To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military ...To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.展开更多
Stars can form and evolve within gaseous disks around active galactic nuclei(AGNs).In the sub-parsec region of disks around~10~8M_(☉)black holes,stars accrete rapidly,reaching■200 M_(☉)and settling into a quasi-ste...Stars can form and evolve within gaseous disks around active galactic nuclei(AGNs).In the sub-parsec region of disks around~10~8M_(☉)black holes,stars accrete rapidly,reaching■200 M_(☉)and settling into a quasi-steady state in which accretion balances wind-driven mass loss.Within this environment,their ultimate fate depends critically on the radiative-zone diffusion coefficient(Dmix),which encapsulates various mixing processes and governs chemical transport between surface and core.Using the MESA stellar evolution code,we simulate AGN stars across a range of mixing efficiencies.We find a critical threshold floor value D_(mix,min)≈1010 cm~2 s^(-1)that separates two distinct fates:1."Immortal stars"—when mixing is over-efficient(D_(mix,min)■10^(10)cm~2 s^(-1)),rapid hydrogen replenishment sustains core hydrogen burning,maintains main-sequence equilibrium,rendering the star effectively“immortal.”2."Metamorphic stars"—when mixing is merely efficient(D_(mix,min)<1010 cm~2 s^(-1)),stars exhaust core hydrogen,evolve off-main-sequence,shed mass to≈15 M_(☉),and produce super-solar a-abundances consistent with AGN observations.We conclude that maintaining a mixing floor below this threshold is sufficient to avoid immortality,as flux-induced extra mixing can be effectively modeled via constant floor values.Our estimates provide a foundation for future work on disk enrichment and stellar evolution.展开更多
Luminosity outbursts of FU Ori-type objects(FUors)allow us to observe in the gas the molecules that are typically present in the ice in protoplanetary disks.In particular,the fraction of deuterated water,which is usua...Luminosity outbursts of FU Ori-type objects(FUors)allow us to observe in the gas the molecules that are typically present in the ice in protoplanetary disks.In particular,the fraction of deuterated water,which is usually mostly frozen in the midplane of a protoplanetary disk,has been measured for the first time in the gas of the disk around FUor V883 Ori.We test the hypothesis that the observed high HDO/H_(2)O ratio in the V883 Ori protoplanetary disk can be explained by luminosity outbursts of different amplitude,including a series of two consecutive outbursts.Using the ANDES astrochemical code,we modeled the distributions of water and deuterated water abundances under the action of luminosity outbursts of different amplitudes(from 400 to10,000 L_(⊙))and at different stellar luminosities at the pre-outburst stage.We show that the best agreement with the observed HDO/H_(2)O profile is obtained for outburst amplitudes of 2000 and 10,000 L_(⊙),while the observed bolometric luminosity of V883 Ori does not exceed 400 L_(⊙).We discuss possible reasons for this discrepancy,including the presence of past luminosity outbursts,the age of the star,and the influence of additional heating mechanisms in the midplane of the protoplanetary disk.We also consider how the high observed HDO/H_(2)O ratio may be related to the evolution of the chemical composition of the ice in the protoplanetary disk and the chemical processes activated under outburst conditions.展开更多
This study explores the dynamics of charged Hayward black holes,focusing on the effects of electric charge and the length factor on accretion disk characteristics.Our results show that increasing both parameters reduc...This study explores the dynamics of charged Hayward black holes,focusing on the effects of electric charge and the length factor on accretion disk characteristics.Our results show that increasing both parameters reduces the size of the event horizon and innermost stable circular orbits(ISCO)radius,with the electric charge exerting a more pronounced influence.Additionally,the length factor and electric charge can effectively replicate the spin of a Kerr black hole.Both parameters also affect the electromagnetic radiation emitted from the accretion disk,increasing the flux,temperature,and radiative efficiency.The peak radiation occurs in the soft x-ray band,with higher values of electric charge and length factor enhancing disk luminosity and shifting the peak to higher frequencies.These findings can offer valuable insights into the accretion processes around black holes and their observable signatures,particularly in x-ray astronomy.展开更多
Let D■R2 be a Jordan domain,D*=R2\D,the exterior of D.In this article,the authors obtained the following results:(1)If D is a John disk,then D is an outer linearly locally connected domain;(2)If D* is a John disk,the...Let D■R2 be a Jordan domain,D*=R2\D,the exterior of D.In this article,the authors obtained the following results:(1)If D is a John disk,then D is an outer linearly locally connected domain;(2)If D* is a John disk,then D is an inner linearly locally connected domain;(3)A homeomorphism f:R 2 →R 2 is a quasiconformal mapping if and only if f(D)is a John disk for any John disk D■R 2 ;and(4)If D is a bounded quasidisk,then D is a John disk,and there exists an unbounded quasidisk which is not a John disk.展开更多
