期刊文献+
共找到3,733篇文章
< 1 2 187 >
每页显示 20 50 100
Pseudo-static/dynamic solutions of required reinforcement force for steep slopes using discretization-based kinematic analysis 被引量:3
1
作者 Changbing Qin Siau Chen Chian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期289-299,共11页
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization ... This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input. 展开更多
关键词 GEOSYNTHETICS Pseudo-static/dynamic approach DISCRETIZATION technique discretization-based kinematic analysis Reinforced soil Seismic stability
在线阅读 下载PDF
Three-dimensional kinematic analysis can improve the efficacy of acupoint selection for post-stroke patients with upper limb spastic paresis:A randomized controlled trial 被引量:1
2
作者 Xin-yun Huang Ou-ping Liao +7 位作者 Shu-yun Jiang Ji-ming Tao Yang Li Xiao-ying Lu Yi-ying Li Ci Wang Jing Li Xiao-peng Ma 《Journal of Integrative Medicine》 2025年第1期15-24,共10页
Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its effi... Background China is seeing a growing demand for rehabilitation treatments for post-stroke upper limb spastic paresis(PSSP-UL).Although acupuncture is known to be effective for PSSP-UL,there is room to enhance its efficacy.Objective This study explored a semi-personalized acupuncture approach for PSSP-UL that used three-dimensional kinematic analysis(3DKA)results to select additional acupoints,and investigated the feasibility,efficacy and safety of this approach.Design,setting,participants and interventions This single-blind,single-center,randomized,controlled trial involved 74 participants who experienced a first-ever ischemic or hemorrhagic stroke with spastic upper limb paresis.The participants were then randomly assigned to the intervention group or the control group in a 1:1 ratio.Both groups received conventional treatments and acupuncture treatment 5 days a week for 4 weeks.The main acupoints in both groups were the same,while participants in the intervention group received additional acupoints selected on the basis of 3DKA results.Follow-up assessments were conducted for 8 weeks after the treatment.Main outcome measures The primary outcome was the Fugl-Meyer Assessment for Upper Extremity(FMA-UE)response rate(≥6-point change)at week 4.Secondary outcomes included changes in motor function(FMA-UE),Brunnstrom recovery stage(BRS),manual muscle test(MMT),spasticity(Modified Ashworth Scale,MAS),and activities of daily life(Modified Barthel Index,MBI)at week 4 and week 12.Results Sixty-four participants completed the trial and underwent analyses.Compared with control group,the intervention group exhibited a significantly higher FMA-UE response rate at week 4(χ^(2)=5.479,P=0.019)and greater improvements in FMA-UE at both week 4 and week 12(both P<0.001).The intervention group also showed bigger improvements from baseline in the MMT grades for shoulder adduction and elbow flexion at weeks 4 and 12 as well as thumb adduction at week 4(P=0.007,P=0.049,P=0.019,P=0.008,P=0.029,respectively).The intervention group showed a better change in the MBI at both week 4 and week 12(P=0.004 and P=0.010,respectively).Although the intervention group had a higher BRS for the hand at week 12(P=0.041),no intergroup differences were observed at week 4(all P>0.05).The two groups showed no differences in MAS grades as well as in BRS for the arm at weeks 4 and 12(all P>0.05).Conclusion Semi-personalized acupuncture prescription based on 3DKA results significantly improved motor function,muscle strength,and activities of daily living in patients with PSSP-UL. 展开更多
关键词 STROKE Spastic paresis Upper limb ACUPUNCTURE kinematic analysis REHABILITATION
原文传递
Conformal Geometric Algebra-based Forward Kinematics Analysis Method for the(2-SPR+RPS)+(3-SPR)Serial-Parallel Hybrid Mechanism
3
作者 Zhonghai Zhang Dongyang Zhu Duanling Li 《Chinese Journal of Mechanical Engineering》 2025年第4期535-550,共16页
Parallel mechanisms with fewer degrees of freedom that incorporate two or more SPR limbs have been widely adopted in industrial applications in recent years.However,notable theoretical gaps persist,particularly in the... Parallel mechanisms with fewer degrees of freedom that incorporate two or more SPR limbs have been widely adopted in industrial applications in recent years.However,notable theoretical gaps persist,particularly in the field of analytical solutions for forward kinematics.To address this,this paper proposes an innovative forward kinematics analysis method based on Conformal Geometric Algebra(CGA)for complex hybrid mechanisms formed by serial concatenation of such parallel mechanisms.The method efficiently represents geometric elements and their operational relationships by defining appropriate unknown parameters.It constructs fundamental geometric objects such as spheres and planes,derives vertex expressions through intersection and dual operations,and establishes univariate high-order equations via inner product operations,ultimately obtaining complete analytical solutions for the forward kinematics of hybrid mechanisms.Using the(2-SPR+RPS)+(3-SPR)serial-parallel hybrid mechanism as a validation case,three configuration tests implemented in Mathematica demonstrate that:for each configuration,the upper 3-SPR mechanism yields 15 mathematical solutions,while the lower 2-SPR+RPS mechanism yields 4 mathematical solutions.After geometric constraint filtering,a unique physically valid solution is obtained for each mechanism.SolidWorks simulations further verify the correctness and reliability of the model.This research provides a reliable analytical method for forward kinematics of hybrid mechanisms,holding significant implications for advancing their applications in high-precision scenarios. 展开更多
