INTRODUCTION Reports indicating that culturally and linguistically diverse(CALD)people-often with migrant backgrounds-in Australia and New Zealand are more likely to be placed in compulsory community treatment(CCT)hav...INTRODUCTION Reports indicating that culturally and linguistically diverse(CALD)people-often with migrant backgrounds-in Australia and New Zealand are more likely to be placed in compulsory community treatment(CCT)have rightlyraised concernsthat such action might be discriminatory.展开更多
Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMM...Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields.展开更多
Previous studies have found associations between color discrimination deficits and cognitive impairments besides aging.However,investigations into the microstructural pathology of brain white matter(WM)associated with...Previous studies have found associations between color discrimination deficits and cognitive impairments besides aging.However,investigations into the microstructural pathology of brain white matter(WM)associated with these deficits remain limited.This study aimed to examine the microstructural characteristics of WM in the non-demented population with abnormal color discrimination,utilizing Neurite Orientation Dispersion and Density Imaging(NODDI),and to explore their correlations with cognitive functions and cognition-related plasma biomarkers.The tract-based spatial statistic analysis revealed significant differences in specific brain regions between the abnormal color discrimination group and the healthy controls,characterized by increased isotropic volume fraction and decreased neurite density index and orientation dispersion index.Further analysis of region-of-interest parameters revealed that the isotropic volume fraction in the bilateral anterior thalamic radiation,superior longitudinal fasciculus,cingulum,and forceps minor was significantly correlated with poorer performance on neuropsychological assessments and to varying degrees various cognition-related plasma biomarkers.These findings provide neuroimaging evidence that WM microstructural abnormalities in non-demented individuals with abnormal color discrimination are associated with cognitive dysfunction,potentially serving as early markers for cognitive decline.展开更多
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or ...Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.展开更多
Mineral identification and discrimination play a significant role in geological study.Intelligent mineral discrimination based on deep learning has the advantages of automation,low cost,less time consuming and low err...Mineral identification and discrimination play a significant role in geological study.Intelligent mineral discrimination based on deep learning has the advantages of automation,low cost,less time consuming and low error rate.In this article,characteristics of quartz,biotite and Kfeldspar from granite thin sections under cross-polarized light were studied for mineral images intelligent classification by Inception-v3 deep learning convolutional neural network(CNN),and transfer learning method.Dynamic images from multi-angles were employed to enhance the accuracy and reproducibility in the process of mineral discrimination.Test results show that the average discrimination accuracies of quartz,biotite and K-feldspar are 100.00%,96.88%and 90.63%.Results of this study prove the feasibility and reliability of the application of convolution neural network in mineral images classification.This study could have a significant impact in explorations of complicated mineral intelligent discrimination using deep learning methods and it will provide a new perspective for the development of more professional and practical mineral intelligent discrimination tools.展开更多
Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide(Zn O)single crystals,which has attracted considerable research interest in radiation detection.The application of ...Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide(Zn O)single crystals,which has attracted considerable research interest in radiation detection.The application of Zn O:Ga(GZO)in nuclear energy is particularly significant and fascinating at the fundamental level,enabling neutron/gamma discrimination while preserving the response time properties of the single crystal in sub-nanoseconds,maximizing the effective counting rate of the pulsed radiation field.In this study,the single-particle waveform discrimination characteristics of GZO were evaluated for five charged particles(α,β,H^(+),Li^(+),and O^(8+)and two prevalent uncharged particles(neutrons and gamma rays).Based on the timecorrelation single-photon counting(TCSPC)method,the luminescence decay time constants of the charged particles in the GZO crystal were determined as follows:1.21 ns for H^(+),1.50 ns for Li^(+),1.70 ns for O^(8+),1.56 ns forαparticles,and 1.09 ns forβparticles.Visible differences in the excitation time spectra curves were observed.Using the conventional time-domain or frequency-domain waveform discrimination