The early and precise identification of Alzheimer’s Disease(AD)continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases.This study pre...The early and precise identification of Alzheimer’s Disease(AD)continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases.This study presents a novel Deformable Attention Vision Transformer(DA-ViT)architecture that integrates deformable Multi-Head Self-Attention(MHSA)with a Multi-Layer Perceptron(MLP)block for efficient classification of Alzheimer’s disease(AD)using Magnetic resonance imaging(MRI)scans.In contrast to traditional vision transformers,our deformable MHSA module preferentially concentrates on spatially pertinent patches through learned offset predictions,markedly diminishing processing demands while improving localized feature representation.DA-ViT contains only 0.93 million parameters,making it exceptionally suitable for implementation in resource-limited settings.We evaluate the model using a class-imbalanced Alzheimer’s MRI dataset comprising 6400 images across four categories,achieving a test accuracy of 80.31%,a macro F1-score of 0.80,and an area under the receiver operating characteristic curve(AUC)of 1.00 for the Mild Demented category.Thorough ablation studies validate the ideal configuration of transformer depth,headcount,and embedding dimensions.Moreover,comparison research indicates that DA-ViT surpasses state-of-theart pre-trained Convolutional Neural Network(CNN)models in terms of accuracy and parameter efficiency.展开更多
This paper introduces a novel ensemble Deep learning(DL)-based Multi-Label Retinal Disease Classification(MLRDC)system,known for its high accuracy and efficiency.Utilising a stacking ensemble approach,and integrating ...This paper introduces a novel ensemble Deep learning(DL)-based Multi-Label Retinal Disease Classification(MLRDC)system,known for its high accuracy and efficiency.Utilising a stacking ensemble approach,and integrating DenseNet201,EfficientNetB4,EfficientNetB3 and EfficientNetV2S models,exceptional performance in retinal disease classification is achieved.The proposed MLRDC model,leveraging DL as the meta-model,outperforms individual base detectors,with DenseNet201 and EfficientNetV2S achieving an accuracy of 96.5%,precision of 98.6%,recall of 97.1%,and F1 score of 97.8%.Weighted multilabel classifiers in the ensemble exhibit an average accuracy of 90.6%,precision of 98.3%,recall of 91.2%,and F1 score of 94.6%,whereas unweighted models achieve an average accuracy of 90%,precision of 98.6%,recall of 93.1%,and F1 score of 95.7%.Employing Logistic Regression(LR)as the meta-model,the proposed MLRDC system achieves an accuracy of 93.5%,precision of 98.2%,recall of 93.9%,and F1 score of 96%,with a minimal loss of 0.029.These results highlight the superiority of the proposed model over benchmark state-of-the-art ensembles,emphasising its practical applicability in medical image classification.展开更多
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases...Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases.However,current DL methods often require substantial computational resources,hindering their application on resource-constrained devices.We propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this.The Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for classification.The proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet approach.More specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato diseases.The model could be used on mobile platforms because it is lightweight and designed with fewer layers.Tomato farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.展开更多
The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods.Conventional approaches rely on visual examination by experts to d...The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods.Conventional approaches rely on visual examination by experts to detect infected palm leaves,which is time intensive and susceptible to mistakes.This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability.The system leverages pretrained convolutional neural network architectures(InceptionV3,DenseNet,and MobileNet)to extract and examine leaf characteristics for classification purposes.A publicly accessible dataset comprising multiple classes of diseased and healthy date palm leaf samples was used for the training and assessment.Data augmentation techniques were implemented to enhance the dataset and improve model resilience.In addition,Synthetic Minority Oversampling Technique(SMOTE)was applied to address class imbalance and further improve the classification performance.The system was trained and evaluated using this dataset,and two of the models,DenseNet and MobileNet,achieved classification accuracies greater than 95%.MobileNetV2 emerged as the top-performing model among those assessed,achieving an overall accuracy of 96.99%and macro-average F1-score of 0.97.All nine categories of date palm leaf conditions were consistently and accurately identified,showing exceptional precision and dependability.Comparative experiments were conducted to assess the performance of the Convolutional Neural Network(CNN)architectures and demonstrate their potential for scalable and automated disease detection.This system has the potential to serve as a valuable agricultural tool for assisting in disease management and monitoring date palm cultivation.展开更多
Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of t...Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of the wide range of possible diseases and their effects on the plant and the crop.This study presents an adaptive histogram-based method for solving this problem.Our method describe is domain independent in the sense that it can be easily and efficiently adapted to other similar smart agriculture tasks.The approach explores colour spaces,namely,Red,Green,and Blue along with Grey.The histograms of colour spaces and grey space are analysed based on the notion that as the disease changes,the colour also changes.The proximity between the histograms of grey images with individual colour spaces is estimated to find the closeness of images.Since the grey image is the average of colour spaces(R,G,and B),it can be considered a reference image.For estimating the distance between grey and colour spaces,the proposed approach uses a Chi-Square distance measure.Further,the method uses an Artificial Neural Network for classification.The effectiveness of our approach is demonstrated by testing on a dataset of fruit and leaf images affected by different diseases.The results show that the method outperforms existing techniques in terms of average classification rate.展开更多
Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accu...Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices.展开更多
In recent years,the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits.This in turn has helped in improving the quality and producti...In recent years,the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits.This in turn has helped in improving the quality and production of vegetables and fruits.Citrus fruits arewell known for their taste and nutritional values.They are one of the natural and well known sources of vitamin C and planted worldwide.There are several diseases which severely affect the quality and yield of citrus fruits.In this paper,a new deep learning based technique is proposed for citrus disease classification.Two different pre-trained deep learning models have been used in this work.To increase the size of the citrus dataset used in this paper,image augmentation techniques are used.Moreover,to improve the visual quality of images,hybrid contrast stretching has been adopted.In addition,transfer learning is used to retrain the pre-trainedmodels and the feature set is enriched by using feature fusion.The fused feature set is optimized using a meta-heuristic algorithm,the Whale Optimization Algorithm(WOA).The selected features are used for the classification of six different diseases of citrus plants.The proposed technique attains a classification accuracy of 95.7%with superior results when compared with recent techniques.展开更多
Objective:To classify the subtypes of metabolic-associated fatty liver disease(MAFLD)and provide new insights into the heterogeneity of MAFLD.Methods:Electronic medical records(EMR)of MAFLD diagnosed in accordance wit...Objective:To classify the subtypes of metabolic-associated fatty liver disease(MAFLD)and provide new insights into the heterogeneity of MAFLD.Methods:Electronic medical records(EMR)of MAFLD diagnosed in accordance with the diagnostic criteria of Hubei Provincial Hospital of Traditional Chinese Medicine from 2016-2020 were included in the study.for physical annotation,and the data on each clinical phenotype was normalized according to corresponding aspirational standards.The MAFLD heterogeneous medical record network(HEMnet)was constructed using sex,age,disease diagnosis,symptoms,and Western medicine prescriptions as nodes and the co-occurrence times between phenotypes as edges.K-means clustering was used for disease classification.Relative risk(RR)was used to assess the specificity of each phenotype.Statistical methods were used to compare differences in laboratory indicators among subtypes.Results:A total of patients(12,626)with a mean age of 55.02(±14.21)years were included in the study.MAFLD can be divided into five subtypes:digestive diseases(C0),mental disorders and gynecological diseases(C1),chronic liver diseases and decompensated complications(C2),diabetes mellitus and its complications(C3),and immune joint system diseases(C4).Conclusions:Patients with MAFLD experience various symptoms and complications.The classification of MAFLD based on the HEMnet method is highly reliable.展开更多
Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the numbe...Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the number of ophthalmic diseases that can be classified is relatively small.Moreover,imbalanced data distribution of different ophthalmic diseases is not taken into consideration,which limits the application of deep learning techniques in realistic clinical scenes.In this paper,we propose a Multimodal Multi-disease Long-tailed Classification Network(M^(2)LC-Net)in response to the challenges mentioned above.M^(2)LC-Net leverages ResNet18-CBAM to extract features from fundus images and Optical Coherence Tomography(OCT)images,respectively,and conduct feature fusion to classify 11 common ophthalmic diseases.Moreover,Class Activation Mapping(CAM)is employed to visualize each mode to improve interpretability of M^(2)LC-Net.We conduct comprehensive experiments on realistic dataset collected from a Grade III Level A ophthalmology hospital in China,including 34,396 images of 11 disease labels.Experimental results demonstrate effectiveness of our proposed model M^(2)LC-Net.Compared with the stateof-the-art,various performance metrics have been improved significantly.Specifically,Cohen’s kappa coefficient κ has been improved by 3.21%,which is a remarkable improvement.展开更多
This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,t...This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks,residual connections,and dense residual connections applied without pre-training to the PlantVillage dataset.The novel contributions of this work include the proposal of a smart monitor-ing framework outline;responsible for detection and classification of ailments via the devised lightweight net-works as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system.Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy,precision,recall,and F1-scores of 96.75%,97.62%,97.59%,and 97.58%respectively,while consisting of only 228,479 model parameters.These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset,of which the proposed down-scaled lightweight models were capable of performing equally to,if not better than many large-scale counterparts with drastically less com-putational requirements.展开更多
The fungal diseases in banana cause major yield losses for millions of farmers around the globe.Early detection of these diseases helps the farmers to devise successful management strategies.The characteristic leaf bl...The fungal diseases in banana cause major yield losses for millions of farmers around the globe.Early detection of these diseases helps the farmers to devise successful management strategies.The characteristic leaf blade discoloration pattern at the earlier stages of infection could be used to understand the onset of each disease.This paper demonstrates a methodology for classification of three important foliar diseases in banana,using local texture features.The disease affected regions are identified using image enhancement and color segmentation.Segmented images are converted to transform domain using three image transforms(DWT,DTCWT and Ranklet transform).Feature vector is extracted from transform domain images using LBP and its variants(ELBP,MeanELBP and MedianELBP).These texture based features are applied to five popular image classifiers and comparative performance analysis is done using ten-fold cross validation procedure.Experimental results showed best classification performance for ELBP features extracted from DTCWT domain(accuracy 95.4%,precision 93.2%,sensitivity 93.0%,Fscore 93.0%and specificity 96.4%).Compared with traditional methods of feature extraction,this novel method of fusing DTCWT with ELBP features has attained high degree of accuracy in precisely detecting and classifying fungal diseases in banana at an early stage.展开更多
