Both the broad-spectrum bactericidal properties of disinfectants and the inhibitory effects of antibiotics pose potential threats to the activity,functionality,and probiotic properties of Lactid acid bacteria(LAB).The...Both the broad-spectrum bactericidal properties of disinfectants and the inhibitory effects of antibiotics pose potential threats to the activity,functionality,and probiotic properties of Lactid acid bacteria(LAB).Therefore,it is essential to systematically evaluate the tolerance of lactic acid bacteria to common disinfectants and antibiotics.This study assessed 60 LAB strains isolated from the fermented foods for their tolerance to seven disinfectants and nine antibiotics.The results indicated that,compared to pathogenic bacteria,most LAB exhibited stronger tolerance to disinfectants.Sub-inhibitory concentrations of disinfectants inhibited biofilm formation in most LAB,while sub-inhibitory concentrations of glutaraldehyde tended to promote biofilm formation.This suggests that commonly used disinfectants can eliminate pathogenic bacteria without killing LAB,providing guidance for disinfectant use.LAB were highly sensitive to ampicillin and chloramphenicol,while showing some tolerance to norfloxacin,polymyxin,and sulfamethoxazole.This indicates LAB have a notable antibiotic resistance profile,which includes both natural resistance characteristics and instances of acquired resistance,along with multiple drug resistance and cross-resistance between antibiotics and disinfectants.This study provides an important guidance for disinfection practices in industrial utilizing LAB,such as food and biomedicine,and offers a reference for the use of antibiotics.展开更多
[Objective] This study was conducted to investigate the effects of Penicillium spp. and Trichoderma spp. on the growth of Pleurotus ostreatus (oyster mushroom) and to screen effective disinfectants to control them a...[Objective] This study was conducted to investigate the effects of Penicillium spp. and Trichoderma spp. on the growth of Pleurotus ostreatus (oyster mushroom) and to screen effective disinfectants to control them and other pathogenic microbes. [Method] Six strains or species of Penicilliurn and Trichoderma were inocu- lated into PDA plates growing with P. ostreatus to observe the growth of their mycelia. And the inhibitory effects of hydrogen peroxide, bromogeramine bromide, 84 disinfectant, lysol, potassium permanganate, and 75% medical alcohol on Trichoderma pleuroticola, Trichoderma viride, Trichoderma harzianum, Penicillium citrinum, Penicillium thomii and Penicillium brevicompactum were detected. [Result] Confrontation test revealed that Penicillium spp. and Trichoderma spp. competed for nutrients with P. ostreatus mycelia, antagonized against the growth of P. ostreatus mycelia, invaded and twined around P. ostreatus mycelia, and also produced toxins poisoning P. ostreatus mycelia. The six disinfectants exhibited different inhibitory effects against different species of Penicillium and Trichoderma. Among them the in- hibitory effects of bromogeramine bromide against the six species of Penicillium and Trichoderma were significantly different. However, the inhibitory effects of 3% hydrogen peroxide, 84 disinfectant, 5% lysol, potassium permanganate and 75% medical alcohol were significantly different among Penicillium spp., but did not among Tri- choderma spp. [Conclusion] Bromogeramine bromide can be used to control the bacteria and fungi in mushroom production for it has significant inhibitory effects on the six species of both Penicillium and Trichoderma.展开更多
Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydro...Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydrogen Peroxide, Clorox Germicidal Bleach and Clidox-S. The effectiveness of these disinfectants was studied against various subtypes of avian influenza virus (AIV). The virus-disinfectant mixtures were prepared in serial dilutions of each disinfectant with a constant virus titer and incubated at ambient temperature in different time intervals for virus inactivation. The virus inactivation results were determined by virus recovery in embryonating chicken eggs. Among the six different kinds of nonmetallic disinfectants obtained for this research project, Neutral Electrolyzed Water, “M22” solution, Clorox Germicidal Bleach and Clidox-S were effectively inactivated AIV with appropriate working dilutions and reaction times. Superoxy Food Wash disinfectant and Hydrogen Peroxide were found having limited effect on virus inactivation with extended exposure times of more than 2 hours. These research findings provide scientific data to poultry industry with guidelines to select and use non-metallic organic disinfectants for poultry flock sanitation and disinfection to effectively prevent and control of avian influenza outbreaks.展开更多
Objective: Infection control protocols dictate the disinfection of dentures. There are no products available which are designed for the specific use of disinfecting dentures. The objective of this study was to investi...Objective: Infection control protocols dictate the disinfection of dentures. There are no products available which are designed for the specific use of disinfecting dentures. The objective of this study was to investigate the impact of chemical disinfectants on elastic modulus, flexural strength and color stability of denture base resins. Methods: 256 specimens from four acrylic denture base resins were manufactured. Two cold-curing denture base resins: PalaXpress (Heraeus Kulzer, Hanau, Germany), Futura Gen (Schuetz Dental, Roßbach, Germany) and two heat-curing denture base resins: Paladon 65 (Heraeus Kulzer, Hanau, Germany), FuturAcryl 2000 (Schuetz Dental, Roßbach, Germany) were used. Three chemical disinfecting agents were tested: Impresept, D050 Instru-Gen, Stammopur DR. Specimens were stored in distilled water and in chemical disinfecting agents. They were divided randomly into groups. E-Modulus and flexural strength were measured using the three-point bending test. Color changes (ΔE) were determined spectrophotometrically. Results: The disinfection agents showed no significant influence on the E-modulus compared to distilled water (Acrylic vs. distilled water from (Futura Gen) 2688.80 ± 230.78 vs. 2766.60 ± 91.22 MPa to (PalaXpress) 3004.20 ± 26.40 vs. 2851.00 ± 95.23 MPa). Flexural strength after storage in distilled water and disinfection did not differ significantly (Acrylic vs. distilled water from (Paladon65) 27.28 ± 1.30 vs. 28.42 ± 0.84 N/mm2, (p > 0.05) to (PalaXpress) 30.88 ± 0.25 vs. 29.68 ± 0.79 N/mm2, p < 0.001). Disinfection caused a significant color change with Impresept of Paladon 65 (p ≤ 0.001), FuturaAcryl 2000 with Stammopur DR and D 050 Instru-Gen (p ≤ 0.001). Conclusions: The investigated disinfection agents did not influence elastic modulus and flexural strength of denture base resins negatively. ΔE-values were in a range of 1 to 2. Thus, the detected color changes may be marginal. Clinical relevance: Single use disinfections are feasible for acrylic dentures regarding to elastic modulus and flexural strength.展开更多