We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling ra...We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling rate of the flow, du/dt = -u/τcool, where u and %ool are the internal energy and cooling timeseale, respectively. We assume the ratio of local'cooling to dynamical timescale, Ωτcool =β, to be a constant and also a function of the local temperature. We found that for the constantβ and γ = 5/3, fragmentation occurs only forβ ≤ 7. However, in the case ofβ having temperature dependence and γ = 5/3, fragmentation can also occur for larger values ofβ. By increasing the temperature dependence of the cooling timescale, the mass accretion rate decreases, the population of clumps/fragments increases, and the clumps/fragments can also form in the smaller radii. Moreover, we found that the clumps can form even in a low mass accretion rate, ≤10-7M⊙yr-1, in the case of temperature-dependentβ. However, clumps form with a larger mass accretion rate, 〉 10-7M⊙ yr-1, in the case of constantβ.展开更多
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve...Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.展开更多
In the present paper, we deal with the complex Szasz-Durrmeyer operators and study Voronovskaja type results with quantitative estimates for these operators attached to analytic functions of exponential growth on comp...In the present paper, we deal with the complex Szasz-Durrmeyer operators and study Voronovskaja type results with quantitative estimates for these operators attached to analytic functions of exponential growth on compact disks. Also, the exact order of approximation is found.展开更多
The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Ni...The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cv. Xanthi (nn, Smith)) leaf disks. We compared the effect of temperatures ranging from 15°C, 18°C, 20°C, 22°C to 25°C on the stable expression of β-glucuronidase (GUS) activity of 14 days old hygromycin-selected leaf disks, and on the increase in the fresh weight yield of 28 days old kanamycin-selected calli. The highest average of GUS activity was obtained at 20°C among the five temperatures tested although the difference between the 18°C and 20°C treatment was not statistically significant. The GUS activity at 15°C was statistically lower than those at 18°C and 20°C. The GUS activity in 22°C treatment was an intermediate between the highest (18/20°C) and second highest averages (15°C), and was not statistically significantly different. The lowest average of GUS activity was observed at 25°C. The highest increase in the plate average of fresh weight yield was obtained at 20°C among the five temperature tested. The 20°C treatment was statistically significantly better than the 15°C and 18°C treatments. The 20°C co-cultivation treatment resulted in the higher FW yield than 22°C and 25°C even though the differences were not statistically significant. In conclusion, low co-cultivation temperature at 20°C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after transformation of tobacco leaf disks.展开更多
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparis...The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.展开更多
Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability para...Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids.展开更多
This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented un...This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented under the assumption that the second-grade fluid parameter β is small. It is also studied the effect of all the parameters on the horizontal force per unit area exerted by the fluid on the disks. It is found that the x- and y-components of the force increase and decrease, respectively, when the second-grade fluid parameter β and the Hartmann number M increase. It is seen that the forces in the x- and y-directions on the top disk increase with the increase of the suction/injection velocity parameter P but those on the bottom disk decrease. It is shown that the force acting on the top disk is greater than that acting on the bottom disk in view of the axial velocity in the positive z-direction. It is observed that the increase in the Reynolds number R leads to a rise in the horizontal force.展开更多
We study local linear non-axisymmetric perturbations in fully stratified 3D astrophysical disks. Radial stratification is set to be described by power law, while vertical stratification is set to be exponential. We an...We study local linear non-axisymmetric perturbations in fully stratified 3D astrophysical disks. Radial stratification is set to be described by power law, while vertical stratification is set to be exponential. We analyze the linear perturbations in local shearing sheet frame and derive WKB dispersion equation. We show that stratification laws of the disk matter define not only the thermal stability of the disk, but also the efficiency of the potential vorticity production by rotationg convective turbulence in astrophysical disks. Taken developed convective turbulence we assume nonlinear tendencies set by linear spectrum and show that vortices are unlikely to be generated in rigid rotation flows. In contrast, differential rotation yields much higher vortex production rate that depends on the disk thickness, distance from the central object and the spectral characteristics of the developed thermal turbulence. It seems that measurements of the temperature and density distribution in accretion disks may indicate the efficiency of the turbulence development and largely define the luminosity characteristic of accreting flows.展开更多
More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and ...More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.展开更多
We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of th...We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk. Hence, the jet arising from the neutrino annihilation above the inner disk is driven to precession. We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.展开更多