This study aimed to evaluate the sensitivity and specificity of the new clinical diagnostic and classification criteria for Kashin-Beck disease (KBD) using six clinical markers: flexion of the distal part of finger...This study aimed to evaluate the sensitivity and specificity of the new clinical diagnostic and classification criteria for Kashin-Beck disease (KBD) using six clinical markers: flexion of the distal part of fingers, deformed fingers, enlarged finger joints, shortened fingers, squat down, and dwarfism. One-third of the total population in Linyou County was sampled by stratified random sampling.展开更多
BACKGROUND with the widespread application of computer network systems in the medical field,the plan-do-check-action(PDCA)and the international classification of diseases tenth edition(ICD-10)coding system have also a...BACKGROUND with the widespread application of computer network systems in the medical field,the plan-do-check-action(PDCA)and the international classification of diseases tenth edition(ICD-10)coding system have also achieved favorable results in clinical medical record management.However,research on their combined application is relatively lacking.Objective:it was to explore the impact of network systems and PDCA management mode on ICD-10 encoding.Material and Method:a retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.AIM To study the adoption of network and PDCA in the ICD-10.METHODS A retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.RESULTS In the 3,6,12,18,and 24 months of PDCA cycle management mode,the coding accuracy and medical record completion rate were higher,and the coding time was lower in the observation group as against the controls(P<0.05).The satisfaction of coders(80.22%vs 53.45%)and patients(84.89%vs 51.72%)in the observation group was markedly higher as against the controls(P<0.05).CONCLUSION The combination of computer networks and PDCA can improve the accuracy,efficiency,completion rate,and satisfaction of ICD-10 coding.展开更多
Citrus fruit crops are among the world’s most important agricultural products,but pests and diseases impact their cultivation,resulting in yield and quality losses.Computer vision and machine learning have been widel...Citrus fruit crops are among the world’s most important agricultural products,but pests and diseases impact their cultivation,resulting in yield and quality losses.Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade,allowing for early disease detection and improving agricultural production.This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning(DL)model,which improved accuracy while decreasing computational complexity.The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy.Using transfer learning,this study successfully proposed a Convolutional Neural Network(CNN)-based pre-trained model(EfficientNetB3,ResNet50,MobiNetV2,and InceptionV3)for the identification and categorization of citrus plant diseases.To evaluate the architecture’s performance,this study discovered that transferring an EfficientNetb3 model resulted in the highest training,validating,and testing accuracies,which were 99.43%,99.48%,and 99.58%,respectively.In identifying and categorizing citrus plant diseases,the proposed CNN model outperforms other cuttingedge CNN model architectures developed previously in the literature.展开更多
As nearly half of the people in the world live on rice, so the rice leaf disease detection is very important for our agricultural sector. Many researchers worked on this problem and they achieved different results acc...As nearly half of the people in the world live on rice, so the rice leaf disease detection is very important for our agricultural sector. Many researchers worked on this problem and they achieved different results according to their applied techniques. In this paper, we applied AlexNet technique to detect the three prevalence rice leaf diseases termed as bacterial blight, brown spot as well as leaf smut and got a remarkable outcome rather than the previous works. AlexNet is a special type of classification technique of deep learning. This paper shows more than 99% accuracy due to adjusting an efficient technique and image augmentation.展开更多
A brain tumor is the uncharacteristic progression of tissues in the brain.These are very deadly,and if it is not diagnosed at an early stage,it might shorten the affected patient’s life span.Hence,their classificatio...A brain tumor is the uncharacteristic progression of tissues in the brain.These are very deadly,and if it is not diagnosed at an early stage,it might shorten the affected patient’s life span.Hence,their classification and detection play a critical role in treatment.Traditional Brain tumor detection is done by biopsy which is quite challenging.It is usually not preferred at an early stage of the disease.The detection involvesMagneticResonance Imaging(MRI),which is essential for evaluating the tumor.This paper aims to identify and detect brain tumors based on their location in the brain.In order to achieve this,the paper proposes a model that uses an extended deep Convolutional Neural Network(CNN)named Contour Extraction based Extended EfficientNet-B0(CE-EEN-B0)which is a feed-forward neural network with the efficient net layers;three convolutional layers and max-pooling layers;and finally,the global average pooling layer.The site of tumors in the brain is one feature that determines its effect on the functioning of an individual.Thus,this CNN architecture classifies brain tumors into four categories:No tumor,Pituitary tumor,Meningioma tumor,andGlioma tumor.This network provides an accuracy of 97.24%,a precision of 96.65%,and an F1 score of 96.86%which is better than already existing pre-trained networks and aims to help health professionals to cross-diagnose an MRI image.This model will undoubtedly reduce the complications in detection and aid radiologists without taking invasive steps.展开更多