The aim of the study was to determine the impact of residues of detergents and disinfectants on the results of most commonly used inhibitor tests for raw milk. Microbiological test (Delvotest SP-NT) and three rapid te...The aim of the study was to determine the impact of residues of detergents and disinfectants on the results of most commonly used inhibitor tests for raw milk. Microbiological test (Delvotest SP-NT) and three rapid tests (Charm 3 MRL BL/TET2, Charm ROSA MRL BL/TET and Penzym) were used in the study. Three concentrations (recommended by the manufacturer, 10 times lower and twice higher) of 36 detergents and disinfectants in raw milk were investigated. All methods did not detect concentrations of detergents and disinfectants of alkaline and acid origin 10 times lower than recommended by the manufacturer. 39% of the investigated substances of alkaline origin were detected by Delvotest SP-NT and Penzym;Charm tests showed non-typical results only. Delvotest SP-NT did not detect substances of acid origin;Penzym detected 50% of these substances, Charm tests showed only non-typical results. Delvotest SP-NT and Penzym appeared to be more sensitive to the substances used for teat hygiene and disinfection. The scope of rapid tests (receptor or enzymatic) does not cover the detection of detergent and disinfectant re- sidues in milk. However, according to the non-typical results of the test, it is possible to suspect the presence of these substances in milk. McNemar’s and Cochran’s Q tests were used for statistical analysis of the data.展开更多
Aim: This study aims to assess the infection risks of flashlight contamination in a stomatology hospital and compare the disinfection effectiveness of alcohol (75%) and disinfecting wipes.Background: The flashlight is...Aim: This study aims to assess the infection risks of flashlight contamination in a stomatology hospital and compare the disinfection effectiveness of alcohol (75%) and disinfecting wipes.Background: The flashlight is a basic non-critical medical device in oral and maxillofacial surgery wards. Wounds are mostly found in oral cavities;therefore, reusable flashlights may be a potential source of nosocomial infections (NIs). However, the microbial flora present in flashlights used in hospitals has not yet been explored. Methods: This study investigated the microbial contamination of 41 flashlights used in a stomatology hospital in Guangzhou in March 2016. Results: Results indicated that 75.6%(31/41) of the flashlights had microbial contamination. Gram-positive bacteria accounted for 72.7%(24/33)of the microbial groups contaminating the flashlights, and Gram-negative bacteria (21.2%, 7/33), and fungi (6.1%, 2/33) constituted the remaining contaminants. The predominantly isolated species was Staphyloccus (66.7%, 22/33), especially Staphylococcus aureus (24.2%, 8/33). Approximately 77.3%(17/22) of the types of bacteria detected in the hands were same as those in the corresponding flashlights. Both the bacterial overstandard and S. aureus detection rates of doctors' flashlights were higher than those of nurses' flashlights (16/17 vs. 14/23, 7/17 vs. 1/23, respectively) (P < 0.05). Moreover, both disinfectants performed excellently, and their eligibility rates were not significantly different (17/17 vs. 14/14) (P>0.05). Conclusion: Flashlights are potential causes of NIs. Disinfecting flashlights could be an effective and practical infection control method.展开更多
BACKGROUND Misuse of disinfectants during the coronavirus disease 2019 pandemic has led to several poisoning incidents.However,there are few clinical case reports on poisoning caused by improper mixing of household di...BACKGROUND Misuse of disinfectants during the coronavirus disease 2019 pandemic has led to several poisoning incidents.However,there are few clinical case reports on poisoning caused by improper mixing of household disinfectants.AIM To summarize the clinical characteristics and treatment effects of chlorine poisoning caused by improper mixing of hypochlorite bleach with acidic cleaning agents.METHODS We retrospectively analyzed baseline and clinical data,clinical symptoms,and treatment methods of seven patients with chlorine poisoning who were admitted to the National Army Poisoning Treatment Center.RESULTS Among the seven patients,the average poisoning time(exposure to admission)was 57 h(4-240 h).All patients were involved in cleaning bathrooms.Chest computed tomography scans revealed bilateral lung effusions or inflammatory changes in five patients.The partial pressure of oxygen decreased in six patients,and respiratory failure occurred in one.Five patients had different degrees of increase in white blood cell count.Humidified oxygen therapy,non-invasive mechanical ventilation,anti-inflammatory corticosteroids,antioxidants,and antibiotics were administered for treatment.The average length of hospital stay was 7 d(4-9 d).All seven patients recovered and were discharged.CONCLUSION Improper mixing of household disinfectants may cause damage to the respiratory system due to chlorine poisoning.Corticosteroids may improve lung exudation in severe cases,and symptomatic supportive treatment should be performed early.展开更多
Prevention of African swine fever,a disease caused by African swine fever virus(ASFV),requires maintenance of high biosecurity standards,which principally relies on disinfection.Finding the perfect disinfectant agains...Prevention of African swine fever,a disease caused by African swine fever virus(ASFV),requires maintenance of high biosecurity standards,which principally relies on disinfection.Finding the perfect disinfectant against ASFV is difficult because of the lack of relevant data.Therefore,we aimed to find the most effective disinfectant and to optimise its concentration as well as contact time to confirm the viricidal effect against ASFV in vitro.We evaluated the viricidal activity of three concentrations each of six common disinfectants against ASFV using immersion disinfection assay(IDA)and spray disinfection assay(SDA);the concentrations of these disinfectants at which complete viral inactivation occurred were almost same as the manufacturer-recommended concentrations,but the exposure times for viral inactivation are different.The following disinfectants(assay:concentration,exposure time)showed complete inactivation:iodine and acid mixed solution(IDA/SDA:0.5%,10 min);compound potassium peroxymonosulfate(IDA:0.25%,30 min;SDA:0.25%,60 min);citric acid(IDA:0.25%,60 min;SDA:0.5%,60 min);sodium dichloroisocyanurate(IDA:0.125%,60 min;SDA:0.25%,60 min);and glutaral ang deciquam(IDA/SDA:0.2%,60 min);and deciquam(IDA/SDA:0.5%,60 min).However,in the presence of organic material contamination,disinfectants did not show a marked inactivation effect.Therefore,disinfection procedures should be performed in two steps:thorough mechanical cleaning followed by application of disinfectant.In conclusion,all the tested disinfectants can inactivate ASFV;these can be used as alternative disinfectants to enhance biosecurity.展开更多