关键词 Conformal geometric algebra Serial-parallel hybrid mechanism SPR limbs Forward kinematics analysis Superposition principle
在线阅读 下载PDF
Kinematic analysis of geosynthetics-reinforced steep slopes with curved sloping surfaces and under earthquake regions 被引量:3
4
作者 ZHOU Jian-feng QIN Chang-bing +1 位作者 PAN Qiu-jing WANG Cheng-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1755-1768,共14页
A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stab... A procedure of kinematic analysis is presented in this study to assess the reinforcement force of geosynthetics required under seismic loadings, particularly for steep slopes which are hardly able to maintain its stability. Note that curved sloping surfaces widely exist in natural slopes, but existing literatures were mainly focusing on a planar surface in theoretical derivation, due to complicated calculations. Moreover, the non-uniform soil properties cannot be accounted for in conventional upper bound analysis. Pseudo-dynamic approach is used to represent horizontal and vertical accelerations which vary with time and space. In an effort to resolve the above problems, the discretization technique is developed to generate a discretized failure mechanism, decomposing the whole failure block into various components. An elementary analysis permits calculations of rates of work done by external and internal forces. Finally, the upper bound solution of the required reinforcement force is formulated based on the work rate-based balance equation. A parametric study is carried out to give insights on the implication of influential factors on the performance of geosynthetic-reinforced steep slopes. 展开更多
关键词 EARTHQUAKES pseudo-dynamic approach discretization-based kinematic analysis GEOSYNTHETICS steep slopes
在线阅读 下载PDF
Three Dimensional Kinematics Analysis of the Independent Suspension Multibody System 被引量:2
5
作者 陈欣 林逸 +1 位作者 孙大刚 白文辉 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期80-86,共7页
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t... Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances. 展开更多
关键词 independent suspension three dimension kinematic analysis multibody system
在线阅读 下载PDF
Unlocking the silent signals:Motor kinematics as a new frontier in early detection of mild cognitive impairment
6
作者 Takahiko Nagamine 《World Journal of Psychiatry》 2026年第1期1-6,共6页
The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests suc... The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions. 展开更多
关键词 Mild cognitive impairment Early detection Motor kinematics Gait analysis Handwriting analysis Digital biomarkers Machine learning
暂未订购
Kinematic and Dynamic Analysis of a 3-■US Spatial Parallel Manipulator 被引量:15
7
作者 Mervin Joe Thomas M.L.Joy A.P.Sudheer 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第1期114-130,共17页
Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries w... Parallel Kinematic Machines(PKMs)are being widely used for precise applications to achieve complex motions and variable poses for the end effector tool.PKMs are found in medical,assembly and manufacturing industries where accuracy is necessary.It is often desired to have a compact and simple architecture for the robotic mechanism.In this paper,the kinematic and dynamic analysis of a novel 3-PRUS(P:prismatic joint,R:revolute joint,U:universal joint,S:spherical joint)parallel manipulator with a mobile platform having 6 Degree of Freedom(Do F)is explained.The kinematic equations for the proposed spatial parallel mechanism are formulated using the Modified Denavit-Hartenberg(DH)technique considering both active and passive joints.The kinematic equations are used to derive the Jacobian matrix of the mechanism to identify the singular points within the workspace.A Jacobian based sti ness analysis is done to understand the variations in sti ness for different poses of the mobile platform and further,it is used to decide trajectories for the end effector within the singularity free region.The analytical model of the robot dynamics is presented using the Euler-Lagrangian approach with Lagrangian multipliers to include the system constraints.The gravity and inertial forces of all links are considered in the mathematical model.The analytical results of the dynamic model are compared with ADAMS simulation results for a pre-defined trajectory of the end effector. 展开更多