In this editorial we comment on the article by Pacheco et al published in a recent issue of the World Journal of Gastroenterology.We focus specifically on the burden of illness associated with perianal fistulizing Cr...In this editorial we comment on the article by Pacheco et al published in a recent issue of the World Journal of Gastroenterology.We focus specifically on the burden of illness associated with perianal fistulizing Crohn’s disease(PFCD)and the diagnostic and therapeutic challenges in the management of this condition.Evol-ving evidence has shifted the diagnostic framework for PFCD from anatomical classification systems,to one that is more nuanced and patient-focused to drive ongoing decision making.This editorial aims to reflect on these aspects to help clinicians face the challenge of PFCD in day-to-day clinical practice.展开更多
In ophthalmology,retinal optical coherence tomography(OCT)images with noticeable structural features help identify human eyes as healthy or diseased.The recently hot arti ficial intelligence(AI)realized this recogniti...In ophthalmology,retinal optical coherence tomography(OCT)images with noticeable structural features help identify human eyes as healthy or diseased.The recently hot arti ficial intelligence(AI)realized this recognition process automatically.However,speckle noise in the original retinal OCT image reduces the accuracy of disease classi fication.This study presents a timesaving approach based on deep learning to improve classi fication accuracy by removing the noise from the original dataset.Firstly,four pre-trained convolutional neural networks(CNNs)from the ImageNet Large Scale Visual Recognition Challenge(ILSVRC)were trained to classify the original images into two categories:The noise reduction required(NRR)and the noise-free(NF)images.Among the CNNs,VGG19 BN performed best with 98%accuracy and 99%recall.Then,we used the block-matching and 3D filtering(BM3D)algorithm to denoise the NRR images.Those noise-removed NRR and the NF images form the processed dataset.The quality of images in the dataset is prominently ameliorated after denoising,which is valid to improve the models'performance.The original and processed datasets were tested on the four pre-trained CNNs to evaluate the effectiveness of our proposed approach.We have compared the CNNs,and the results show the performance of the CNNs trained with the processed dataset is improved by an average of 2.04%,5.19%,and 5.10%under overall accuracy(OA),Macro F1-score,and Micro F1-score,respectively.Especially for DenseNet161,the OA is improved to 98.14%.Our proposed method demonstrates its effectiveness in improving classi fication accuracy and opens a new solution to reduce denoising time-consuming for large datasets.展开更多
Objective: to explore the distribution of hospitalization expenses of traditional Chinese medicine in the treatment of lumbar diseases. Methods: the first page information of inpatients' medical records in a tradi...Objective: to explore the distribution of hospitalization expenses of traditional Chinese medicine in the treatment of lumbar diseases. Methods: the first page information of inpatients' medical records in a traditional Chinese medicine hospital was retrieved, and effective samples were selected according to the inclusion criteria (disease definition) and exclusion criteria. Excel data perspective was used to analyze the hospitalization expenses and their composition of the sample data. According to ICD-10 International classification of diseases, the sample data were counted and analyzed by spss21 software. Results: the results of correspondence analysis between hospitalization expenses and age and payment mode showed that there was a strong correlation between the distribution of hospitalization expenses of elderly patients and high and low expenses;the hospitalization expenses of urban employees are high, and the hospitalization expenses of urban residents are very low. Conclusion: through the structural analysis of hospitalization expenses, it is concluded that patients with lumbar diseases should not only treat the disease itself, but also integrate the influencing factors of patients themselves and the outside world, formulate a more suitable diagnosis and treatment plan and carry out long-term TCM intervention.展开更多
In 2018,the 11^(th) Edition of the International Classification of Diseases(ICD-11)defined a diagnostic code list for standard traditional medicine(TM)conditions.The codes improve patient safety by providing more comp...In 2018,the 11^(th) Edition of the International Classification of Diseases(ICD-11)defined a diagnostic code list for standard traditional medicine(TM)conditions.The codes improve patient safety by providing more comprehensive and accurate medical records for hospitals in the Western Pacific Region.In these facilities,TM is often a standard of care for those populations.In several mainstream media sources,writers are circumventing evidence-based peer-reviewed medical literature by unduly influencing public opinion and,in this case,against the new ICD-11 codes.The dangers imposed by the transgression of popular writing onto the discipline of peer-reviewed works are present since best practices in medical record-keeping will fail without the inclusion of TM in the ICD-11 codes.Such failures directly affect the health of the patients and policymakers in regions where TM and conventional medicine are combined.This article investigates the boundaries between substantial evidence and popular opinion.In this era where media is used to manipulate evidence,the reader’s use of sound judgment and critical thought are thwarted.This article also challenges three controversial themes in pop literature,including the threat to endangered species,increased patient risk,and contaminants in the TM.These themes are made without evidence and are,in fact,of flawed logic.There is no reason to assume that improved medical record-keeping and knowledge of patient cases increase risks.展开更多
基金Prince Sattambin Abdulaziz University for funding this research work through the project number(PSAU/2025/R/1446).