To investigate the corrosion behaviors and antibacterial effects of sodium hypochlorite(NaClO)and hydrogen peroxide silver ion(HPSI)disinfectants with different concentrations against dental unit waterlines and provid...To investigate the corrosion behaviors and antibacterial effects of sodium hypochlorite(NaClO)and hydrogen peroxide silver ion(HPSI)disinfectants with different concentrations against dental unit waterlines and provide guidance and reference for the use of chemical disinfectants,polyurethane tubes were immersed in ultrapure water(control group),0.1%NaClO,0.5%NaClO,1.0%NaClO,2.5%HPSI,5.0%HPSI,and 10%HPSI solutions for 6,12,and 18 weeks.Contact angles and Fourier transform infrared spectra were detected.Surface morphologies were observed using scanning electron microscopy and antibacterial activity was evaluated using Gram-positive Staphylococcus aureus(S.aureus).The results showed that sodium hypochlorite and hydrogen peroxide silver ion disinfectants presented good antibacterial activity against S.aureus.However,sodium hypochlorite could cause serious damage to the water pipes where corrosion pits and cracks were observed,and increasing the concentration of sodium hypochlorite could accelerate the corrosion process.Hydrogen peroxide silver ion disinfectants had no obvious damage to the water pipes.Therefore,hydrogen peroxide silver ion disinfectants are recommended to use for controlling bacterial infection in dental unit waterlines which can reduce the damage to the water pipes.展开更多
The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicate...The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5 mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn’t reach the effect of chlorine dioxide.展开更多
In clinical practice,the important hygienic prevention of bacterial pathogen spread is disinfection of potentially contaminated area.Benzalkonium bromide and chlorhexidine acetate are commonly used disinfectants with ...In clinical practice,the important hygienic prevention of bacterial pathogen spread is disinfection of potentially contaminated area.Benzalkonium bromide and chlorhexidine acetate are commonly used disinfectants with a broad spectrum of antimicrobial effect.It is vital to inhibit the spread of pathogen in hospital.However,a large number of pathogens with the decreased antiseptic susceptibility have been isolated from clinical samples which showed an increased minimal inhibitory concentration(MIC)against those antiseptics.These resistant pathogens are the major causes for nosocomial crossinfections in hospital.The present study demonstrated the utility of Oxford plate assay system in determining the potential disinfectant resistance of bacteria.The microbiological assay is based on the inhibitory effect of tested disinfectants upon the strains of Staphylococcus aureus and Escherichia coli.Statistical analysis of the bioassay results indicated the linear correlation(r=-0.87-0.99,P<0.01)between the diameter of growth inhibition zone and the log dosage of the tested disinfectants.Moreover,comparison of inhibitory efficacy of benzalkonium bromide upon 29 S.aureus strains isolated from clinical samples by both Oxford plate method and broth dilution method showed that the diameter of growth inhibition zone has significantly negative correlation with the minimal inhibitory concentration(MIC)(r=-0.574,P<0.001).These results suggest that the Oxford plate is a simple and time-saving method in detecting potential clinical disinfectant resistance and its usefulness for routine surveillance of pathogenic resistance to disinfectants warrants further investigation.展开更多
Intensive application of chlorine-based disinfectants driven by the COVID-19 pandemic was suspected to be detrimental to receiving water ecosystems,but with little field evidence.We characterized the occurrences of ty...Intensive application of chlorine-based disinfectants driven by the COVID-19 pandemic was suspected to be detrimental to receiving water ecosystems,but with little field evidence.We characterized the occurrences of typical disinfectants and microeukaryotic communities in surface waters associated with three wastewater treatment plants(WWTP)-river systems one year after the lockdown in Wuhan,China.Trihalomethanes(THMs)declined from summer 2020(0.01–1.82μg/L)to summer 2021(0.01–0.95μg/L),whereas quaternary ammonium salts(QAs)increased from summer 2020(0.53–6.35 ng/L)to summer 2021(8.49–191 ng/L).Biodiversity monitoring with environmental DNA(eDNA)revealed significant temporal variation in microeukaryotic community composition.The monitored disinfectants were correlated with some eukaryotic communities as demonstrated by redundancy analysis.For example,QAs were positively related to Cryptophyta relative abundance,but negatively related to Rotifera relative abundance.A microeukaryote-based multimetric index indicated ecological impairment near the Han River WWTP outlet in 2020.Our findings indicate the influence of heavily used disinfectants on river microeukaryotic communities,and the usefulness of assessing mid-term ecological risks from disinfectants in the post COVID-19 era.展开更多
Monkeypox(mpox)outbreak in 2022 has caused more than 91,000 cases,has spread to 115 countries,regions,and territories,and has thus attracted much attention.The stability of poxvirus particles in the environment is rec...Monkeypox(mpox)outbreak in 2022 has caused more than 91,000 cases,has spread to 115 countries,regions,and territories,and has thus attracted much attention.The stability of poxvirus particles in the environment is recognized as an important factor in determining their transmission.However,few studies have investigated the persistence of poxviruses on material surfaces under various environmental conditions,and their sensitivity to biocides.Here,we systematically measured the stability of vaccinia virus(VACV)under different environmental conditions and sensitivity to inactivation methods via plaque assay,quantitative real‐time polymerase chain reaction(qPCR),and Gaussia luciferase(G‐luciferase)reporter system.The results show that VACV is stable on the surface of stainless steel,glass,clothing,plastic,towel,A4 paper,and tissue and persists much longer at 4℃ and?20℃,but is effectively inactivated by ultraviolet(UV)irradiation,heat treatment,and chemical reagents.Our study raises the awareness of long persistence of poxviruses in the environment and provides a simple solution to inactivate poxviruses using common disinfectants,which is expected to help the control and prevention of mpox virus and future poxvirus outbreaks.展开更多