The energy produced by the melting stretching disks surface has a wide range of commercial applications,including semi-conductor material preparation,magma solidification,permafrost melting,and frozen land refreezing,...The energy produced by the melting stretching disks surface has a wide range of commercial applications,including semi-conductor material preparation,magma solidification,permafrost melting,and frozen land refreezing,among others.In view of this,in the current communication we analyzed magnetohydrodynamic flow ofMaxwell nanofluid between two parallel rotating disks.Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices.Furthermore,the distinct tinysized particles Al_(2)O_(3)and TiO_(2)in theMaxwell water-based fluid for enhancing the heat transfer rate are analyzed.The heat equation is developed in the occurrence of thermal radiation.The influences of melting impacts are incorporated.The mathematical model is developed in the form of partial differential expressions then converted to ordinary differential equations by employing tool of similarity variables.Finite element method(FEM)is chosen for solving the nonlinear governing ordinary differential equations(ODEs)with necessary conditions.The consequence of flow parameters against the velocity profiles and heat transport field is considered.The noted novelty of this communication is to discuss the thermal transfer of Maxwell nanofluid model through double stretching disks with thermal radiation and melting phenomenon.Further,Al_(2)O_(3)/water and TiO_(2)/water are considered in the modeling.展开更多
We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neu...We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an out- ward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets trans- formed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly ad- vection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) is, the higher the density and temperature are in the disks. We deal with accre- tion disks with relatively low accretion rates: 0.001 Mo s-1 ~ 3)/~ 0.01 Mo S--1 and hence these disks are predominantly advection dominated. We use He-rich and Si- rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31p, 39K, 43Sc' 35C1 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthe- sized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.展开更多
Gaps and rings are commonly seen in recent high-resolution ALMA observations of protoplanetary disks. Ice lines of volatiles are one of the mechanisms proposed to explain the origin for these substructures. To examine...Gaps and rings are commonly seen in recent high-resolution ALMA observations of protoplanetary disks. Ice lines of volatiles are one of the mechanisms proposed to explain the origin for these substructures. To examine the ice line hypothesis, literature studies usually parameterize the midplane temperature with the analytic formula of a passively heated, flared disk. The temperature in this simplified expression is basically dependent on the stellar luminosity. I have built a grid of self-consistent radiative transfer models that feature the same stellar properties, but different disk parameters. The midplane temperature of these models shows a large dispersion over a wide range of radii, indicating that besides the stellar luminosity, the disk parameters also play an important role in determining the thermal structure.Comparing the mid-plane temperature from radiative transfer simulation with the analytic solution shows a large difference between both approaches. This result suggests that special care on the assumed temperature profile has to be taken in the analysis of gap/ring origins, and conclusions drawn in previous works on the basis of the analytic temperature should be revisited. I further took the AS 209 disk as an example, and conducted a detailed radiative transfer modeling of the spectral energy distribution and the ALMA Band 6 image. The D137, D24 and D9 gaps are associated with the ice lines of major volatiles in the disk according to such a thorough analysis. However, if the temperature profile simply follows the analytic formula, none of these gaps matches the ice lines of the species considered here.展开更多
基金supported by the National Major Science and Technology Project,China(No.J2019-Ⅳ-0007-0075)the Fundamental Research Funds for the Central Universities,China(No.JKF-20240036)。
文摘To ensure the structural integrity of life-limiting component of aeroengines,Probabilistic Damage Tolerance(PDT)assessment is applied to evaluate the failure risk as required by airworthiness regulations and military standards.The PDT method holds the view that there exist defects such as machining scratches and service cracks in the tenon-groove structures of aeroengine disks.However,it is challenging to conduct PDT assessment due to the scarcity of effective Probability of Detection(POD)model and anomaly distribution model.Through a series of Nondestructive Testing(NDT)experiments,the POD model of real cracks in tenon-groove structures is constructed for the first time by employing the Transfer Function Method(TFM).A novel anomaly distribution model is derived through the utilization of the POD model,instead of using the infeasible field data accumulation method.Subsequently,a framework for calculating the Probability of Failure(POF)of the tenon-groove structures is established,and the aforementioned two models exert a significant influence on the results of POF.