文摘The early and precise identification of Alzheimer’s Disease(AD)continues to pose considerable clinical difficulty due to subtle structural alterations and overlapping symptoms across the disease phases.This study presents a novel Deformable Attention Vision Transformer(DA-ViT)architecture that integrates deformable Multi-Head Self-Attention(MHSA)with a Multi-Layer Perceptron(MLP)block for efficient classification of Alzheimer’s disease(AD)using Magnetic resonance imaging(MRI)scans.In contrast to traditional vision transformers,our deformable MHSA module preferentially concentrates on spatially pertinent patches through learned offset predictions,markedly diminishing processing demands while improving localized feature representation.DA-ViT contains only 0.93 million parameters,making it exceptionally suitable for implementation in resource-limited settings.We evaluate the model using a class-imbalanced Alzheimer’s MRI dataset comprising 6400 images across four categories,achieving a test accuracy of 80.31%,a macro F1-score of 0.80,and an area under the receiver operating characteristic curve(AUC)of 1.00 for the Mild Demented category.Thorough ablation studies validate the ideal configuration of transformer depth,headcount,and embedding dimensions.Moreover,comparison research indicates that DA-ViT surpasses state-of-theart pre-trained Convolutional Neural Network(CNN)models in terms of accuracy and parameter efficiency.
文摘This paper introduces a novel ensemble Deep learning(DL)-based Multi-Label Retinal Disease Classification(MLRDC)system,known for its high accuracy and efficiency.Utilising a stacking ensemble approach,and integrating DenseNet201,EfficientNetB4,EfficientNetB3 and EfficientNetV2S models,exceptional performance in retinal disease classification is achieved.The proposed MLRDC model,leveraging DL as the meta-model,outperforms individual base detectors,with DenseNet201 and EfficientNetV2S achieving an accuracy of 96.5%,precision of 98.6%,recall of 97.1%,and F1 score of 97.8%.Weighted multilabel classifiers in the ensemble exhibit an average accuracy of 90.6%,precision of 98.3%,recall of 91.2%,and F1 score of 94.6%,whereas unweighted models achieve an average accuracy of 90%,precision of 98.6%,recall of 93.1%,and F1 score of 95.7%.Employing Logistic Regression(LR)as the meta-model,the proposed MLRDC system achieves an accuracy of 93.5%,precision of 98.2%,recall of 93.9%,and F1 score of 96%,with a minimal loss of 0.029.These results highlight the superiority of the proposed model over benchmark state-of-the-art ensembles,emphasising its practical applicability in medical image classification.
基金thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/3)funded by Princess Nourah bint Abdulrahman University Researchers.Supporting Project Number(PNURSP2023R409),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases.However,current DL methods often require substantial computational resources,hindering their application on resource-constrained devices.We propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this.The Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for classification.The proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet approach.More specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato diseases.The model could be used on mobile platforms because it is lightweight and designed with fewer layers.Tomato farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application.
基金funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R821),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The precise identification of date palm tree diseases is essential for maintaining agricultural productivity and promoting sustainable farming methods.Conventional approaches rely on visual examination by experts to detect infected palm leaves,which is time intensive and susceptible to mistakes.This study proposes an automated leaf classification system that uses deep learning algorithms to identify and categorize diseases in date palm tree leaves with high precision and dependability.The system leverages pretrained convolutional neural network architectures(InceptionV3,DenseNet,and MobileNet)to extract and examine leaf characteristics for classification purposes.A publicly accessible dataset comprising multiple classes of diseased and healthy date palm leaf samples was used for the training and assessment.Data augmentation techniques were implemented to enhance the dataset and improve model resilience.In addition,Synthetic Minority Oversampling Technique(SMOTE)was applied to address class imbalance and further improve the classification performance.The system was trained and evaluated using this dataset,and two of the models,DenseNet and MobileNet,achieved classification accuracies greater than 95%.MobileNetV2 emerged as the top-performing model among those assessed,achieving an overall accuracy of 96.99%and macro-average F1-score of 0.97.All nine categories of date palm leaf conditions were consistently and accurately identified,showing exceptional precision and dependability.Comparative experiments were conducted to assess the performance of the Convolutional Neural Network(CNN)architectures and demonstrate their potential for scalable and automated disease detection.This system has the potential to serve as a valuable agricultural tool for assisting in disease management and monitoring date palm cultivation.
文摘Disease identification for fruits and leaves in the field of agriculture is important for estimating production,crop yield,and earnings for farmers.In the specific case of pomegranates,this is challenging because of the wide range of possible diseases and their effects on the plant and the crop.This study presents an adaptive histogram-based method for solving this problem.Our method describe is domain independent in the sense that it can be easily and efficiently adapted to other similar smart agriculture tasks.The approach explores colour spaces,namely,Red,Green,and Blue along with Grey.The histograms of colour spaces and grey space are analysed based on the notion that as the disease changes,the colour also changes.The proximity between the histograms of grey images with individual colour spaces is estimated to find the closeness of images.Since the grey image is the average of colour spaces(R,G,and B),it can be considered a reference image.For estimating the distance between grey and colour spaces,the proposed approach uses a Chi-Square distance measure.Further,the method uses an Artificial Neural Network for classification.The effectiveness of our approach is demonstrated by testing on a dataset of fruit and leaf images affected by different diseases.The results show that the method outperforms existing techniques in terms of average classification rate.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices.