Following the COVID-19 outbreak,a vast array of chlorine disinfectants was used to eliminate the virus,leading to inevitable discharge into aquatic ecosystems.These environments also contain various anthropogenic micr...Following the COVID-19 outbreak,a vast array of chlorine disinfectants was used to eliminate the virus,leading to inevitable discharge into aquatic ecosystems.These environments also contain various anthropogenic micropollutants,such as pharmaceuticals,which pose threats to the survival and activities of biological communities.Consequently,the presence of discharged chlorine disinfectants and pharmaceuticals can simultaneously impact the structure and function of aquatic ecosystems.To investigate the combined effects of chlorine disinfectants and pharmaceuticals on the periphyton and zoobenthos(Limnodrilus hoffmeisteri)community composition and function,we conducted a 12-flume reactor experiment using sodium hypochlorite and representative pharmaceuticals(abundant in the Yangtze River)as influents.Results demonstrated that the discharge of chlorine disinfectants further altered the composition of river prokaryotic communities.Eukaryotic organisms within the periphyton exhibited greater resilience to chlorine exposure compared to prokaryotic communities.Metagenomic analysis revealed that prokaryotic communities with different compositions can execute similar functions,while RNA sequencing indicated that co-exposure promoted biological processes such as focal adhesion and ribosome synthesis,but inhibited activities related to nitrogen metabolism and resistance to folate antimicrobials.Additionally,co-exposure induced oxidative stress in L.hoffmeisteri,leading to stronger environmental adaptation.展开更多
BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological ...BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.展开更多
Advanced oxidation processes (AOPs) exhibit significant potential forwater disinfection dueto their generation of large quantities of highly oxidizing free radicals. However, the neglectof viable but nonculturable (VB...Advanced oxidation processes (AOPs) exhibit significant potential forwater disinfection dueto their generation of large quantities of highly oxidizing free radicals. However, the neglectof viable but nonculturable (VBNC) cells obscures their true disinfection efficacy and potentialenvironmental health risks. Therefore, the study evaluated the disinfection effectivenessand mechanisms of typical AOPs, including Fe/H_(2)O_(2), Fe/persulfate (PS), and O_(3), fromthe perspective of the production of VBNC bacteria. The results indicate that Fe/PS exhibitsthe strongest bacterial inactivation rate (99.94%), and the cells lose their ability to reactivate.Fe/H_(2)O_(2) and O_(3) induce more cells to enter the VBNC state compared to Fe/PS. Moreover,different AOPs result in varying levels of free radical production and utilization efficiency,with SO(4)^(·−) and O_(3) exhibiting greater selectivity in deactivating bacteria comparedto HO^(·). The inhibition of VBNC bacteria production by Fe/PS treatment may be attributed tothe combined action of HO^(·) and SO(4)^(·−) on microorganisms, leading to oxidative stress andmetabolic disruption in bacteria through the inhibition of biofilm formation and aminoacyltRNAbiosynthesis (p < 0.05), thereby causing direct bacterial death rather than entry intothe VBNC state. In contrast, Fe/H_(2)O_(2) and O_(3) result in the upregulation of the metabolismof alanine, aspartate, and glutamate, as well as styrene degradation capacity by the bacteria,leading to the production of more VBNC bacteria. Overall, the study offers insights intomitigating potential biological risks in water disinfection and developing environmentallyfriendly and efficient disinfection technologies.展开更多
The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution syst...The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution system under simulated conditionswere explored.The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH_(2)Cl was higher than in the control groups.Therewas no similar phenomenon in biofilm.In thewater of reactors containing NaClO,the aphA and bla geneswere lower than in the antibiotic resistant bacteria group,while both genes were higher in the water of reactors with NH_(2)Cl than in the control group.Chloramine may promote the transfer of ARGs in the water phase.Both genes in the biofilm of the reactors containing chlorine were lower than the control group.Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm(p<0.05).The results of the sequencing assay showed that bacteria in the biofilm,in the presence of disinfectant,were primarily Gram-negative.1.0 mg/L chlorine decreased the diversity of the community in the biofilm.The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.展开更多
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st...Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.展开更多
This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters...This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections.展开更多
The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)...The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.展开更多
基金supported by the National Science Foundation of China (32001663)。
文摘Both the broad-spectrum bactericidal properties of disinfectants and the inhibitory effects of antibiotics pose potential threats to the activity,functionality,and probiotic properties of Lactid acid bacteria(LAB).Therefore,it is essential to systematically evaluate the tolerance of lactic acid bacteria to common disinfectants and antibiotics.This study assessed 60 LAB strains isolated from the fermented foods for their tolerance to seven disinfectants and nine antibiotics.The results indicated that,compared to pathogenic bacteria,most LAB exhibited stronger tolerance to disinfectants.Sub-inhibitory concentrations of disinfectants inhibited biofilm formation in most LAB,while sub-inhibitory concentrations of glutaraldehyde tended to promote biofilm formation.This suggests that commonly used disinfectants can eliminate pathogenic bacteria without killing LAB,providing guidance for disinfectant use.LAB were highly sensitive to ampicillin and chloramphenicol,while showing some tolerance to norfloxacin,polymyxin,and sulfamethoxazole.This indicates LAB have a notable antibiotic resistance profile,which includes both natural resistance characteristics and instances of acquired resistance,along with multiple drug resistance and cross-resistance between antibiotics and disinfectants.This study provides an important guidance for disinfection practices in industrial utilizing LAB,such as food and biomedicine,and offers a reference for the use of antibiotics.
