A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects...Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects of tensile strength cut-off and pore water pressure on the face stability of the longitudinally inclined shield tunnel are not well investigated.A failure mechanism of a longitudinally inclined shield tunnel face is constructed based on the spatial discretization technique and the tensile strength cut-off criterion is introduced to modify the constructed failure mechanism.The pore water pressure is introduced as an external force into the equation of virtual work and the objective function of the chamber pressure of the shield machine is obtained.Moreover,the critical chamber pressure of the longitudinally inclined shield tunnel is computed by optimal calculation.Parametric analysis indicates that both tensile strength cut-off and pore water pressure have a significant impact on the chamber pressure and the range of the collapse block.Finally,the theoretical results are compared with the numerical results calculated by FLAC3D software which proves that the proposed approach is effective.展开更多
Comparing with the homogeneous slope, the nonhomogeneous slope has more significance in practice. The main purpose of the present study is to provide a preliminary idea that how the nonhomogeneity influences the stabi...Comparing with the homogeneous slope, the nonhomogeneous slope has more significance in practice. The main purpose of the present study is to provide a preliminary idea that how the nonhomogeneity influences the stability of slopes under four different water drawdown regimes. Two typical categories of nonhomogeneity, identified as layered profile and strength increasing with depth profile, are included in the paper, and a nonhomogeneity coefficient is defined to quantify the degree of soil properties nonhomogeneity. With a modified discretization technique, the safety factors of nonhomogeneous slopes are calculated. On this basis, the variation of safety factor with the nonhomogeneity coefficient of friction angle and the water table level are investigated. In the present example, safety factor correlates linearly with friction angle nonhomogeneity coefficient from a whole view and the influences of the water table level on safety factor is basically similar with that in homogeneous condition.展开更多
Omni-directional imaging system is becoming more and more common in reducing the maintenance fees and the number of cameras used as well as increasing the angle of view in a single camera. Due to omni-directional imag...Omni-directional imaging system is becoming more and more common in reducing the maintenance fees and the number of cameras used as well as increasing the angle of view in a single camera. Due to omni-directional images are not directly understandable, an approach namely the un-warping process, has been implemented in converting the omni-directional image to a panoramic image, making it understandable. There are different kinds of methods used for the implementation of this approach. This paper evaluates the performance of the 3 universal un-warping methods currently applied actively around the world in transforming omni-directional image to panoramic image, namely the pano-mapping table method, discrete geometry method (DGT) and the log-polar mapping method. The algorithm of these methods will first be proposed, and the code will then be generated and be tested on several different omni-directional images. The images converted will then be compared among each other and be evaluated based on their performance on the resolutions, quality, algorithm used, complexity based on Big-O computations, processing time, and finally their data compression rate available for each of the methods. The most preferable un-warping method will then be concluded, taking into considerations all these factors.展开更多
Optical transfer delay(OTD)is essential for distributed coherent systems,optically controlled phased arrays,fiber sensing systems,and quantum communication systems.However,existing OTD measurement techniques typically...Optical transfer delay(OTD)is essential for distributed coherent systems,optically controlled phased arrays,fiber sensing systems,and quantum communication systems.However,existing OTD measurement techniques typically involve trade-offs among accuracy,range,and speed,limiting the application in the fields.Herein,we propose a single-shot OTD measurement approach that simultaneously achieves high-accuracy,long-range,and high-speed measurement.A microwave photonic phase-derived ranging with a nonlinear interval microwave frequency comb(MFC)and a discrete frequency sampling technique is proposed to conserve both frequency and time resources,ensuring high-accuracy and ambiguity-free measurements.In the proof-of-concept experiment,a delay measurement uncertainty at the 10^(-9) level with a single 10μs sampling time is first reported,to our knowledge.The method is also applied to coherently combine two distributed signals at 31.8 GHz,separated by a 2 km optical fiber.A minimal gain loss of less than 0.0038 d B compared to the theoretical value was achieved,corresponding to an OTD synchronization accuracy of 0.3 ps.展开更多
A new discretization technique is proposed for a three-dimensional(3D)tunnel face in weak strata with a random position in space.This method limits the angle,height,and thickness of the strata on the tunnel face.The o...A new discretization technique is proposed for a three-dimensional(3D)tunnel face in weak strata with a random position in space.This method limits the angle,height,and thickness of the strata on the tunnel face.The original whole piece of soil is separated by a series of parallel planes,and two parallel planes are used as a stratum.Each radial discrete plane is separated when it passes through the strata,and the change in the soil properties of discrete points on the truncated plane is considered separately inside the strata.Considering the spatial and temporal characteristics of seismic waves,a pseudo-dynamic analysis of the tunnel face is carried out.The tunnel face active damage types under earthquake conditions are quantitatively analyzed,and the corresponding support pressure design diagrams are given for the case without weak strata.For the case containing weak strata,the presence of weak strata can have adverse effects on the face.The failure mechanism of the weak strata is given by the discretization method.For different friction angles,the presence of the weak strata changes the friction angles of the soils.For the thickness,location and angle of the weak strata,the variation in the support pressure is given in this paper.To more intuitively depict the change in the failure mechanism in the presence of weak strata,the change in the failure mechanism under different thicknesses and weaknesses of weak strata is plotted.展开更多