文摘Stars can form and evolve within gaseous disks around active galactic nuclei(AGNs).In the sub-parsec region of disks around~10~8M_(☉)black holes,stars accrete rapidly,reaching■200 M_(☉)and settling into a quasi-steady state in which accretion balances wind-driven mass loss.Within this environment,their ultimate fate depends critically on the radiative-zone diffusion coefficient(Dmix),which encapsulates various mixing processes and governs chemical transport between surface and core.Using the MESA stellar evolution code,we simulate AGN stars across a range of mixing efficiencies.We find a critical threshold floor value D_(mix,min)≈1010 cm~2 s^(-1)that separates two distinct fates:1."Immortal stars"—when mixing is over-efficient(D_(mix,min)■10^(10)cm~2 s^(-1)),rapid hydrogen replenishment sustains core hydrogen burning,maintains main-sequence equilibrium,rendering the star effectively“immortal.”2."Metamorphic stars"—when mixing is merely efficient(D_(mix,min)<1010 cm~2 s^(-1)),stars exhaust core hydrogen,evolve off-main-sequence,shed mass to≈15 M_(☉),and produce super-solar a-abundances consistent with AGN observations.We conclude that maintaining a mixing floor below this threshold is sufficient to avoid immortality,as flux-induced extra mixing can be effectively modeled via constant floor values.Our estimates provide a foundation for future work on disk enrichment and stellar evolution.
基金supported by the Ministry of Science and Higher Education of the Russian Federation,State Assignment No.GZ0110/23-10-IF。
文摘Luminosity outbursts of FU Ori-type objects(FUors)allow us to observe in the gas the molecules that are typically present in the ice in protoplanetary disks.In particular,the fraction of deuterated water,which is usually mostly frozen in the midplane of a protoplanetary disk,has been measured for the first time in the gas of the disk around FUor V883 Ori.We test the hypothesis that the observed high HDO/H_(2)O ratio in the V883 Ori protoplanetary disk can be explained by luminosity outbursts of different amplitude,including a series of two consecutive outbursts.Using the ANDES astrochemical code,we modeled the distributions of water and deuterated water abundances under the action of luminosity outbursts of different amplitudes(from 400 to10,000 L_(⊙))and at different stellar luminosities at the pre-outburst stage.We show that the best agreement with the observed HDO/H_(2)O profile is obtained for outburst amplitudes of 2000 and 10,000 L_(⊙),while the observed bolometric luminosity of V883 Ori does not exceed 400 L_(⊙).We discuss possible reasons for this discrepancy,including the presence of past luminosity outbursts,the age of the star,and the influence of additional heating mechanisms in the midplane of the protoplanetary disk.We also consider how the high observed HDO/H_(2)O ratio may be related to the evolution of the chemical composition of the ice in the protoplanetary disk and the chemical processes activated under outburst conditions.
文摘This study explores the dynamics of charged Hayward black holes,focusing on the effects of electric charge and the length factor on accretion disk characteristics.Our results show that increasing both parameters reduces the size of the event horizon and innermost stable circular orbits(ISCO)radius,with the electric charge exerting a more pronounced influence.Additionally,the length factor and electric charge can effectively replicate the spin of a Kerr black hole.Both parameters also affect the electromagnetic radiation emitted from the accretion disk,increasing the flux,temperature,and radiative efficiency.The peak radiation occurs in the soft x-ray band,with higher values of electric charge and length factor enhancing disk luminosity and shifting the peak to higher frequencies.These findings can offer valuable insights into the accretion processes around black holes and their observable signatures,particularly in x-ray astronomy.
基金Sponsored by the Foundation of Pre-973 Program of China under grant2006CB708304the National NSFC under grant 10771195the NSF of Zhejiang Province under grant Y607128
文摘Let D■R2 be a Jordan domain,D*=R2\D,the exterior of D.In this article,the authors obtained the following results:(1)If D is a John disk,then D is an outer linearly locally connected domain;(2)If D* is a John disk,then D is an inner linearly locally connected domain;(3)A homeomorphism f:R 2 →R 2 is a quasiconformal mapping if and only if f(D)is a John disk for any John disk D■R 2 ;and(4)If D is a bounded quasidisk,then D is a John disk,and there exists an unbounded quasidisk which is not a John disk.