文摘[Objective] This study was conducted to investigate the effects of Penicillium spp. and Trichoderma spp. on the growth of Pleurotus ostreatus (oyster mushroom) and to screen effective disinfectants to control them and other pathogenic microbes. [Method] Six strains or species of Penicilliurn and Trichoderma were inocu- lated into PDA plates growing with P. ostreatus to observe the growth of their mycelia. And the inhibitory effects of hydrogen peroxide, bromogeramine bromide, 84 disinfectant, lysol, potassium permanganate, and 75% medical alcohol on Trichoderma pleuroticola, Trichoderma viride, Trichoderma harzianum, Penicillium citrinum, Penicillium thomii and Penicillium brevicompactum were detected. [Result] Confrontation test revealed that Penicillium spp. and Trichoderma spp. competed for nutrients with P. ostreatus mycelia, antagonized against the growth of P. ostreatus mycelia, invaded and twined around P. ostreatus mycelia, and also produced toxins poisoning P. ostreatus mycelia. The six disinfectants exhibited different inhibitory effects against different species of Penicillium and Trichoderma. Among them the in- hibitory effects of bromogeramine bromide against the six species of Penicillium and Trichoderma were significantly different. However, the inhibitory effects of 3% hydrogen peroxide, 84 disinfectant, 5% lysol, potassium permanganate and 75% medical alcohol were significantly different among Penicillium spp., but did not among Tri- choderma spp. [Conclusion] Bromogeramine bromide can be used to control the bacteria and fungi in mushroom production for it has significant inhibitory effects on the six species of both Penicillium and Trichoderma.
文摘Six different kinds of non-metallic or organic disinfectants were obtained in this research study including “Neutral Electrolyzed Water”, “M22” organic disinfectant solution, Superoxy Food Wash disinfectant, Hydrogen Peroxide, Clorox Germicidal Bleach and Clidox-S. The effectiveness of these disinfectants was studied against various subtypes of avian influenza virus (AIV). The virus-disinfectant mixtures were prepared in serial dilutions of each disinfectant with a constant virus titer and incubated at ambient temperature in different time intervals for virus inactivation. The virus inactivation results were determined by virus recovery in embryonating chicken eggs. Among the six different kinds of nonmetallic disinfectants obtained for this research project, Neutral Electrolyzed Water, “M22” solution, Clorox Germicidal Bleach and Clidox-S were effectively inactivated AIV with appropriate working dilutions and reaction times. Superoxy Food Wash disinfectant and Hydrogen Peroxide were found having limited effect on virus inactivation with extended exposure times of more than 2 hours. These research findings provide scientific data to poultry industry with guidelines to select and use non-metallic organic disinfectants for poultry flock sanitation and disinfection to effectively prevent and control of avian influenza outbreaks.
文摘Objective: Infection control protocols dictate the disinfection of dentures. There are no products available which are designed for the specific use of disinfecting dentures. The objective of this study was to investigate the impact of chemical disinfectants on elastic modulus, flexural strength and color stability of denture base resins. Methods: 256 specimens from four acrylic denture base resins were manufactured. Two cold-curing denture base resins: PalaXpress (Heraeus Kulzer, Hanau, Germany), Futura Gen (Schuetz Dental, Roßbach, Germany) and two heat-curing denture base resins: Paladon 65 (Heraeus Kulzer, Hanau, Germany), FuturAcryl 2000 (Schuetz Dental, Roßbach, Germany) were used. Three chemical disinfecting agents were tested: Impresept, D050 Instru-Gen, Stammopur DR. Specimens were stored in distilled water and in chemical disinfecting agents. They were divided randomly into groups. E-Modulus and flexural strength were measured using the three-point bending test. Color changes (ΔE) were determined spectrophotometrically. Results: The disinfection agents showed no significant influence on the E-modulus compared to distilled water (Acrylic vs. distilled water from (Futura Gen) 2688.80 ± 230.78 vs. 2766.60 ± 91.22 MPa to (PalaXpress) 3004.20 ± 26.40 vs. 2851.00 ± 95.23 MPa). Flexural strength after storage in distilled water and disinfection did not differ significantly (Acrylic vs. distilled water from (Paladon65) 27.28 ± 1.30 vs. 28.42 ± 0.84 N/mm2, (p > 0.05) to (PalaXpress) 30.88 ± 0.25 vs. 29.68 ± 0.79 N/mm2, p < 0.001). Disinfection caused a significant color change with Impresept of Paladon 65 (p ≤ 0.001), FuturaAcryl 2000 with Stammopur DR and D 050 Instru-Gen (p ≤ 0.001). Conclusions: The investigated disinfection agents did not influence elastic modulus and flexural strength of denture base resins negatively. ΔE-values were in a range of 1 to 2. Thus, the detected color changes may be marginal. Clinical relevance: Single use disinfections are feasible for acrylic dentures regarding to elastic modulus and flexural strength.
