented habitat.展开更多
Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world.The rate of advance has been extremely variable–from tens to hundreds meters i...Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world.The rate of advance has been extremely variable–from tens to hundreds meters in altitude.This is because the degree at which tree frontal populations respond to climate change depends on the complex interaction of biological and physical factors.The resulting stand pattern is the consequence of the interaction between dispersal and survival functions.A few publications have addressed the question of how this pattern is generated.In order to understand how the spatial structure of tree stands was formed at the upper limit of their distribution in the Ural Mountains,we assessed the distance and direction of dispersal of offspring from maternal individuals.We found that in frontal Larix sibirica Ledeb.populations,‘effective’dispersal of offspring ranges from 3 to 758 m(with a median of 20–33 m in open forest and 219 m in single-tree tundra in the Polar Urals and 107 m in open forest in the Northern Urals).We revealed that most of the offspring effectively dispersed not only in the direction of the prevailing winds,but also in the opposite direction up the slope,and the distance can reach 500–760 m.The data obtained can be used to develop an individual-based model which is capable of simulating in detail the dynamics of tree stands at the upper limit of their growth and reliably predicting the future position and pattern of treeline ecotone as growth conditions continue to improve in the face of observed climate change.展开更多
Duck species are important vectors for seed dispersal of many plants,contributing significantly to the regeneration of wetland plant communities.However,research on the temporal changes in diet and the dynamics and di...Duck species are important vectors for seed dispersal of many plants,contributing significantly to the regeneration of wetland plant communities.However,research on the temporal changes in diet and the dynamics and differences of seed dispersal among different duck species is still limited.In this study,we analyzed the diversity of duck community and the diversity of seeds in the feces of different duck species from December to February for 2022–23 and 2023–24 in the coastal wetland of Dafeng,eastern Jiangsu Province,China.A total of 13 duck species were recorded in the four habitats,of which Spot-billed Ducks(Anas zonorhyncha)and Mallards(A.platyrhynchos)were the most abundant.The diversity and abundance of ducks vary across different habitats,and tidal flat supports the greatest diversity and abundance of ducks.We collected fecal samples from Spot-billed Ducks,Gadwalls(Mareca strepera),Mallards,and Eurasian Teals(A.crecca)in the tidal flat,from which seeds belonging to 7 families,13 genera and 15 different plant species were obtained.There were significant differences in seed dispersal among the four duck species,which varied with the season.Gadwalls and Common Teals showed more significant diversity in seed dispersal,with their feces containing a greater variety of plant seeds,which is related to their broader dietary range and ecological adaptability.Furthermore,the seasonal variation in the number of seeds per feces reflected the availability of seeds in the habitat and the response of ducks to environmental changes,while variations in seed intake among different duck species may be associated with inter-annual weather condition changes.The results of this study will provide a new perspective for understanding the mechanisms of bird-mediated seed dispersal in coastal wetland and offer preliminary insights for the seed dispersal by Asian ducks.展开更多
Dispersal is an important individual decision which may influence individual fitness as well as population viability.The social cohesion hypothesis posits more social individuals remain at home,which is supported by p...Dispersal is an important individual decision which may influence individual fitness as well as population viability.The social cohesion hypothesis posits more social individuals remain at home,which is supported by prior work across taxa.However,how the sociality and connectivity of the group an individual resides in—their group social structure—relates to dispersal decisions has not been explored.We extend the social cohesion hypothesis to predict individuals residing in more social groups would remain at home,and we quantified the affiliative and agonistic social network structure of female yellow-bellied marmots(Marmota flaviventer),a facultatively social ground-dwelling squirrel,where about half of all females disperse.Using mixed-effects models,we found no support for the hypothesis that affiliative group structure explained any variation in a marmot’s decision to disperse.We did find marmots in groups with less agonistic centralization(around one or few individuals)were less likely to disperse.The former finding may result from limited ability to perceive group structure whereas the latter may reflect individuals in less agonistically centralized groups are less likely to be reproductively suppressed.These results suggest individual dispersal decisions are more impacted by individual sociality and not that of their social group.Thus,the social cohesion hypothesis may not scale to the level of the group.Further work is required to determine whether dispersal decisions in obligately social species are influenced by group social structure.展开更多
A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DF...A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.展开更多
A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation...A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.展开更多
基金supported by the Russian Science Foundation(grant number 23-24-00042).