techniques,waveform discrimination of 14.9 Me V neutrons and secondary gamma rays generated by the CPNG-6 device based on GZO scintillation was successfully implemented.The neutron signal constituted 77.93%of the total,indicating that GZO exhibited superior neutron/gamma discrimination sensitivity compared with that of a commercial stilbene crystal.Using the neutron/gamma screening outcomes,we reconstructed the voltage pulse height,charge height,and neutron multiplication time spectra of the pulsed neutron radiation field.The reconstructed neutron multiplication time spectrum exhibited a deviation of less than 3%relative to the result obtained using a commercial stilbene scintillator.This is the first report in the open literature on the neutron/gamma discrimination and reconstruction of Zn O pulsed radiation-field information.展开更多
This study discusses the challenges in logging the evaluation of low-resistivity oil reservoirs,especially the difficult problems involving their saturation calculation.A correction method for equivalent water conduct...This study discusses the challenges in logging the evaluation of low-resistivity oil reservoirs,especially the difficult problems involving their saturation calculation.A correction method for equivalent water conductivity is proposed,given the high conductivity caused by small amounts of water distributed in a network within the low-resistivity reservoir,which mimics the eff ects of high water saturation.This approach signifi cantly improves the accuracy of hydrocarbon saturation calculations in these low-resistivity reservoirs.The corrected hydrocarbon saturation values highly matched the porosity and are consistent with experimental results.This study also establishes a discrimination process to determine whether corrections are required,verifying the eff ectiveness and accuracy of the method through an application example.展开更多
The role that visual discriminative ability plays among giant pandas in social communication and individual discrimination has received less attention than olfactory and auditory modalities.Here,we used an eye-tracker...The role that visual discriminative ability plays among giant pandas in social communication and individual discrimination has received less attention than olfactory and auditory modalities.Here,we used an eye-tracker technology to investigate pupil fixation patterns for 8 captive male giant pandas Ailuropoda melanoleuca.We paired images(N=26)of conspecifics against:1)sympatric predators(gray wolves and tigers),and non-threatening sympatric species(golden pheasant,golden snub-nosed monkey,takin,and red panda),2)conspecifics with atypical fur colora-tion(albino and brown),and 3)zookeepers/non-zookeepers wearing either work uniform or plain clothing.For each session,we tracked the pan-da's pupil movements and measured pupil first fixation point(FFP),fixation latency,total fixation count(TFC),and duration(TFD)of attention to each image.Overall,pandas exhibited similar attention(FFPs and TFCs)to images of predators and non-threatening sympatric species.Images of golden pheasant,snub-nosed monkey,and tiger received less attention(TFD)than images of conspecifics,whereas images of takin and red panda received more attention,suggesting a greater alertness to habitat or food competitors than to potential predators.Pandas'TFCs were greater for images of black-white conspecifics than for albino or brown phenotypes,implying that familiar color elicited more interest.Pandas reacted differently to images of men versus women.For images of women only,pandas gave more attention(TFC)to familiar combinations(uniformed zookeepers and plain-clothed non-zookeepers),consistent with the familiarity hypothesis.That pandas can use visual perception to discriminate intra-specifically and inter-specifically,including details of human appearance,has applications for panda conservation and captive husbandry.展开更多
To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening m...To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.展开更多
The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires f...The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.展开更多
Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants.However,conserved DNA barcoding markers,including complete plastid genome and nuclear ribosomal DN...Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants.However,conserved DNA barcoding markers,including complete plastid genome and nuclear ribosomal DNA(nrDNA)sequences,are inadequate for accurate species identification.Skmer,a recently proposed approach that estimates genetic distances among species based on unassembled genome skims,has been proposed to effectively improve species discrimination rate.In this study,we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of Schima(Theaceae)from China.The unassembled reads identified six species,with a species identification rate of 60%,twice as high as previous efforts that used plastid genomes(27.27%).In addition,Skmer was able to identify Schima species with only 0.5sequencing depth,as six species were well-supported with unassembled data sizes as small as 0.5 Gb.These findings demonstrate the potential for Skmer approach in species identification,where nuclear genomic data plays a crucial role.For taxonomically difficult taxa such as Schima,which have diverged recently and have low levels of genetic variation,Skmer is a promising alternative to next generation barcodes.展开更多
Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a sel...Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.展开更多
Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ...Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.展开更多
Given the prominence and magnitude of airport incentive schemes,it is surprising that literature hitherto remains silent as to their effectiveness.In this paper,the relationship between airport incentive schemes and t...Given the prominence and magnitude of airport incentive schemes,it is surprising that literature hitherto remains silent as to their effectiveness.In this paper,the relationship between airport incentive schemes and the route development behavior of airlines is analyzed.Because of rare and often controversial findings in the extant literature regarding relevant influencing variables for attracting airlines at an airport,expert interviews are used as a complement to formulate testable hypotheses in this regard.A fixed effects regression model is used to test the hypotheses with a dataset that covers all seat capacity offered at the 22 largest German commercial airports in the week 46 from 2004 to 2011.It is found that incentives from primary choice,as well as secondary choice airports,have a significant influence on Low Cost Carriers.Furthermore,Low Cost Carriers,in general,do not leave any of both types of airports when the incentives cease.In the case of Network Carriers,no case is found where one joins a primary choice airport and receives an incentive.Insufficient data between Network Carriers and secondary choice airports in the time when incentives have ceased means that no statement can be given.展开更多
文摘INTRODUCTION Reports indicating that culturally and linguistically diverse(CALD)people-often with migrant backgrounds-in Australia and New Zealand are more likely to be placed in compulsory community treatment(CCT)have rightlyraised concernsthat such action might be discriminatory.
基金supported by the National Natural Science Foundation of China(No.12027813)the fund of National Innovation Center of Radiation Application of China(Nos.KFZC2020020501,KFZC2021010101).
文摘Polymethyl methacrylate(PMMA)is an optically transparent thermoplastic with favorable processing conditions.In this study,a series of plastic scintillators are prepared via thermal polymerization,and the impact of PMMA content on their transparency and pulse shape discrimination(PSD)ability is investigated.The fabricated samples,comprising a polystyrene(PS)-PMMA matrix,30.0 wt%2,5-diphenyloxazole(PPO),and 0.2 wt%9,10-diphenylanthracene(DPA),exhibit high transparency with transmissivity ranging from 70.0 to 90.0%(above 415.0 nm)and demonstrate excellent n/γdiscrimination capability.Transparency increased with increasing PMMA content across the entire visible light spectrum.However,the PSD performance gradually deteriorated when the aromatic matrix was replaced with PMMA.The scintillator containing 20.0 wt%PMMA demonstrated the best stability concerning PSD properties and relative light yields.
基金supported by the Joint Funds for Innovation of Science and Technology,Fujian Province(2021Y9037)a National Clinical Key Special Subject of China(21281003).
文摘Previous studies have found associations between color discrimination deficits and cognitive impairments besides aging.However,investigations into the microstructural pathology of brain white matter(WM)associated with these deficits remain limited.This study aimed to examine the microstructural characteristics of WM in the non-demented population with abnormal color discrimination,utilizing Neurite Orientation Dispersion and Density Imaging(NODDI),and to explore their correlations with cognitive functions and cognition-related plasma biomarkers.The tract-based spatial statistic analysis revealed significant differences in specific brain regions between the abnormal color discrimination group and the healthy controls,characterized by increased isotropic volume fraction and decreased neurite density index and orientation dispersion index.Further analysis of region-of-interest parameters revealed that the isotropic volume fraction in the bilateral anterior thalamic radiation,superior longitudinal fasciculus,cingulum,and forceps minor was significantly correlated with poorer performance on neuropsychological assessments and to varying degrees various cognition-related plasma biomarkers.These findings provide neuroimaging evidence that WM microstructural abnormalities in non-demented individuals with abnormal color discrimination are associated with cognitive dysfunction,potentially serving as early markers for cognitive decline.