基金supported by the Lithuanian Ministry of Agriculture.
文摘The aim of the study was to determine the impact of residues of detergents and disinfectants on the results of most commonly used inhibitor tests for raw milk. Microbiological test (Delvotest SP-NT) and three rapid tests (Charm 3 MRL BL/TET2, Charm ROSA MRL BL/TET and Penzym) were used in the study. Three concentrations (recommended by the manufacturer, 10 times lower and twice higher) of 36 detergents and disinfectants in raw milk were investigated. All methods did not detect concentrations of detergents and disinfectants of alkaline and acid origin 10 times lower than recommended by the manufacturer. 39% of the investigated substances of alkaline origin were detected by Delvotest SP-NT and Penzym;Charm tests showed non-typical results only. Delvotest SP-NT did not detect substances of acid origin;Penzym detected 50% of these substances, Charm tests showed only non-typical results. Delvotest SP-NT and Penzym appeared to be more sensitive to the substances used for teat hygiene and disinfection. The scope of rapid tests (receptor or enzymatic) does not cover the detection of detergent and disinfectant re- sidues in milk. However, according to the non-typical results of the test, it is possible to suspect the presence of these substances in milk. McNemar’s and Cochran’s Q tests were used for statistical analysis of the data.
基金This research was supported by the Extracurricular Scientific Research Program for Students of Sun Yat-Sen University
文摘Aim: This study aims to assess the infection risks of flashlight contamination in a stomatology hospital and compare the disinfection effectiveness of alcohol (75%) and disinfecting wipes.Background: The flashlight is a basic non-critical medical device in oral and maxillofacial surgery wards. Wounds are mostly found in oral cavities;therefore, reusable flashlights may be a potential source of nosocomial infections (NIs). However, the microbial flora present in flashlights used in hospitals has not yet been explored. Methods: This study investigated the microbial contamination of 41 flashlights used in a stomatology hospital in Guangzhou in March 2016. Results: Results indicated that 75.6%(31/41) of the flashlights had microbial contamination. Gram-positive bacteria accounted for 72.7%(24/33)of the microbial groups contaminating the flashlights, and Gram-negative bacteria (21.2%, 7/33), and fungi (6.1%, 2/33) constituted the remaining contaminants. The predominantly isolated species was Staphyloccus (66.7%, 22/33), especially Staphylococcus aureus (24.2%, 8/33). Approximately 77.3%(17/22) of the types of bacteria detected in the hands were same as those in the corresponding flashlights. Both the bacterial overstandard and S. aureus detection rates of doctors' flashlights were higher than those of nurses' flashlights (16/17 vs. 14/23, 7/17 vs. 1/23, respectively) (P < 0.05). Moreover, both disinfectants performed excellently, and their eligibility rates were not significantly different (17/17 vs. 14/14) (P>0.05). Conclusion: Flashlights are potential causes of NIs. Disinfecting flashlights could be an effective and practical infection control method.
基金Supported by the National Natural Science Foundation of China,No.81873116。
文摘BACKGROUND Misuse of disinfectants during the coronavirus disease 2019 pandemic has led to several poisoning incidents.However,there are few clinical case reports on poisoning caused by improper mixing of household disinfectants.AIM To summarize the clinical characteristics and treatment effects of chlorine poisoning caused by improper mixing of hypochlorite bleach with acidic cleaning agents.METHODS We retrospectively analyzed baseline and clinical data,clinical symptoms,and treatment methods of seven patients with chlorine poisoning who were admitted to the National Army Poisoning Treatment Center.RESULTS Among the seven patients,the average poisoning time(exposure to admission)was 57 h(4-240 h).All patients were involved in cleaning bathrooms.Chest computed tomography scans revealed bilateral lung effusions or inflammatory changes in five patients.The partial pressure of oxygen decreased in six patients,and respiratory failure occurred in one.Five patients had different degrees of increase in white blood cell count.Humidified oxygen therapy,non-invasive mechanical ventilation,anti-inflammatory corticosteroids,antioxidants,and antibiotics were administered for treatment.The average length of hospital stay was 7 d(4-9 d).All seven patients recovered and were discharged.CONCLUSION Improper mixing of household disinfectants may cause damage to the respiratory system due to chlorine poisoning.Corticosteroids may improve lung exudation in severe cases,and symptomatic supportive treatment should be performed early.
基金supported by the National Key R&D Program of China(2018YFC1200600)the grant from the State Key Laboratory of Veterinary Biotechnology Program(SKLVBP201801)the National Science and Technology Major Project of China(2018ZX10734401-018-002)。
文摘Prevention of African swine fever,a disease caused by African swine fever virus(ASFV),requires maintenance of high biosecurity standards,which principally relies on disinfection.Finding the perfect disinfectant against ASFV is difficult because of the lack of relevant data.Therefore,we aimed to find the most effective disinfectant and to optimise its concentration as well as contact time to confirm the viricidal effect against ASFV in vitro.We evaluated the viricidal activity of three concentrations each of six common disinfectants against ASFV using immersion disinfection assay(IDA)and spray disinfection assay(SDA);the concentrations of these disinfectants at which complete viral inactivation occurred were almost same as the manufacturer-recommended concentrations,but the exposure times for viral inactivation are different.The following disinfectants(assay:concentration,exposure time)showed complete inactivation:iodine and acid mixed solution(IDA/SDA:0.5%,10 min);compound potassium peroxymonosulfate(IDA:0.25%,30 min;SDA:0.25%,60 min);citric acid(IDA:0.25%,60 min;SDA:0.5%,60 min);sodium dichloroisocyanurate(IDA:0.125%,60 min;SDA:0.25%,60 min);and glutaral ang deciquam(IDA/SDA:0.2%,60 min);and deciquam(IDA/SDA:0.5%,60 min).However,in the presence of organic material contamination,disinfectants did not show a marked inactivation effect.Therefore,disinfection procedures should be performed in two steps:thorough mechanical cleaning followed by application of disinfectant.In conclusion,all the tested disinfectants can inactivate ASFV;these can be used as alternative disinfectants to enhance biosecurity.