文摘In recent years,the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits.This in turn has helped in improving the quality and production of vegetables and fruits.Citrus fruits arewell known for their taste and nutritional values.They are one of the natural and well known sources of vitamin C and planted worldwide.There are several diseases which severely affect the quality and yield of citrus fruits.In this paper,a new deep learning based technique is proposed for citrus disease classification.Two different pre-trained deep learning models have been used in this work.To increase the size of the citrus dataset used in this paper,image augmentation techniques are used.Moreover,to improve the visual quality of images,hybrid contrast stretching has been adopted.In addition,transfer learning is used to retrain the pre-trainedmodels and the feature set is enriched by using feature fusion.The fused feature set is optimized using a meta-heuristic algorithm,the Whale Optimization Algorithm(WOA).The selected features are used for the classification of six different diseases of citrus plants.The proposed technique attains a classification accuracy of 95.7%with superior results when compared with recent techniques.
基金supported by grants from the Key project Natural Science Foundation of Hubei Province(No.2020CFA023)Project of the State Administration of Traditional Chinese Medicine(No Z155080000004):Key Laboratory of Liver and Kidney Treatment of Chronic Liver Diseases.
文摘Objective:To classify the subtypes of metabolic-associated fatty liver disease(MAFLD)and provide new insights into the heterogeneity of MAFLD.Methods:Electronic medical records(EMR)of MAFLD diagnosed in accordance with the diagnostic criteria of Hubei Provincial Hospital of Traditional Chinese Medicine from 2016-2020 were included in the study.for physical annotation,and the data on each clinical phenotype was normalized according to corresponding aspirational standards.The MAFLD heterogeneous medical record network(HEMnet)was constructed using sex,age,disease diagnosis,symptoms,and Western medicine prescriptions as nodes and the co-occurrence times between phenotypes as edges.K-means clustering was used for disease classification.Relative risk(RR)was used to assess the specificity of each phenotype.Statistical methods were used to compare differences in laboratory indicators among subtypes.Results:A total of patients(12,626)with a mean age of 55.02(±14.21)years were included in the study.MAFLD can be divided into five subtypes:digestive diseases(C0),mental disorders and gynecological diseases(C1),chronic liver diseases and decompensated complications(C2),diabetes mellitus and its complications(C3),and immune joint system diseases(C4).Conclusions:Patients with MAFLD experience various symptoms and complications.The classification of MAFLD based on the HEMnet method is highly reliable.
基金the National Natural Science Foundation of China(No.62076035)。
文摘Leveraging deep learning-based techniques to classify diseases has attracted extensive research interest in recent years.Nevertheless,most of the current studies only consider single-modal medical images,and the number of ophthalmic diseases that can be classified is relatively small.Moreover,imbalanced data distribution of different ophthalmic diseases is not taken into consideration,which limits the application of deep learning techniques in realistic clinical scenes.In this paper,we propose a Multimodal Multi-disease Long-tailed Classification Network(M^(2)LC-Net)in response to the challenges mentioned above.M^(2)LC-Net leverages ResNet18-CBAM to extract features from fundus images and Optical Coherence Tomography(OCT)images,respectively,and conduct feature fusion to classify 11 common ophthalmic diseases.Moreover,Class Activation Mapping(CAM)is employed to visualize each mode to improve interpretability of M^(2)LC-Net.We conduct comprehensive experiments on realistic dataset collected from a Grade III Level A ophthalmology hospital in China,including 34,396 images of 11 disease labels.Experimental results demonstrate effectiveness of our proposed model M^(2)LC-Net.Compared with the stateof-the-art,various performance metrics have been improved significantly.Specifically,Cohen’s kappa coefficient κ has been improved by 3.21%,which is a remarkable improvement.
文摘This work focuses on a novel lightweight machine learning approach to the task of plant disease classification,posing as a core component of a larger grow-light smart monitoring system.To the extent of our knowledge,this work is the first to implement lightweight convolutional neural network architectures leveraging down-scaled versions of inception blocks,residual connections,and dense residual connections applied without pre-training to the PlantVillage dataset.The novel contributions of this work include the proposal of a smart monitor-ing framework outline;responsible for detection and classification of ailments via the devised lightweight net-works as well as interfacing with LED grow-light fixtures to optimize environmental parameters and lighting control for the growth of plants in a greenhouse system.Lightweight adaptation of dense residual connections achieved the best balance of minimizing model parameters and maximizing performance metrics with accuracy,precision,recall,and F1-scores of 96.75%,97.62%,97.59%,and 97.58%respectively,while consisting of only 228,479 model parameters.These results are further compared against various full-scale state-of-the-art model architectures trained on the PlantVillage dataset,of which the proposed down-scaled lightweight models were capable of performing equally to,if not better than many large-scale counterparts with drastically less com-putational requirements.