文摘Dispersal is an important life history trait with signifcant consequences for spatially structured populations,as the exchange of individuals between habitat patches is crucial for maintaining metapopulation connectivity.In this study,we used a long-term data set(2005–2023)to describe dispersal patterns in a patchy population of the Western Yellow Wagtail Motacilla fava within a large(approximately 1,300 km2)study area in the boreal zone of European Russia.We quantifed dispersal distances for birds that dispersed outside their natal or breeding habitat patches and applied a multistate capture–recapture approach to estimate natal and breeding dispersal probabilities.Of 395 adult wagtails and 1,610 nestlings ringed,3%of birds ringed as adults and 3%of birds ringed as nestlings were resighted outside their natal or breeding patches.The probability of natal dispersal(0.29±0.05)was signifcantly higher than the probability of breeding dispersal(0.05±0.01).The median natal dispersal distances(2.8 km for males,3.9 km for females)were the same as the median breeding dispersal distances(2.7 km for males,3.9 km for females).We did not fnd a signifcant effect of the fedging date on either the natal dispersal distance or the natal dispersal probability.Similarly,we did not fnd a signifcant effect of the previous reproductive success on either the breeding dispersal distance or the breeding dispersal probability.Our results indicate that strong breeding site fdelity and short-distance natal dispersal are the dominant dispersal strategies in a patchy population of the western yellow wagtail.
文摘Dispersals,colonisation,immigration and population assimilation or replacement are fundamental themes in the Palaeolithic record of East Asia.Some of these issues can be studied within a biogeographic framework that explains why and how the distribution of hominin species changed over time and space in response to climatic and environmental change.Because hominins(and especially humans)can change their behaviour through technical,social and cognitive developments,biogeographic models also have to incorporate this factor when investigating dispersals.This is particularly important with the dispersals in East Asia by Homo sapiens into rainforests,across open sea to off-shore islands,to the Arctic and the highest parts of the Tibetan Plateau.This paper suggests how hominin and human dispersals in East Asia might be investigated by using a biogeographic framework that can incorporate changes in hominin adaptability and behaviour.
基金partially funded through projects PID2019-109685GB-I00,CGL2007-61395,CGL2010-15726,and CGL2013-42451-P,of the Spanish Ministry of Science and Innovation.
文摘Natal dispersal is a critical trait for individual ftness and the viability,structure,and genetic identity of populations.However,there is a pronounced information gap for large and long-lived species due to the diffculty of monitoring individuals at appropriate spatio-temporal scales.Here we study how individual traits and social and environmental characteristics infuence natal dispersal decisions of griffon vultures(Gypsfulvus)using long-term(30 years)monitoring of a large number of individuals marked as nestlings in Spain.Our results show a strong philopatryin both sexes,with some individuals recruiting as breeders on the same cliffs,and even the same nests,where they were born.This philopatrictendency was modulated by the effect of conspecifc density on individual parameters and emphasized the importance of conspecifc attraction and changes in food availability that may have infuenced the increment in colony size and the colonization of new areas.Although furtherresearch is needed considering smaller colonies and more isolated population nuclei,our results highlight the importance of long-term studieson long-lived species to understand the factors that determine their population dynamics and their relationship with anthropogenic activities,whose effects should be predicted and managed using conservation criteria.
基金supported by the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-017)the National Natural Science Foundation of China(32371564)+2 种基金the Key Project of Basic Research of Yunnan Province,China(202101AS070035202301AS070001)to G.ChenYunnan Provincial Science and Technology Talent and Platform Plan(202305AM070005).
文摘Mimetic seeds attract birds to disperse seeds mainly by mimicking fleshy fruits or arillate seeds,however,they provide little nutritive reward for bird dispersers.The key characteristics of mimetic seeds are conspicuous seed color,hard seed coat,certain toxic secondary metabolites,and perhaps smooth waxy layer.In this review,we discuss the global distribution of mimetic seeds,the interaction of mimetic seeds with bird dispersers,and secondary metabolites that underlie key characteristics of mimetic seeds.Mimetic-seed species mainly occur in the tropics,with large numbers distributed along coastal areas.The interaction between mimetic-seed species and bird dispersers can be antagonistic,mutualistic,or both.These interactions are generally established by conspicuous visual cues and hard tactile cues from mimetic seeds.The formation and variation of key characteristics of mimetic seeds may contribute to the metabolism of several kind of secondary compounds.Here,we also discuss mimetic-seed dispersal in the context of an evolutionary game,and propose several aspects of mimetic-seed dispersal that remain unstudied.While this review is based on preliminary findings and does not account for other potential influencing factors such as climate,it is expected to contribute to an improved understanding of mimetic-seed dispersal.