关键词 Parallel manipulator kinematic MODELLING WORKSPACE analysis Euler-Lagrangian MODELLING Singularity analysis Stiffness analysis
在线阅读 下载PDF
INVERSE KINEMATIC AND DYNAMIC ANALYSIS OF A 3-DOF PARALLEL MECHANISM 被引量:23
8
作者 LiJianfeng WangJinsong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第1期54-58,共5页
According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinemat... According to the structure character of the passive sub-chain of the 3TPS-TPparallel mechanism, the kinematic constraint equations of the movable platform are established,based on which the closed-form inverse kinematics formula of the parallel mechanism are presented.Through parting the spherical joints of the active sub-chains and using the force and momentequilibrium of both the active sub-chains and passive sub-chain, the constraint forces acting on theparted joints are determined. Subsequently, the analytic expressions of the actuator driving forcesare derived by means of the force equilibrium of the upper links of active sub-chains. 展开更多
关键词 3TPS-TP parallel mechanism kinematicS DYNAMICS analysis
在线阅读 下载PDF
Kinematic Analysis and Design of a 3-DOF Translational Parallel Robot 被引量:15
9
作者 Mahmood Mazare Mostafa Taghizadeh M. Rasool Najafi 《International Journal of Automation and computing》 EI CSCD 2017年第4期432-441,共10页
Parallel mechanisms are widely used in various fields of engineering and industrial applications such as machine tools, flight simulators, earthquake simulators, medical equipment, etc. Parallel mechanisms are restric... Parallel mechanisms are widely used in various fields of engineering and industrial applications such as machine tools, flight simulators, earthquake simulators, medical equipment, etc. Parallel mechanisms are restricted to some limitations such as irregular workspace, existence of singular points and complexity of control systems which should be studied and analyzed for effective and efficient use. In this research, a new machine tool with parallel mechanism which has three translational degrees of freedom is studied and the workspace and singular points are determined by deriving analytical equations and then utilizing of Matlab software. To do so, forward and inverse kinematics of the mechanism are obtained and workspace and singular points are calculated using a search algorithm. Afterward in order to validate the results, the proposed mechanism is simulated in automatic dynamics analysis of mechanical systems (ADAMS) software. Moreover, in order to investigate the quality of robot performance and dexterity of the mechanism in its workspace, global dexterity index (GDI) of the robot is calculated using Jacobean matrix at different positions of the mobile platform. 展开更多
关键词 kinematic analysis parallel robot WORKSPACE MANIPULABILITY dexterity.
原文传递
Kinematics Analysis of Mechanisms Based on Virtual Assembly 被引量:6
10
作者 ZHANG Zhixian LIU Jianhua NING Ruxin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期748-757,共10页
Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic ... Currently, virtual assembly technology has attracted increasing attention due to considerations of solving assembly problems in virtual environment before actual assembly in manufactory. Previous studies on kinematic analysis of mechanism only aim at analyzing motion law of single mechanism, but can not simulate the multi-mechanisms motion process at the same time, let alone simulating the automatic assembly process of products in a whole assembly workshop. In order to simulate the assembly process of products in an assembly workshop and provide effective data for analyzing mechanical performance after finishing assembly simulation in virtual environment, this study investigates the kinematics analysis of mechanisms based on virtual assembly. Firstly, in view of the same function of the kinematic pairs and the assembly constraints on restricting the motion of components (subassembly or part), the method of identifying kinematic pairs automatically based on assembly constraints is presented. The information of kinematic pairs can be obtained through calculating the constraint degree of the assembly constraints. Secondly, the incidence matrix eliminating element method is proposed in order to search the information and establish the models of mechanisms automatically after finishing assembly simulation in virtual environment. Both methods have important significance for reducing the workload of pretreatment and promoting the level of automation of kinematics analysis. Finally, the method of kinematics analysis of mechanisms is presented. Based on Descartes coordinates, three types of kinematics equations are formed. The parameters, like displacement, velocity, and acceleration, can be obtained by solving these equations. All these data are important to analyze mechanical performance. All the methods are implemented and validated in the prototype system virtual assembly process planning(VAPP). The mechanism models are established and simulated in the VAPP system, and the result curves are shown accurately. The proposed kinematics analysis of mechanisms based on virtual assembly provides an effective method for simulating product assembly process automatically and analyzing mechanical performance after finishing assembly simulation. 展开更多