基金Funded by the Xuhui District Medical Research Project(No.SHXH201913)the Clinical Research on Health Industry of Shanghai Municipal Health Commission(No.202040085)+1 种基金the Shanghai Medical Key Specialty(No.ZK2019B12)the National Natural Science Foundation of China(No.32000945)。
文摘To investigate the corrosion behaviors and antibacterial effects of sodium hypochlorite(NaClO)and hydrogen peroxide silver ion(HPSI)disinfectants with different concentrations against dental unit waterlines and provide guidance and reference for the use of chemical disinfectants,polyurethane tubes were immersed in ultrapure water(control group),0.1%NaClO,0.5%NaClO,1.0%NaClO,2.5%HPSI,5.0%HPSI,and 10%HPSI solutions for 6,12,and 18 weeks.Contact angles and Fourier transform infrared spectra were detected.Surface morphologies were observed using scanning electron microscopy and antibacterial activity was evaluated using Gram-positive Staphylococcus aureus(S.aureus).The results showed that sodium hypochlorite and hydrogen peroxide silver ion disinfectants presented good antibacterial activity against S.aureus.However,sodium hypochlorite could cause serious damage to the water pipes where corrosion pits and cracks were observed,and increasing the concentration of sodium hypochlorite could accelerate the corrosion process.Hydrogen peroxide silver ion disinfectants had no obvious damage to the water pipes.Therefore,hydrogen peroxide silver ion disinfectants are recommended to use for controlling bacterial infection in dental unit waterlines which can reduce the damage to the water pipes.
基金Sponsored by the Foundation of the Key Science and Technology Projections of Harbin (Grant No. 2003AA4CS183).
文摘The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5 mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn’t reach the effect of chlorine dioxide.
文摘In clinical practice,the important hygienic prevention of bacterial pathogen spread is disinfection of potentially contaminated area.Benzalkonium bromide and chlorhexidine acetate are commonly used disinfectants with a broad spectrum of antimicrobial effect.It is vital to inhibit the spread of pathogen in hospital.However,a large number of pathogens with the decreased antiseptic susceptibility have been isolated from clinical samples which showed an increased minimal inhibitory concentration(MIC)against those antiseptics.These resistant pathogens are the major causes for nosocomial crossinfections in hospital.The present study demonstrated the utility of Oxford plate assay system in determining the potential disinfectant resistance of bacteria.The microbiological assay is based on the inhibitory effect of tested disinfectants upon the strains of Staphylococcus aureus and Escherichia coli.Statistical analysis of the bioassay results indicated the linear correlation(r=-0.87-0.99,P<0.01)between the diameter of growth inhibition zone and the log dosage of the tested disinfectants.Moreover,comparison of inhibitory efficacy of benzalkonium bromide upon 29 S.aureus strains isolated from clinical samples by both Oxford plate method and broth dilution method showed that the diameter of growth inhibition zone has significantly negative correlation with the minimal inhibitory concentration(MIC)(r=-0.574,P<0.001).These results suggest that the Oxford plate is a simple and time-saving method in detecting potential clinical disinfectant resistance and its usefulness for routine surveillance of pathogenic resistance to disinfectants warrants further investigation.
文摘Intensive application of chlorine-based disinfectants driven by the COVID-19 pandemic was suspected to be detrimental to receiving water ecosystems,but with little field evidence.We characterized the occurrences of typical disinfectants and microeukaryotic communities in surface waters associated with three wastewater treatment plants(WWTP)-river systems one year after the lockdown in Wuhan,China.Trihalomethanes(THMs)declined from summer 2020(0.01–1.82μg/L)to summer 2021(0.01–0.95μg/L),whereas quaternary ammonium salts(QAs)increased from summer 2020(0.53–6.35 ng/L)to summer 2021(8.49–191 ng/L).Biodiversity monitoring with environmental DNA(eDNA)revealed significant temporal variation in microeukaryotic community composition.The monitored disinfectants were correlated with some eukaryotic communities as demonstrated by redundancy analysis.For example,QAs were positively related to Cryptophyta relative abundance,but negatively related to Rotifera relative abundance.A microeukaryote-based multimetric index indicated ecological impairment near the Han River WWTP outlet in 2020.Our findings indicate the influence of heavily used disinfectants on river microeukaryotic communities,and the usefulness of assessing mid-term ecological risks from disinfectants in the post COVID-19 era.
基金supported by funds from the National Key R&D Program of China (2022YFE0203100)the CAMS Innovation Fund for Medical Sciences (CIFMS 2021-I2M-1-038 and CIFMS 2022-I2M-1-021)the National Natural Science Foundation of China (82271802,82241075,and 82072288).