基金funded equally by grants from the National Natural Science Foundation of China(32322006 and 32100187)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2024QZKK0200)+5 种基金by the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U23A20149)the Key R&D Program of Yunnan Province(202103AF140005 and 202101BC070002)the Yunnan Provincial Science and Technology Talent and Platform Plan(202305AM070005)the Key Specialized Research and Development Breakthrough Program in Henan Province(232102110237)the Natural Science Foundation of Henan Province(242300421572)the Strategic Biological Resources Capacity Building Project of Chinese Academy of Sciences(KFJ-BRP-017-08).
文摘The formation of pantropical intercontinental disjunction(PID)in plants has generally been attributed to vicariance,boreotropical migration,and long-distance dispersal.However,this pattern has primarily been examined in herbs,shrubs,and trees,and less commonly studied in interlayer plant taxa.Here we examined evolutionary processes that resulted in the PID of a pantropical woody liana,Uncaria(Rubiaceae).We first constructed a comprehensive phylogeny by employing 73 plastid protein-coding sequences from 29 accessions of Uncaria(including 16 newly sequenced)from different continents.We then inferred divergence time,history and ecological niche evolution of this genus.Our results showed that Uncaria consisted of four well-supported clades that belonged to two geographically distinct lineages:the Asia-Oceania lineage and the Afro-Neotropical lineage.Biogeographic reconstruction showed this genus likely originated in Asia during the early Miocene(ca.19.03 Ma)and the Middle Miocene Climatic Optimum may have triggered the early diversification of Uncaria.Due to its recent origin and small seeds with long wings,wind or water-mediated long-distance dispersal may have contributed to the distribution of Uncaria in tropical Oceania(via stepping-stone dispersal)and tropical Africa and America(by transoceanic dispersal).Our findings also indicate that diversification of Uncaria was primarily driven by ecological niche divergence,particularly climatic factors.Our study emphasizes the dual role of climatic niche divergence and long-distance dispersal in shaping the PID of Uncaria,providing references for many other extant lineages with similar distributions.
基金supported by the National Natural Science Foundation of China(No.32471608)the Open Project of Key Laboratory of Environmental Biotechnology,CAS(No.kf2020002)Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health.
文摘Elucidating the mechanisms underlying community assembly remains a central question in community ecology,especially in aquatic ecosystems disrupted by human activities.Understanding the causes and consequences of community responses to changing environment is essential for revealing the ecological effects of anthropogenic disturbances and proposing practical strategies for ecological restoration.While stochastic dispersal and species sorting are known to influence local biological communities,most studies have focused on horizontal dispersal,often neglecting the vertical exchange of organisms between planktonic and sedimentary communities when studying stochastic dispersal.We used a highly disturbed urban river in Beijing as a model system to investigate the relative roles of stochastic dispersal versus species sorting driven by local pollution,as well as two components of stochastic dispersal,vertical exchange and horizontal dispersal,in structuring local bacterial communities.Our integrated analyses of planktonic and sedimentary bacterial communities revealed that,despite different spatial patterns along the river,both types of bacterial communities were primarily shaped by stochastic dispersal processes rather than species sorting influenced by the environmental gradient.Notably,in addition to the effect of horizontal dispersal along the river,the vertical exchange between planktonic and sedimentary bacterial communities significantly contributed to the formation of local communities.These findings suggest that both vertical exchange and horizontal dispersal should be considered when assessing the role of stochastic dispersal in shaping local community structure in microbial communities.
基金Supported by the Social Science Foundation of Hebei Province(HB23TJO03)。
文摘A predator-prey model with prey dispersal and Holling type-Ⅱ functional response is investigated.In this model,the time delay due to the gestation of the predator and stagestructure for the predator are considered.By analyzing the corresponding characteristic equations,the local stability of each of the nonnegative equilibria is discussed.The existence of Hopf bifurcations at the positive equilibrium is established.By using Lyapunov functionals and LaSalle’s invariance principle,sufficient conditions are obtained for the global stability of the positive equilibrium,the nonnegative boundary equilibrium and the trivial equilibrium of the model,respectively.Numerical simulations are carried out to illustrate the main results.