关键词 virtual assembly assembly constraint constraint degree eliminating element method kinematics equations kinematics analysis
在线阅读 下载PDF
Kinematic Analysis and Experimental Verification on the Locomotion of Gecko 被引量:7
11
作者 Woochul Nam TaeWon Seo +3 位作者 Byungwook Kim DongsuJeon Kyu-Jin Cho Jongwon Kim 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第3期246-254,共9页
This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biom... This paper presents a kinematic analysis of the locomotion of a gecko,and experimental verification of the kinematic model.Kinematic analysis is important for parameter design,dynamic analysis,and optimization in biomimetic robot research. The proposed kinematic analysis can simulate,without iteration,the locomotion of gecko satisfying the constraint conditions that maintain the position of the contacted feet on the surface.So the method has an advantage for analyzing the climbing motion of the quadruped mechanism in a real time application.The kinematic model of a gecko consists of four legs based on 7-degrees of freedom spherical-revolute-spherical joints and two revolute joints in the waist.The motion of the kinematic model is simulated based on measurement data of each joint.The motion of the kinematic model simulates the investigated real gecko's motion by using the experimental results.The analysis solves the forward kinematics by considering the model as a combination of closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground. The motions of each joint are validated by comparing with the experimental results.In addition to the measured gait,three other gaits are simulated based on the kinematic model.The maximum strides of each gait are calculated by workspace analysis.The result can be used in biomimetic robot design and motion planning. 展开更多
关键词 kinematic analysis locomotlon of gecko lizard gait simulation various gaits workspace analysis
在线阅读 下载PDF
PERFORMANCE ANALYSIS AND KINEMATIC DESIGN OF PURE TRANSLATIONAL PARALLEL MECHANISM WITH VERTICAL GUIDE-WAYS 被引量:10
12
作者 LI Jianfeng WANG Xinhua +2 位作者 FEI Renyuan LIU Dezhong FAN Jinhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期300-306,共7页
Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section ar... Performance analysis and kinematic design of the 3-PUU pure translational parallel mechanism with vertical guide-ways are investigated. Two novel performance indices, the critical slider stroke and the main section area of workspace, are defined; The expressions of two other indices, i.e. the global dexterity and global force transfer ratio are revised based on the main section of workspace. Using these indices, performance changes versus the varieties of dimensional parameters of mechanism are investigated in detail and the graphic descriptions of change tendencies of the performance indices are illustrated. By means of these obtained graphic descriptions, kinematic parameters for the 3-PUU pure translational parallel mechanism with better characteristics can be directly acquired. 展开更多
关键词 3-PUU pure translational parallel mechanism Vertical guide-way Performance analysis kinematic design
在线阅读 下载PDF
Kinematic Analysis of Mobile Manipulator for Measurement and Maintenance in Dangerous Environment 被引量:4
13
作者 CUI Genqun LI Chunshu ZHANG Minglu School of Mechanical Engineering,Hebei University of Technology,Tianjin 300062,China, 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期983-988,共6页
This paper studies the kinematic modeling of a mobile manipulator that consists of 5-DOF manipulator and an autonomous wheeled mobile platform.Then an artificial neural network to realize the coordination motion betwe... This paper studies the kinematic modeling of a mobile manipulator that consists of 5-DOF manipulator and an autonomous wheeled mobile platform.Then an artificial neural network to realize the coordination motion between manipulator and mobile platform is developed.On the basis of the task specifications,the algorithm determines the appropriate control variables to respond to the well tracking trajectory.The control strategy employed for either subsystem is achieved by using a robust supervised controller.A learning paradigm is used to produce the required reference variables for an overall cooperative behavior of the sys- tem.Simulation results are presented to show the effectiveness of this approach. 展开更多
关键词 mobile MANIPULATOR kinematicS analysis NONHOLONOMIC constraints COOPERATIVE behavior artificial NEURAL network
在线阅读 下载PDF
FORWARD KINEMATICS ANALYSIS FOR A NOVEL 5-DOF PARALLEL MECHANISM USING TETRAHEDRON CONFIGURATIONS 被引量:3
14
作者 QI Ming QIE Yanhui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期1-4,共4页
Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform con... Forward kinematics analysis of a novel 5-DOF parallel mechanism using tetrahedron configurations is presented. Such mechanism is suitable to many tasks requiring less than 6 DOFs. It consists of a movable platform connected to the base by five identical 6-DOF active limbs plus one active limb with its DOF being exactly the same as the specified DOF of the movable platform, which leads to its legs' topology 4-UPS/UPU. Based on the tetmhedron geometry, both closed-form solution with an extra sensor and numerical method using iterative algorithm are employed to obtain the forward kinematics solutions of the mechanism. Compared with the conventional methods, the proposed closed-form solution has the advantages in automatically avoiding unnecessary complex roots and getting a unique solution for the forward kinematics. Finally, an example shows that the proposed numerical algorithm is so effective that it enables a real-time forward kinematics solution to be achieved and the initial value can be chosen easily. 展开更多
关键词 Forward kinematics Numerical analysis Parallel mechanism
在线阅读 下载PDF
Kinematic,Workspace and Force Analysis of A Five-DOF Hybrid Manipulator R(2RPR)R/SP+RR 被引量:2
15
作者 Yundou Xu Fan Yang +3 位作者 Youen Mei Dongsheng Zhang Yulin Zhou Yongsheng Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期232-243,共12页
In the present study,the over-constrained hybrid manipulator R(2RPR)R/SP+RR is considered as the research objective.In this paper,kinematics of the hybrid manipulator,including the forward and inverse position,are ana... In the present study,the over-constrained hybrid manipulator R(2RPR)R/SP+RR is considered as the research objective.In this paper,kinematics of the hybrid manipulator,including the forward and inverse position,are analyzed.Then,the workspace is checked based on the inverse position solution to evaluate whether the workspace of the hybrid manipulator meets the requirements,and the actual workspace of the hybrid robot is analyzed.After that,the force analysis of the over-constrained parallel mechanism is carried out,and an ADAMS-ANSYS rigid-flexible hybrid body model is established to verify the simulation.Based on the obtained results from the force analysis,the manipulator structure is designed.Then,the structure optimization is carried out to improve the robot stiffness.Finally,calibration and workspace verification experiments are performed on the prototype,cutting experiment of an S-shaped aluminum alloy workpiece is completed,and the experiment verifies the machining ability of the prototype.This work conducts kinematics,workspace,force analyses,structural optimization design and experiments on the over-constrained hybrid manipulator R(2RPR)R/SP+RR,providing design basis and technical support for the development of the novel hybrid manipulator in practical engineering. 展开更多
关键词 Hybrid manipulator Over-constrained kinematic analysis Stiffness analysis
在线阅读 下载PDF
Kinematic Analysis and Trajectory Planning of J-Groove Welding Robot 被引量:4
16
作者 陈昌亮 胡绳荪 +1 位作者 何东林 申俊琦 《Transactions of Tianjin University》 EI CAS 2012年第5期350-356,共7页
This paper introduces the complexity and particularity of tube-sphere intersection weld(J-groove weld) and establishes the mathematical model of tube-sphere intersection trajectory.Based on the characteristics of J-gr... This paper introduces the complexity and particularity of tube-sphere intersection weld(J-groove weld) and establishes the mathematical model of tube-sphere intersection trajectory.Based on the characteristics of J-groove welds,the computational process of welding gun orientation is first simplified.Then the kinematic algorithm of a welding robot is obtained according to screw theory and exponential product formula.Finally,Solidworks and SimMechanics are employed to simulate the kinematics of the welding robot,which proves the feasibility of the kinematic algorithm. 展开更多
关键词 tube-sphere intersection screw theory kinematic analysis trajectory planning
在线阅读 下载PDF
Construction and kinematic performance analysis of a suspension support for wind tunnel tests of spinning projectiles based on wire-driven parallel robot with kinematic redundancy 被引量:2
17
作者 Zhou ZHU Lu SHI +2 位作者 Cong HE Lei ZHAN Qi LIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期404-415,共12页
This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobi... This paper presents a novel suspension support tailored for wind tunnel tests of spinning projectiles based on Wire-Driven Parallel Robot(WDPR),uniquely characterized by an SPM(Spinning Projectile Model)-centered mobile platform.First,an SPM-centered mobile platform,featuring two redundant and another unconstrained Degree of Freedom(DOF),and its suspension support mechanism are designed together,collectively constructing a WDPR endowed with kinematic redundancy.Afterward,the kinematics of the mechanism,boundary equations for the redundant DOFs,and relevant kinematic performance indices are then proposed and formulated.The results from both prototype experiments and numerical assessments are presented.The capability of the support mechanism to replicate the complex coupled motions of the SPM is verified by the experimental results,while the proposed kinematics and boundary equations are also validated.Furthermore,it is revealed by numerical assessments that the redundant DOFs of the mobile platform exert a minimal impact on the kinematic performance of the suspension support.Finally,the optimal global attitude performance is obtained when these DOFs are set to zero if they are restricted to constants.However,local attitude performance can be further improved by the variable values. 展开更多