基金supported by Center for Engineering Research and Development,Government of Kerala,India,vide Grant No.KTU/Research/2743/2017.
文摘The fungal diseases in banana cause major yield losses for millions of farmers around the globe.Early detection of these diseases helps the farmers to devise successful management strategies.The characteristic leaf blade discoloration pattern at the earlier stages of infection could be used to understand the onset of each disease.This paper demonstrates a methodology for classification of three important foliar diseases in banana,using local texture features.The disease affected regions are identified using image enhancement and color segmentation.Segmented images are converted to transform domain using three image transforms(DWT,DTCWT and Ranklet transform).Feature vector is extracted from transform domain images using LBP and its variants(ELBP,MeanELBP and MedianELBP).These texture based features are applied to five popular image classifiers and comparative performance analysis is done using ten-fold cross validation procedure.Experimental results showed best classification performance for ELBP features extracted from DTCWT domain(accuracy 95.4%,precision 93.2%,sensitivity 93.0%,Fscore 93.0%and specificity 96.4%).Compared with traditional methods of feature extraction,this novel method of fusing DTCWT with ELBP features has attained high degree of accuracy in precisely detecting and classifying fungal diseases in banana at an early stage.
基金supported by the National Natural Scientific Foundation of China(81472924,81620108026)the Fundamental Research Funds for the Central Universities in 2015
文摘This study aimed to evaluate the sensitivity and specificity of the new clinical diagnostic and classification criteria for Kashin-Beck disease (KBD) using six clinical markers: flexion of the distal part of fingers, deformed fingers, enlarged finger joints, shortened fingers, squat down, and dwarfism. One-third of the total population in Linyou County was sampled by stratified random sampling.
文摘BACKGROUND with the widespread application of computer network systems in the medical field,the plan-do-check-action(PDCA)and the international classification of diseases tenth edition(ICD-10)coding system have also achieved favorable results in clinical medical record management.However,research on their combined application is relatively lacking.Objective:it was to explore the impact of network systems and PDCA management mode on ICD-10 encoding.Material and Method:a retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.AIM To study the adoption of network and PDCA in the ICD-10.METHODS A retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.RESULTS In the 3,6,12,18,and 24 months of PDCA cycle management mode,the coding accuracy and medical record completion rate were higher,and the coding time was lower in the observation group as against the controls(P<0.05).The satisfaction of coders(80.22%vs 53.45%)and patients(84.89%vs 51.72%)in the observation group was markedly higher as against the controls(P<0.05).CONCLUSION The combination of computer networks and PDCA can improve the accuracy,efficiency,completion rate,and satisfaction of ICD-10 coding.
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and granted financial resources from the Ministry of Trade,Industry,and Energy,Republic of Korea(No.20204010600090)The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups.Project under grant number(R.G.P.1/257/43).
文摘Citrus fruit crops are among the world’s most important agricultural products,but pests and diseases impact their cultivation,resulting in yield and quality losses.Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade,allowing for early disease detection and improving agricultural production.This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning(DL)model,which improved accuracy while decreasing computational complexity.The most recent transfer learning-based models were applied to the Citrus Plant Dataset to improve classification accuracy.Using transfer learning,this study successfully proposed a Convolutional Neural Network(CNN)-based pre-trained model(EfficientNetB3,ResNet50,MobiNetV2,and InceptionV3)for the identification and categorization of citrus plant diseases.To evaluate the architecture’s performance,this study discovered that transferring an EfficientNetb3 model resulted in the highest training,validating,and testing accuracies,which were 99.43%,99.48%,and 99.58%,respectively.In identifying and categorizing citrus plant diseases,the proposed CNN model outperforms other cuttingedge CNN model architectures developed previously in the literature.
文摘As nearly half of the people in the world live on rice, so the rice leaf disease detection is very important for our agricultural sector. Many researchers worked on this problem and they achieved different results according to their applied techniques. In this paper, we applied AlexNet technique to detect the three prevalence rice leaf diseases termed as bacterial blight, brown spot as well as leaf smut and got a remarkable outcome rather than the previous works. AlexNet is a special type of classification technique of deep learning. This paper shows more than 99% accuracy due to adjusting an efficient technique and image augmentation.