文摘We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling rate of the flow, du/dt = -u/τcool, where u and %ool are the internal energy and cooling timeseale, respectively. We assume the ratio of local'cooling to dynamical timescale, Ωτcool =β, to be a constant and also a function of the local temperature. We found that for the constantβ and γ = 5/3, fragmentation occurs only forβ ≤ 7. However, in the case ofβ having temperature dependence and γ = 5/3, fragmentation can also occur for larger values ofβ. By increasing the temperature dependence of the cooling timescale, the mass accretion rate decreases, the population of clumps/fragments increases, and the clumps/fragments can also form in the smaller radii. Moreover, we found that the clumps can form even in a low mass accretion rate, ≤10-7M⊙yr-1, in the case of temperature-dependentβ. However, clumps form with a larger mass accretion rate, 〉 10-7M⊙ yr-1, in the case of constantβ.
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
文摘Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks. Methods By estimating the order of magnitude of each term in the Navier-Stokes equations to drop small terms and achieve the required simplified differential equations, and by integrating the equations to obtain the solution for theflow between two rotary disks. Results Parameters related to the laminar viscous flow in the gap between two parallel rotary disks, such as the velocity, the pressure, the flowrate, the force, the shearing stress, the torque and the power derived. Conclusion The result provides a theoretical basis and an effective method for the designs of the devices connected with the laminar viscous flow in the gap between two parallel rotary disks.
文摘In the present paper, we deal with the complex Szasz-Durrmeyer operators and study Voronovskaja type results with quantitative estimates for these operators attached to analytic functions of exponential growth on compact disks. Also, the exact order of approximation is found.
文摘The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cv. Xanthi (nn, Smith)) leaf disks. We compared the effect of temperatures ranging from 15°C, 18°C, 20°C, 22°C to 25°C on the stable expression of β-glucuronidase (GUS) activity of 14 days old hygromycin-selected leaf disks, and on the increase in the fresh weight yield of 28 days old kanamycin-selected calli. The highest average of GUS activity was obtained at 20°C among the five temperatures tested although the difference between the 18°C and 20°C treatment was not statistically significant. The GUS activity at 15°C was statistically lower than those at 18°C and 20°C. The GUS activity in 22°C treatment was an intermediate between the highest (18/20°C) and second highest averages (15°C), and was not statistically significantly different. The lowest average of GUS activity was observed at 25°C. The highest increase in the plate average of fresh weight yield was obtained at 20°C among the five temperature tested. The 20°C treatment was statistically significantly better than the 15°C and 18°C treatments. The 20°C co-cultivation treatment resulted in the higher FW yield than 22°C and 25°C even though the differences were not statistically significant. In conclusion, low co-cultivation temperature at 20°C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after transformation of tobacco leaf disks.
文摘The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method(OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
文摘Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids.
文摘This paper is concerned with the steady flow of a second-grade fluid between two porous disks rotating eccentrically under the effect of a magnetic field. A perturbation solution for the velocity field is presented under the assumption that the second-grade fluid parameter β is small. It is also studied the effect of all the parameters on the horizontal force per unit area exerted by the fluid on the disks. It is found that the x- and y-components of the force increase and decrease, respectively, when the second-grade fluid parameter β and the Hartmann number M increase. It is seen that the forces in the x- and y-directions on the top disk increase with the increase of the suction/injection velocity parameter P but those on the bottom disk decrease. It is shown that the force acting on the top disk is greater than that acting on the bottom disk in view of the axial velocity in the positive z-direction. It is observed that the increase in the Reynolds number R leads to a rise in the horizontal force.
文摘We study local linear non-axisymmetric perturbations in fully stratified 3D astrophysical disks. Radial stratification is set to be described by power law, while vertical stratification is set to be exponential. We analyze the linear perturbations in local shearing sheet frame and derive WKB dispersion equation. We show that stratification laws of the disk matter define not only the thermal stability of the disk, but also the efficiency of the potential vorticity production by rotationg convective turbulence in astrophysical disks. Taken developed convective turbulence we assume nonlinear tendencies set by linear spectrum and show that vortices are unlikely to be generated in rigid rotation flows. In contrast, differential rotation yields much higher vortex production rate that depends on the disk thickness, distance from the central object and the spectral characteristics of the developed thermal turbulence. It seems that measurements of the temperature and density distribution in accretion disks may indicate the efficiency of the turbulence development and largely define the luminosity characteristic of accreting flows.