基金Supported by the Social Science Foundation of Hebei Province(Grant No.HB23TJ003)the Science Research Project of Hebei Education Department(Grant No.BJK2024197)。
文摘This paper examines an epidemic predator-prey model with prey dispersal and Holling type-II functional response. In this model, it is assumed that the predator population suffers a transmissible disease. By analyzing the corresponding characteristic equations, the local stability of each of feasible equilibria and the existence of Hopf bifurcations at the coexistence equilibrium is addressed. Using Lyapunov functionals and LaSalle's invariance principle, we obtained the sufficient conditions for the global stability of the trivial equilibrium, the predator-extinction equilibrium, the disease-free equilibrium and the coexistence equilibrium, respectively. The paper also includes numerical simulations to illustrate the analytical results.
基金supported by the National Natural Science Foundation of China(31901220)Science and Technology Planning Project of Guangdong Province,China(2019B121202004)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515110744)Forestry Administration of Guangdong Province(DFGP Project of Fauna of Guangdong-202115)。
文摘Geographical background and dispersal ability may strongly influence assemblage dissimilarity;however,these aspects have generally been overlooked in previous large-scale beta diversity studies.Here,we examined whether the patterns and drivers of taxonomic beta diversity(TBD)and phylogenetic beta diversity(PBD)of breeding birds in China vary across(1)regions on both sides of the Hu Line,which demarcates China’s topographical,climatic,economic,and social patterns,and(2)species with different dispersal ability.TBD and PBD were calculated and partitioned into turnover and nestedness components using a moving window approach.Variables representing climate,habitat heterogeneity,and habitat quality were employed to evaluate the effects of environmental filtering.Spatial distance was considered to assess the impact of dispersal limitation.Variance partitioning analysis was applied to assess the relative roles of these variables.In general,the values of TBD and PBD were high in mountainous areas and were largely determined by environmental filtering.However,different dominant environmental filters on either side of the Hu Line led to divergent beta diversity patterns.Specifically,climate-driven species turnover and habitat heterogeneity-related species nestedness dominated the regions east and west of the line,respectively.Additionally,bird species with stronger dispersal ability were more susceptible to environmental filtering,resulting in more homogeneous assemblages.Our results indicated that regions with distinctive geographical backgrounds may present different ecological factors that lead to divergent assemblage dissimilarity patterns,and dispersal ability determines the response of assemblages to these ecological factors.Identifying a single universal explanation for the observed pattern without considering these aspects may lead to simplistic or incomplete conclusions.Consequently,a comprehensive understanding of large-scale beta diversity patterns and effective planning of conservation strategies necessitate the consideration of both geographical background and species dispersal ability.
基金supported by the Key R&D Program of Ningxia Hui Autonomous Region,China(2021BEG03008)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2021AAC03083).
文摘The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFC3001204)。
文摘The study of non-axisymmetric fuel dispersal and detonation can provide reference for the prevention of industrial cloud explosion accidents and the design of fuel air explosive(FAE).The concentration and detonation fields of 85 kg cylindrical and fan-shaped fuel are investigated by experiments and numerical simulations.A dynamic model of the whole process for fuel dispersal and detonation is built.The concentration distribution of fuel is used as the initial condition to calculate the detonation stage,thus solving the initial value problem of detonation field.The phase and component changes of fuel cloud at different locations are compared.The fuel cloud is divided into directions of 0°,90°,135°and 180°.The results show that the maximum cloud radius is 20.94 m in 135°and the minimum is 12.04 m in 0°.The diameter of the detonation fireball is 53.6 m,and the peak temperature is 3455 K.The highest peak overpressure is 3.44 MPa in 0°and the lowest is 2.97 MPa in 135°.The proportion of liquid phase in 0°is22.90%,and the fuel loss is 11.8% and 9% higher than that in 135°and cylindrical charge,respectively.The stable propagation distance of blast wave in 135°is 42.50% longer than 0°and 28.37% longer than cylindrical charge.