文摘A brain tumor is the uncharacteristic progression of tissues in the brain.These are very deadly,and if it is not diagnosed at an early stage,it might shorten the affected patient’s life span.Hence,their classification and detection play a critical role in treatment.Traditional Brain tumor detection is done by biopsy which is quite challenging.It is usually not preferred at an early stage of the disease.The detection involvesMagneticResonance Imaging(MRI),which is essential for evaluating the tumor.This paper aims to identify and detect brain tumors based on their location in the brain.In order to achieve this,the paper proposes a model that uses an extended deep Convolutional Neural Network(CNN)named Contour Extraction based Extended EfficientNet-B0(CE-EEN-B0)which is a feed-forward neural network with the efficient net layers;three convolutional layers and max-pooling layers;and finally,the global average pooling layer.The site of tumors in the brain is one feature that determines its effect on the functioning of an individual.Thus,this CNN architecture classifies brain tumors into four categories:No tumor,Pituitary tumor,Meningioma tumor,andGlioma tumor.This network provides an accuracy of 97.24%,a precision of 96.65%,and an F1 score of 96.86%which is better than already existing pre-trained networks and aims to help health professionals to cross-diagnose an MRI image.This model will undoubtedly reduce the complications in detection and aid radiologists without taking invasive steps.
文摘In this editorial we comment on the article by Pacheco et al published in a recent issue of the World Journal of Gastroenterology.We focus specifically on the burden of illness associated with perianal fistulizing Crohn’s disease(PFCD)and the diagnostic and therapeutic challenges in the management of this condition.Evol-ving evidence has shifted the diagnostic framework for PFCD from anatomical classification systems,to one that is more nuanced and patient-focused to drive ongoing decision making.This editorial aims to reflect on these aspects to help clinicians face the challenge of PFCD in day-to-day clinical practice.
基金supported by Major Science and Technology Proj-ect of Hainan Province,ZDKJ202006.
文摘In ophthalmology,retinal optical coherence tomography(OCT)images with noticeable structural features help identify human eyes as healthy or diseased.The recently hot arti ficial intelligence(AI)realized this recognition process automatically.However,speckle noise in the original retinal OCT image reduces the accuracy of disease classi fication.This study presents a timesaving approach based on deep learning to improve classi fication accuracy by removing the noise from the original dataset.Firstly,four pre-trained convolutional neural networks(CNNs)from the ImageNet Large Scale Visual Recognition Challenge(ILSVRC)were trained to classify the original images into two categories:The noise reduction required(NRR)and the noise-free(NF)images.Among the CNNs,VGG19 BN performed best with 98%accuracy and 99%recall.Then,we used the block-matching and 3D filtering(BM3D)algorithm to denoise the NRR images.Those noise-removed NRR and the NF images form the processed dataset.The quality of images in the dataset is prominently ameliorated after denoising,which is valid to improve the models'performance.The original and processed datasets were tested on the four pre-trained CNNs to evaluate the effectiveness of our proposed approach.We have compared the CNNs,and the results show the performance of the CNNs trained with the processed dataset is improved by an average of 2.04%,5.19%,and 5.10%under overall accuracy(OA),Macro F1-score,and Micro F1-score,respectively.Especially for DenseNet161,the OA is improved to 98.14%.Our proposed method demonstrates its effectiveness in improving classi fication accuracy and opens a new solution to reduce denoising time-consuming for large datasets.
文摘Objective: to explore the distribution of hospitalization expenses of traditional Chinese medicine in the treatment of lumbar diseases. Methods: the first page information of inpatients' medical records in a traditional Chinese medicine hospital was retrieved, and effective samples were selected according to the inclusion criteria (disease definition) and exclusion criteria. Excel data perspective was used to analyze the hospitalization expenses and their composition of the sample data. According to ICD-10 International classification of diseases, the sample data were counted and analyzed by spss21 software. Results: the results of correspondence analysis between hospitalization expenses and age and payment mode showed that there was a strong correlation between the distribution of hospitalization expenses of elderly patients and high and low expenses;the hospitalization expenses of urban employees are high, and the hospitalization expenses of urban residents are very low. Conclusion: through the structural analysis of hospitalization expenses, it is concluded that patients with lumbar diseases should not only treat the disease itself, but also integrate the influencing factors of patients themselves and the outside world, formulate a more suitable diagnosis and treatment plan and carry out long-term TCM intervention.
基金financed by grants from the National Major Science and Technology Projects of China (No. YB2019023)Independent Project of China Academy of Chinese Medical Sciences (No. ZZ12-002)
文摘In 2018,the 11^(th) Edition of the International Classification of Diseases(ICD-11)defined a diagnostic code list for standard traditional medicine(TM)conditions.The codes improve patient safety by providing more comprehensive and accurate medical records for hospitals in the Western Pacific Region.In these facilities,TM is often a standard of care for those populations.In several mainstream media sources,writers are circumventing evidence-based peer-reviewed medical literature by unduly influencing public opinion and,in this case,against the new ICD-11 codes.The dangers imposed by the transgression of popular writing onto the discipline of peer-reviewed works are present since best practices in medical record-keeping will fail without the inclusion of TM in the ICD-11 codes.Such failures directly affect the health of the patients and policymakers in regions where TM and conventional medicine are combined.This article investigates the boundaries between substantial evidence and popular opinion.In this era where media is used to manipulate evidence,the reader’s use of sound judgment and critical thought are thwarted.This article also challenges three controversial themes in pop literature,including the threat to endangered species,increased patient risk,and contaminants in the TM.These themes are made without evidence and are,in fact,of flawed logic.There is no reason to assume that improved medical record-keeping and knowledge of patient cases increase risks.