基金Supported by the National Key R&D Program of China(2022YFC3803600).
文摘Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
基金funded by the National Natural Science Foundation of China(Nos.41672082,42030809)。
文摘Mineral identification and discrimination play a significant role in geological study.Intelligent mineral discrimination based on deep learning has the advantages of automation,low cost,less time consuming and low error rate.In this article,characteristics of quartz,biotite and Kfeldspar from granite thin sections under cross-polarized light were studied for mineral images intelligent classification by Inception-v3 deep learning convolutional neural network(CNN),and transfer learning method.Dynamic images from multi-angles were employed to enhance the accuracy and reproducibility in the process of mineral discrimination.Test results show that the average discrimination accuracies of quartz,biotite and K-feldspar are 100.00%,96.88%and 90.63%.Results of this study prove the feasibility and reliability of the application of convolution neural network in mineral images classification.This study could have a significant impact in explorations of complicated mineral intelligent discrimination using deep learning methods and it will provide a new perspective for the development of more professional and practical mineral intelligent discrimination tools.
基金supported by the National Natural Science Foundation of China(Nos.12205370,62204198,12305205,and 12105230)Young Talents Promotion Program of Shaanxi Provincial Science and Technology Association(No.20220514)。
文摘Doping with Ga effectively enhances the crystal quality and optical detection efficiency of zinc oxide(Zn O)single crystals,which has attracted considerable research interest in radiation detection.The application of Zn O:Ga(GZO)in nuclear energy is particularly significant and fascinating at the fundamental level,enabling neutron/gamma discrimination while preserving the response time properties of the single crystal in sub-nanoseconds,maximizing the effective counting rate of the pulsed radiation field.In this study,the single-particle waveform discrimination characteristics of GZO were evaluated for five charged particles(α,β,H^(+),Li^(+),and O^(8+)and two prevalent uncharged particles(neutrons and gamma rays).Based on the timecorrelation single-photon counting(TCSPC)method,the luminescence decay time constants of the charged particles in the GZO crystal were determined as follows:1.21 ns for H^(+),1.50 ns for Li^(+),1.70 ns for O^(8+),1.56 ns forαparticles,and 1.09 ns forβparticles.Visible differences in the excitation time spectra curves were observed.Using the conventional time-domain or frequency-domain waveform discrimination techniques,waveform discrimination of 14.9 Me V neutrons and secondary gamma rays generated by the CPNG-6 device based on GZO scintillation was successfully implemented.The neutron signal constituted 77.93%of the total,indicating that GZO exhibited superior neutron/gamma discrimination sensitivity compared with that of a commercial stilbene crystal.Using the neutron/gamma screening outcomes,we reconstructed the voltage pulse height,charge height,and neutron multiplication time spectra of the pulsed neutron radiation field.The reconstructed neutron multiplication time spectrum exhibited a deviation of less than 3%relative to the result obtained using a commercial stilbene scintillator.This is the first report in the open literature on the neutron/gamma discrimination and reconstruction of Zn O pulsed radiation-field information.
文摘This study discusses the challenges in logging the evaluation of low-resistivity oil reservoirs,especially the difficult problems involving their saturation calculation.A correction method for equivalent water conductivity is proposed,given the high conductivity caused by small amounts of water distributed in a network within the low-resistivity reservoir,which mimics the eff ects of high water saturation.This approach signifi cantly improves the accuracy of hydrocarbon saturation calculations in these low-resistivity reservoirs.The corrected hydrocarbon saturation values highly matched the porosity and are consistent with experimental results.This study also establishes a discrimination process to determine whether corrections are required,verifying the eff ectiveness and accuracy of the method through an application example.