基金support of by grants of the CONICET(Consejo Nacional de Investigacion Cientifica y Tecnologica),FONCyT(Fondo para la Investigacion Cientifica y Tecnologica)and from the Universidad Nacional de Cordoba(UNC)and Universidad Nacional de Rio Cuarto(UNRC).
文摘The sex-biased dispersal and kinship dynamics are important factors shaping the spatial distribution of individuals and are key parameters affecting a variety of ecological and evolutionary processes.Here,we studied the spatial distribution of related individuals within a population of corn mice Calomys musculinus in a seasonal cycle to infer dispersal patterns.The sampling was carried out from spring 2005 to winter 2006 in field borders of intensively managed agroecosystems.Genotyping data from 346 individuals with 9 microsatellites showed spatial genetic structure was weak for males,but not for females.The results indicate a complex spatial kinship dynamic of related females across all seasons.Which,contrary to our expectations,dispersal distances decrease with the increase of the population abundance.Meanwhile,male dispersal distances were greater when population abundance increased and thus the availability of active females.Males disperse greater distances to mate and sire offspring with distant females as a possible inbreeding avoidance mechanism.This study shows that C.musculinus is capable of much greater scattering distances than previously reported and that dispersal occurs fluidly and without barriers across the agroecosystem.The indirect benefit of dispersal on individual fitness could be related to relaxing the competition in the natal area and increasing the mating rate.Our study highlights the value of combining genetic relatedness,fieldwork observations,and behavioral data to estimate dispersal at a fine geographical scale.
基金supported by the National Natural Science Foundation of China(grant 31872240)the Biodiversity Survey,Monitoring,and Assessment Project of the Ministry of Ecology and the Environment,China(grant 2019HB2096001006).
文摘Dispersal is an important life history trait that plays a crucial role in avoiding inbreeding.Uncovering the dispersal pattern of a threatened species facilitates conservation efforts.Most species of Galliformes are forest-dwelling terrestrial birds with a weak dispersal ability and high conservation priorities.However,little is known about the dispersal behavior and dispersal pattern of Galliformes species such as Reeves's pheasant Syrmaticus reevesi,a globally vulnerable species endemic to China.Here,we integrated behavioral and genetic analyses to inves-tigate the dispersal pattern of Reeves's pheasant.Our results revealed that both females and males would disperse,although the overall dispersal pattern was more likely to be male-biased.Reeves's pheasant population had a low level of genetic diversity and a mild level of inbreeding.Speculation low genetic diversity was resulted from fragmented habitat,and male-biased dispersal may reduce the opportunity of inbreeding.Our research indicated that sex-biased dispersal patterns may be a behavioral mechanism adopted by wildlife to avoid inbreeding inafragmented habitat.
基金supported by the Russian Center for Scientific Information under grant RFBR–21–54–12016 for the sampling and treating of collected materialsby the Russian Scientific Foundation under grant RSF-24–14-00206 for data analysis and preparation of the manuscript.
文摘Climate has changed sufficiently over the last 150 years and forced out upper treeline advance at the most studied sites around the world.The rate of advance has been extremely variable–from tens to hundreds meters in altitude.This is because the degree at which tree frontal populations respond to climate change depends on the complex interaction of biological and physical factors.The resulting stand pattern is the consequence of the interaction between dispersal and survival functions.A few publications have addressed the question of how this pattern is generated.In order to understand how the spatial structure of tree stands was formed at the upper limit of their distribution in the Ural Mountains,we assessed the distance and direction of dispersal of offspring from maternal individuals.We found that in frontal Larix sibirica Ledeb.populations,‘effective’dispersal of offspring ranges from 3 to 758 m(with a median of 20–33 m in open forest and 219 m in single-tree tundra in the Polar Urals and 107 m in open forest in the Northern Urals).We revealed that most of the offspring effectively dispersed not only in the direction of the prevailing winds,but also in the opposite direction up the slope,and the distance can reach 500–760 m.The data obtained can be used to develop an individual-based model which is capable of simulating in detail the dynamics of tree stands at the upper limit of their growth and reliably predicting the future position and pattern of treeline ecotone as growth conditions continue to improve in the face of observed climate change.
基金financially supported by the National Natural Science Foundation of China(Grant No.32171528)Natural Science Foundation of Jiangsu Province(Grant No.BK20221180).