基金funded by the German Space Agency (DLR) under grant Nos. 50WM0336, 50WM0636 and 50WM0936the Deutsche Forschungsgemeinschaft (DFG) under grant No. Bl298/7-1
文摘More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modeled. In this article, the emergent collision model for protoplanetery dust aggregates, as well as the numerical model for the evolution of dust aggregates in protoplanetary disks, is reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems unlikely, implying that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.
基金Project supported by the National Basic Research Program of China (Grant No. 2009CB824800)the National Natural Science Foundation of China (Grant Nos. 10833002,11003016,11073015,and 11103015)the Natural Science Foundation of Fujian Province,China (Grant No. 2010J01017)
文摘We present a model of jet precession driven by a neutrino-cooled disk around a spinning black hole to explain the quasi-periodic features observed in some gamma-ray burst light curves. The different orientations of the rotational axes between the outer part of a neutrino-cooled disk and a black hole result in precessions of the central black hole and the inner part of the disk. Hence, the jet arising from the neutrino annihilation above the inner disk is driven to precession. We find that the period of precession is positively correlated with the mass as well as the spin of a black hole.
基金This work was sponsored in part by National Natural Science Foundation of China(No.51869031)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN201903801)+1 种基金Huzhou Key Laboratory of Green Building TechnologyThis work is financially supported by the Government College University,Faisalabad and Higher Education Commission,Pakistan.
文摘The energy produced by the melting stretching disks surface has a wide range of commercial applications,including semi-conductor material preparation,magma solidification,permafrost melting,and frozen land refreezing,among others.In view of this,in the current communication we analyzed magnetohydrodynamic flow ofMaxwell nanofluid between two parallel rotating disks.Nanofluids are important due to their astonishing properties in heat conduction flows and in the enhancement of electronic and manufacturing devices.Furthermore,the distinct tinysized particles Al_(2)O_(3)and TiO_(2)in theMaxwell water-based fluid for enhancing the heat transfer rate are analyzed.The heat equation is developed in the occurrence of thermal radiation.The influences of melting impacts are incorporated.The mathematical model is developed in the form of partial differential expressions then converted to ordinary differential equations by employing tool of similarity variables.Finite element method(FEM)is chosen for solving the nonlinear governing ordinary differential equations(ODEs)with necessary conditions.The consequence of flow parameters against the velocity profiles and heat transport field is considered.The noted novelty of this communication is to discuss the thermal transfer of Maxwell nanofluid model through double stretching disks with thermal radiation and melting phenomenon.Further,Al_(2)O_(3)/water and TiO_(2)/water are considered in the modeling.
基金partly supported by the ISRO grant ISRO/RES/2/367/10-11
文摘We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an out- ward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets trans- formed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly ad- vection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) is, the higher the density and temperature are in the disks. We deal with accre- tion disks with relatively low accretion rates: 0.001 Mo s-1 ~ 3)/~ 0.01 Mo S--1 and hence these disks are predominantly advection dominated. We use He-rich and Si- rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31p, 39K, 43Sc' 35C1 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthe- sized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.
基金financial support by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20181513)the National Natural Science Foundation of China(Grant No.11973090)。
文摘Gaps and rings are commonly seen in recent high-resolution ALMA observations of protoplanetary disks. Ice lines of volatiles are one of the mechanisms proposed to explain the origin for these substructures. To examine the ice line hypothesis, literature studies usually parameterize the midplane temperature with the analytic formula of a passively heated, flared disk. The temperature in this simplified expression is basically dependent on the stellar luminosity. I have built a grid of self-consistent radiative transfer models that feature the same stellar properties, but different disk parameters. The midplane temperature of these models shows a large dispersion over a wide range of radii, indicating that besides the stellar luminosity, the disk parameters also play an important role in determining the thermal structure.Comparing the mid-plane temperature from radiative transfer simulation with the analytic solution shows a large difference between both approaches. This result suggests that special care on the assumed temperature profile has to be taken in the analysis of gap/ring origins, and conclusions drawn in previous works on the basis of the analytic temperature should be revisited. I further took the AS 209 disk as an example, and conducted a detailed radiative transfer modeling of the spectral energy distribution and the ALMA Band 6 image. The D137, D24 and D9 gaps are associated with the ice lines of major volatiles in the disk according to such a thorough analysis. However, if the temperature profile simply follows the analytic formula, none of these gaps matches the ice lines of the species considered here.