基金supported by grants from International Collaborative Project on The Conservation for the Giant Panda(Grant#2017-127 G.Zhang and 2017-115 to D.Liu)National Natural Science Foundation of China(Grant#31772466).
文摘The role that visual discriminative ability plays among giant pandas in social communication and individual discrimination has received less attention than olfactory and auditory modalities.Here,we used an eye-tracker technology to investigate pupil fixation patterns for 8 captive male giant pandas Ailuropoda melanoleuca.We paired images(N=26)of conspecifics against:1)sympatric predators(gray wolves and tigers),and non-threatening sympatric species(golden pheasant,golden snub-nosed monkey,takin,and red panda),2)conspecifics with atypical fur colora-tion(albino and brown),and 3)zookeepers/non-zookeepers wearing either work uniform or plain clothing.For each session,we tracked the pan-da's pupil movements and measured pupil first fixation point(FFP),fixation latency,total fixation count(TFC),and duration(TFD)of attention to each image.Overall,pandas exhibited similar attention(FFPs and TFCs)to images of predators and non-threatening sympatric species.Images of golden pheasant,snub-nosed monkey,and tiger received less attention(TFD)than images of conspecifics,whereas images of takin and red panda received more attention,suggesting a greater alertness to habitat or food competitors than to potential predators.Pandas'TFCs were greater for images of black-white conspecifics than for albino or brown phenotypes,implying that familiar color elicited more interest.Pandas reacted differently to images of men versus women.For images of women only,pandas gave more attention(TFC)to familiar combinations(uniformed zookeepers and plain-clothed non-zookeepers),consistent with the familiarity hypothesis.That pandas can use visual perception to discriminate intra-specifically and inter-specifically,including details of human appearance,has applications for panda conservation and captive husbandry.
基金supported by the Scientific and Technological Innovation 2030 Major Project(2022ZD04019)the Science and Technology Innovation Capacity Building Project of BAAFS(KJCX20230303)+1 种基金Hainan Province Science and Technology Special Fund(ZDYF2023XDNY077)the Beijing Scholars Program(BSP041)。
文摘To reduce the cost and increase the efficiency of plant genetic marker fingerprinting for variety discrimination,it is desirable to identify the optimal marker combinations.We describe a marker combination screening model based on the genetic algorithm(GA)and implemented in a software tool,Loci Scan.Ratio-based variety discrimination power provided the largest optimization space among multiple fitness functions.Among GA parameters,an increase in population size and generation number enlarged optimization depth but also calculation workload.Exhaustive algorithm afforded the same optimization depth as GA but vastly increased calculation time.In comparison with two other software tools,Loci Scan accommodated missing data,reduced calculation time,and offered more fitness functions.In large datasets,the sample size of training data exerted the strongest influence on calculation time,whereas the marker size of training data showed no effect,and target marker number had limited effect on analysis speed.
基金the Center University(Grant No.B220202013)Qinglan Project of Jiangsu Province(2022).
文摘The objective of this study is to investigate themethods for soil liquefaction discrimination. Typically, predicting soilliquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and canbe time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenientmethod and offers detailed and continuous information about soil layers. In this study, the feature matrix based onCPT data is proposed to predict the standard penetration test blow count N. The featurematrix comprises the CPTcharacteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse thefeatures on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number ofneurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.Results demonstrated that the proposed model outperformed conventional methods in predicting N values forvarious soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employedfor liquefaction discrimination. The liquefaction discrimination based on the predicted N values was comparedwith the measured N values, and the results showed that the discrimination results were in 75% agreement. Thestudy has important practical application value for foundation liquefaction engineering. Also, the novel methodadopted in this research provides new ideas and methods for research in related fields, which is of great academicsignificance.
基金supported by National Natural Science Foundation of China(No.32070369)the Youth Innovation Promotion Association CAS of China(No.2021393)+1 种基金the Yunnan Revitalization Talent Support Program“Young Talent”Project,the Applied Fundamental Research Foundation of Yunnan Province(202301AT070308)the Fund of Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology(YNPRAEC-2023006).