文摘Duck species are important vectors for seed dispersal of many plants,contributing significantly to the regeneration of wetland plant communities.However,research on the temporal changes in diet and the dynamics and differences of seed dispersal among different duck species is still limited.In this study,we analyzed the diversity of duck community and the diversity of seeds in the feces of different duck species from December to February for 2022–23 and 2023–24 in the coastal wetland of Dafeng,eastern Jiangsu Province,China.A total of 13 duck species were recorded in the four habitats,of which Spot-billed Ducks(Anas zonorhyncha)and Mallards(A.platyrhynchos)were the most abundant.The diversity and abundance of ducks vary across different habitats,and tidal flat supports the greatest diversity and abundance of ducks.We collected fecal samples from Spot-billed Ducks,Gadwalls(Mareca strepera),Mallards,and Eurasian Teals(A.crecca)in the tidal flat,from which seeds belonging to 7 families,13 genera and 15 different plant species were obtained.There were significant differences in seed dispersal among the four duck species,which varied with the season.Gadwalls and Common Teals showed more significant diversity in seed dispersal,with their feces containing a greater variety of plant seeds,which is related to their broader dietary range and ecological adaptability.Furthermore,the seasonal variation in the number of seeds per feces reflected the availability of seeds in the habitat and the response of ducks to environmental changes,while variations in seed intake among different duck species may be associated with inter-annual weather condition changes.The results of this study will provide a new perspective for understanding the mechanisms of bird-mediated seed dispersal in coastal wetland and offer preliminary insights for the seed dispersal by Asian ducks.
基金supported by the Hamilton College Jeffery Fund Science Internship and the Rocky Mountain Biological Laboratorysupported by the University of California Los Angeles,American Society of Mammalogists,the Animal Behavior Society,and Rocky Mountain Biological Laboratory+1 种基金supported by the National Geographic Society,the University of California Los Angeles(Faculty Senate and Division of Life Sciences),an RMBL research fellowshipU.S.National Science Foundation(NSF IDBR-0754247 and DEB-1119660 and 1557130 to D.T.B.,as well as DBI 0242960,07211346,1226713,and 1755522 to RMBL).
文摘Dispersal is an important individual decision which may influence individual fitness as well as population viability.The social cohesion hypothesis posits more social individuals remain at home,which is supported by prior work across taxa.However,how the sociality and connectivity of the group an individual resides in—their group social structure—relates to dispersal decisions has not been explored.We extend the social cohesion hypothesis to predict individuals residing in more social groups would remain at home,and we quantified the affiliative and agonistic social network structure of female yellow-bellied marmots(Marmota flaviventer),a facultatively social ground-dwelling squirrel,where about half of all females disperse.Using mixed-effects models,we found no support for the hypothesis that affiliative group structure explained any variation in a marmot’s decision to disperse.We did find marmots in groups with less agonistic centralization(around one or few individuals)were less likely to disperse.The former finding may result from limited ability to perceive group structure whereas the latter may reflect individuals in less agonistically centralized groups are less likely to be reproductively suppressed.These results suggest individual dispersal decisions are more impacted by individual sociality and not that of their social group.Thus,the social cohesion hypothesis may not scale to the level of the group.Further work is required to determine whether dispersal decisions in obligately social species are influenced by group social structure.
文摘A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.
文摘A weed is a plant that thrives in areas of human disturbance, such as gardens, fields, pastures, waysides, and waste places where it is not intentionally cultivated. Dispersal affects community dynamics and vegetation response to global change. The process of seed disposal is influenced by wind, which plays a crucial role in determining the distance and probability of seed dispersal. Existing models of seed dispersal consider wind direction but fail to incorporate wind intensity. In this paper, a novel seed disposal model was proposed in this paper, incorporating wind intensity based on relevant references. According to various climatic conditions, including temperate, arid, and tropical regions, three specific regions were selected to establish a wind dispersal model that accurately reflects the density function distribution of dispersal distance. Additionally, dandelions growth is influenced by a multitude of factors, encompassing temperature, humidity, climate, and various environmental variables that necessitate meticulous consideration. Based on Factor Analysis model, which completely considers temperature, precipitation, solar radiation, wind, and land carrying capacity, a conclusion is presented, indicating that the growth of seeds is primarily influenced by plant attributes and climate conditions, with the former exerting a relatively stronger impact. Subsequently, the remaining two plants were chosen based on seed weight, yielding consistent conclusion.