文摘Monkeypox(mpox)outbreak in 2022 has caused more than 91,000 cases,has spread to 115 countries,regions,and territories,and has thus attracted much attention.The stability of poxvirus particles in the environment is recognized as an important factor in determining their transmission.However,few studies have investigated the persistence of poxviruses on material surfaces under various environmental conditions,and their sensitivity to biocides.Here,we systematically measured the stability of vaccinia virus(VACV)under different environmental conditions and sensitivity to inactivation methods via plaque assay,quantitative real‐time polymerase chain reaction(qPCR),and Gaussia luciferase(G‐luciferase)reporter system.The results show that VACV is stable on the surface of stainless steel,glass,clothing,plastic,towel,A4 paper,and tissue and persists much longer at 4℃ and?20℃,but is effectively inactivated by ultraviolet(UV)irradiation,heat treatment,and chemical reagents.Our study raises the awareness of long persistence of poxviruses in the environment and provides a simple solution to inactivate poxviruses using common disinfectants,which is expected to help the control and prevention of mpox virus and future poxvirus outbreaks.
基金supported by the National Natural Science Foundation of China(Nos.52293442,52300249,and 52388101)the Scientific Research Project of China Three Gorges Corporation(No.201903139).
文摘Following the COVID-19 outbreak,a vast array of chlorine disinfectants was used to eliminate the virus,leading to inevitable discharge into aquatic ecosystems.These environments also contain various anthropogenic micropollutants,such as pharmaceuticals,which pose threats to the survival and activities of biological communities.Consequently,the presence of discharged chlorine disinfectants and pharmaceuticals can simultaneously impact the structure and function of aquatic ecosystems.To investigate the combined effects of chlorine disinfectants and pharmaceuticals on the periphyton and zoobenthos(Limnodrilus hoffmeisteri)community composition and function,we conducted a 12-flume reactor experiment using sodium hypochlorite and representative pharmaceuticals(abundant in the Yangtze River)as influents.Results demonstrated that the discharge of chlorine disinfectants further altered the composition of river prokaryotic communities.Eukaryotic organisms within the periphyton exhibited greater resilience to chlorine exposure compared to prokaryotic communities.Metagenomic analysis revealed that prokaryotic communities with different compositions can execute similar functions,while RNA sequencing indicated that co-exposure promoted biological processes such as focal adhesion and ribosome synthesis,but inhibited activities related to nitrogen metabolism and resistance to folate antimicrobials.Additionally,co-exposure induced oxidative stress in L.hoffmeisteri,leading to stronger environmental adaptation.
基金Supported by Beijing Ditan Hospital Affiliated to Capital Medical University“Sailing Plan”,No.DTQH-202405.
文摘BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.
基金supported by Shandong Provincial Natural Science Foundation,China(Nos.ZR2020ZD34 and ZR2023YQ031)the National Natural Science Foundation of China(Nos.42077391 and 42377428)the Instrument Improvement Funds of ShandongUniversity Public Technology Platform(No.ts20230108).
文摘Advanced oxidation processes (AOPs) exhibit significant potential forwater disinfection dueto their generation of large quantities of highly oxidizing free radicals. However, the neglectof viable but nonculturable (VBNC) cells obscures their true disinfection efficacy and potentialenvironmental health risks. Therefore, the study evaluated the disinfection effectivenessand mechanisms of typical AOPs, including Fe/H_(2)O_(2), Fe/persulfate (PS), and O_(3), fromthe perspective of the production of VBNC bacteria. The results indicate that Fe/PS exhibitsthe strongest bacterial inactivation rate (99.94%), and the cells lose their ability to reactivate.Fe/H_(2)O_(2) and O_(3) induce more cells to enter the VBNC state compared to Fe/PS. Moreover,different AOPs result in varying levels of free radical production and utilization efficiency,with SO(4)^(·−) and O_(3) exhibiting greater selectivity in deactivating bacteria comparedto HO^(·). The inhibition of VBNC bacteria production by Fe/PS treatment may be attributed tothe combined action of HO^(·) and SO(4)^(·−) on microorganisms, leading to oxidative stress andmetabolic disruption in bacteria through the inhibition of biofilm formation and aminoacyltRNAbiosynthesis (p < 0.05), thereby causing direct bacterial death rather than entry intothe VBNC state. In contrast, Fe/H_(2)O_(2) and O_(3) result in the upregulation of the metabolismof alanine, aspartate, and glutamate, as well as styrene degradation capacity by the bacteria,leading to the production of more VBNC bacteria. Overall, the study offers insights intomitigating potential biological risks in water disinfection and developing environmentallyfriendly and efficient disinfection technologies.
基金supported by the Natural Science Foundation of China(No.52070145,51778453).
文摘The effects of disinfectants and plasmid-based antibiotic resistance genes(ARGs)on the growth of microorganisms and the plasmid-mediated transfer of ARGs in the water and biofilm of the drinkingwater distribution system under simulated conditionswere explored.The heterotrophic plate count of the water in reactors with 0.1 mg/L NaClO and NH_(2)Cl was higher than in the control groups.Therewas no similar phenomenon in biofilm.In thewater of reactors containing NaClO,the aphA and bla geneswere lower than in the antibiotic resistant bacteria group,while both genes were higher in the water of reactors with NH_(2)Cl than in the control group.Chloramine may promote the transfer of ARGs in the water phase.Both genes in the biofilm of the reactors containing chlorine were lower than the control group.Correlation analysis between ARGs and water quality parameters revealed that the copy numbers of the aphA gene were significantly positively correlated with the copy numbers of the bla gene in water and significantly negatively correlated in biofilm(p<0.05).The results of the sequencing assay showed that bacteria in the biofilm,in the presence of disinfectant,were primarily Gram-negative.1.0 mg/L chlorine decreased the diversity of the community in the biofilm.The relative abundance of some bacteria that may undergo transfer increased in the biofilm of the reactor containing 0.1 mg/L chlorine.
文摘Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.
文摘This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections.
基金supported in part by the National Natural Science Foundation of China(12174366)Fundamental Re-search Funds for the Central Universities(WK3450000005)the Anhui Provincial Natural Science Foundation(2108085MC93).
文摘The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.