文摘Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants.However,conserved DNA barcoding markers,including complete plastid genome and nuclear ribosomal DNA(nrDNA)sequences,are inadequate for accurate species identification.Skmer,a recently proposed approach that estimates genetic distances among species based on unassembled genome skims,has been proposed to effectively improve species discrimination rate.In this study,we used Skmer to identify species based on genomic skims of 47 individuals representing 10 out of 13 species of Schima(Theaceae)from China.The unassembled reads identified six species,with a species identification rate of 60%,twice as high as previous efforts that used plastid genomes(27.27%).In addition,Skmer was able to identify Schima species with only 0.5sequencing depth,as six species were well-supported with unassembled data sizes as small as 0.5 Gb.These findings demonstrate the potential for Skmer approach in species identification,where nuclear genomic data plays a crucial role.For taxonomically difficult taxa such as Schima,which have diverged recently and have low levels of genetic variation,Skmer is a promising alternative to next generation barcodes.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03020002)the National Natural Science Foundation of China(Nos.12205085 and12125502)。
文摘Fast neutron flux measurements with high count rates and high time resolution have important applications in equipment such as tokamaks.In this study,real-time neutron and gamma discrimination was implemented on a self-developed 500-Msps,12-bit digitizer,and the neutron and gamma spectra were calculated directly on an FPGA.A fast neutron flux measurement system with BC-501A and EJ-309 liquid scintillator detectors was developed and a fast neutron measurement experiment was successfully performed on the HL-2 M tokamak at the Southwestern Institute of Physics,China.The experimental results demonstrated that the system obtained the neutron and gamma spectra with a time accuracy of 1 ms.At count rates of up to 1 Mcps,the figure of merit was greater than 1.05 for energies between 50 keV and 2.8 MeV.
基金supported by the Fundamental Research Funds for the Central Universities(WK2470000035)USTC Research Funds of the Double First-Class Initiative(YD2030002007,YD2030002011)+1 种基金the National Natural Science Foundation of China(62222512,12104439,12134014,and 11974335)the Anhui Provincial Natural Science Foundation(2208085J03).
文摘Extracting more information and saving quantum resources are two main aims for quantum measurements.However,the optimization of strategies for these two objectives varies when discriminating between quantum states |ψ_(0)> and |ψ_(1)> through multiple measurements.In this study,we introduce a novel state discrimination model that reveals the intricate relationship between the average error rate and average copy consumption.By integrating these two crucial metrics and minimizing their weighted sum for any given weight value,our research underscores the infeasibility of simultaneously minimizing these metrics through local measurements with one-way communication.Our findings present a compelling trade-off curve,highlighting the advantages of achieving a balance between error rate and copy consumption in quantum discrimination tasks,offering valuable insights into the optimization of quantum resources while ensuring the accuracy of quantum state discrimination.
文摘Given the prominence and magnitude of airport incentive schemes,it is surprising that literature hitherto remains silent as to their effectiveness.In this paper,the relationship between airport incentive schemes and the route development behavior of airlines is analyzed.Because of rare and often controversial findings in the extant literature regarding relevant influencing variables for attracting airlines at an airport,expert interviews are used as a complement to formulate testable hypotheses in this regard.A fixed effects regression model is used to test the hypotheses with a dataset that covers all seat capacity offered at the 22 largest German commercial airports in the week 46 from 2004 to 2011.It is found that incentives from primary choice,as well as secondary choice airports,have a significant influence on Low Cost Carriers.Furthermore,Low Cost Carriers,in general,do not leave any of both types of airports when the incentives cease.In the case of Network Carriers,no case is found where one joins a primary choice airport and receives an incentive.Insufficient data between Network Carriers and secondary choice airports in the time when incentives have ceased means that no statement can be given.