关键词 Suspension support Wire-Driven Parallel Robot(WDPR) Spinning Projectile Model(SPM) Wind tunnels kinematic performance analysis kinematic redundancy
原文传递
Cutting force and specific energy for rotary ultrasonic drilling based on kinematics analysis of vibration effectiveness 被引量:3
18
作者 Zhen LI Songmei YUAN +2 位作者 Jiang MA Jun SHEN Andre D.L.BATAKO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期376-387,共12页
Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechan... Rotary ultrasonic drilling(RUD)has become an effective approach for machining advanced composites which are widely using in the field of aeronautics.The cutting kinematics and the corresponding material removal mechanisms are distinct in different drilling areas during RUD.However,these fundamentals have not been fully considered in the existing studies.In this research,two distinct forms of interaction induced by ultrasonic vibration were considered as impact-separation and vibratory lapping between the abrasives and workpiece.And the conditions to guarantee the effectiveness of these interactions were obtained to eliminate diminishing effects of ultrasonic vibration.Based on indentation fracture theory,the penetration depth of abrasives and the axial drilling force model was derived for RUD.The verification tests of C/SiC composites resulted in a prediction error within 15%.Due to the minimal volume of material removed during each vibration cycle,the drilling force was more stable in vibration assisted mode.The specific drilling energy of RUD was firstly calculated based on the measured drilling load.It was found the drilling parameters should be matched with vibration frequency and amplitude to make better usage of the advantages of ultrasonic vibration,which is critical in the vibration assisted processing of advanced materials. 展开更多
关键词 Ceramic matrix composite Drilling force modelling kinematics analysis Rotary ultrasonic drilling Specific drilling energy Vibration diminishing effect
原文传递
Kinematics Analysis and Experiment of a Cockroach-Like Robot 被引量:1
19
作者 高勇 陈伟海 陆震 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第1期71-77,共7页
This article describes the structure of the cockroach-like robot.Both kinematics and locomotion control are inspired by biological observations in cockroaches.Based on cockroach-like robot kinematics analysis,screw th... This article describes the structure of the cockroach-like robot.Both kinematics and locomotion control are inspired by biological observations in cockroaches.Based on cockroach-like robot kinematics analysis,screw theory,and the production-of-exponential (POE) formula,this paper focuses on the inverse kinematics which uses Paden-Kahan sub-problems to obtain directly the displacement of joint angles.The forward kinematics derives the relationship between joint angles according to the natural restrictions.Then,by using the POE formula,it can deduce the body pose and realize online trajectory control and planning.Through simulation and experimentation,it is proved that the straight-line walking and turning gait algorithms have static stability and the inverse kinematics analysis of cockroach-like robot is correct. 展开更多
关键词 cockroach-like robot kinematics analysis locomotion control
原文传递
Kinematics analysis for obstacle-surmounting capability of a joint double-tracked robot 被引量:1
20
作者 宗成国 高学山 +2 位作者 于岩 郭文增 李玲 《Journal of Beijing Institute of Technology》 EI CAS 2016年第2期202-210,共9页
A double-tracked robot is designed from mechanical and control perspectives,which consists of two segments connected with a swing joint. As the angle between the two segments of the robot platform can be changed,the r... A double-tracked robot is designed from mechanical and control perspectives,which consists of two segments connected with a swing joint. As the angle between the two segments of the robot platform can be changed,the robot can move like a four-tracked robot on many terrains. The center of gravity( CG) kinematics model is established,which plays an important role in the process of traveling over obstacles and climbing up stairs. Using this model,the CG change situation and the maximal height of the climbable obstacle are obtained. Then the relationship between the robot pitch angle and the height of the obstacle is established. Finally,a reasonable system structure for the robot is designed and its kinematics analysis for obstacle-surmounting capability is conducted through experiments. 展开更多
关键词 track robot center of gravity (CG) kinematics analysis obstacle-surmounting capa-bility
在线阅读 下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部