This paper studies a single server discrete-time Erlang loss system with Bernoulli arrival process and no waiting space. The server in the system is assumed to provide two different types of services, namely essential...This paper studies a single server discrete-time Erlang loss system with Bernoulli arrival process and no waiting space. The server in the system is assumed to provide two different types of services, namely essential and optional services, to the customer. During the operation of the system, the arrival of the catastrophe will break the system down and simultaneously induce customer to leave the system immediately. Using a new type discrete supplementary variable technique, the authors obtain some performance characteristics of the queueing system, including the steady-state availability and failure frequency of the system, the steady-state probabilities for the server being idle, busy, breakdown and the loss probability of the system etc. Finally, by the numerical examples, the authors study the influence of the system parameters on several performance measures.展开更多
A dual-rate preview control strategy for a type of discrete-time system is proposed based on the theory of multirate control. First, by using the discrete lifting technique, the general dual-rate discrete-time system ...A dual-rate preview control strategy for a type of discrete-time system is proposed based on the theory of multirate control. First, by using the discrete lifting technique, the general dual-rate discrete-time system is converted into a single-rate augmented system. On this basis, the augmented error system is constructed by introducing a first-order difference operator and the previewable reference signal. Then the tracking problem is transformed into a regulator problem of the augmented error system. The optimal preview control law of the augmented error system is obtained by using standard linear quadratic optimal preview control theory, and then the optimal preview controller of the original system is derived. In addition, the necessary and sufficient conditions for the controller are given.Finally, simulation results show the effectiveness of the proposed method.展开更多
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金Projects(52278395,52208409) supported by the National Natural Science Foundation of ChinaProject(2022JJ40531) supported by the Natural Science Foundation of Hunan Province,China。
文摘Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects of tensile strength cut-off and pore water pressure on the face stability of the longitudinally inclined shield tunnel are not well investigated.A failure mechanism of a longitudinally inclined shield tunnel face is constructed based on the spatial discretization technique and the tensile strength cut-off criterion is introduced to modify the constructed failure mechanism.The pore water pressure is introduced as an external force into the equation of virtual work and the objective function of the chamber pressure of the shield machine is obtained.Moreover,the critical chamber pressure of the longitudinally inclined shield tunnel is computed by optimal calculation.Parametric analysis indicates that both tensile strength cut-off and pore water pressure have a significant impact on the chamber pressure and the range of the collapse block.Finally,the theoretical results are compared with the numerical results calculated by FLAC3D software which proves that the proposed approach is effective.
基金Project(51408180)supported by the National Natural Science Foundation of China
文摘Comparing with the homogeneous slope, the nonhomogeneous slope has more significance in practice. The main purpose of the present study is to provide a preliminary idea that how the nonhomogeneity influences the stability of slopes under four different water drawdown regimes. Two typical categories of nonhomogeneity, identified as layered profile and strength increasing with depth profile, are included in the paper, and a nonhomogeneity coefficient is defined to quantify the degree of soil properties nonhomogeneity. With a modified discretization technique, the safety factors of nonhomogeneous slopes are calculated. On this basis, the variation of safety factor with the nonhomogeneity coefficient of friction angle and the water table level are investigated. In the present example, safety factor correlates linearly with friction angle nonhomogeneity coefficient from a whole view and the influences of the water table level on safety factor is basically similar with that in homogeneous condition.
文摘Omni-directional imaging system is becoming more and more common in reducing the maintenance fees and the number of cameras used as well as increasing the angle of view in a single camera. Due to omni-directional images are not directly understandable, an approach namely the un-warping process, has been implemented in converting the omni-directional image to a panoramic image, making it understandable. There are different kinds of methods used for the implementation of this approach. This paper evaluates the performance of the 3 universal un-warping methods currently applied actively around the world in transforming omni-directional image to panoramic image, namely the pano-mapping table method, discrete geometry method (DGT) and the log-polar mapping method. The algorithm of these methods will first be proposed, and the code will then be generated and be tested on several different omni-directional images. The images converted will then be compared among each other and be evaluated based on their performance on the resolutions, quality, algorithm used, complexity based on Big-O computations, processing time, and finally their data compression rate available for each of the methods. The most preferable un-warping method will then be concluded, taking into considerations all these factors.
基金National Natural Science Foundation of China(62271249,62075095)Fundamental Research Funds for the Central UniversitiesFunding for Outstanding Doctoral Dissertation in NUAA(BCXJ24-09)。
文摘Optical transfer delay(OTD)is essential for distributed coherent systems,optically controlled phased arrays,fiber sensing systems,and quantum communication systems.However,existing OTD measurement techniques typically involve trade-offs among accuracy,range,and speed,limiting the application in the fields.Herein,we propose a single-shot OTD measurement approach that simultaneously achieves high-accuracy,long-range,and high-speed measurement.A microwave photonic phase-derived ranging with a nonlinear interval microwave frequency comb(MFC)and a discrete frequency sampling technique is proposed to conserve both frequency and time resources,ensuring high-accuracy and ambiguity-free measurements.In the proof-of-concept experiment,a delay measurement uncertainty at the 10^(-9) level with a single 10μs sampling time is first reported,to our knowledge.The method is also applied to coherently combine two distributed signals at 31.8 GHz,separated by a 2 km optical fiber.A minimal gain loss of less than 0.0038 d B compared to the theoretical value was achieved,corresponding to an OTD synchronization accuracy of 0.3 ps.
基金This study is supported by the Fundamental Research Funds for the Central Universities of Central South University,China(Grant No.2022ZZTS0696)。
文摘A new discretization technique is proposed for a three-dimensional(3D)tunnel face in weak strata with a random position in space.This method limits the angle,height,and thickness of the strata on the tunnel face.The original whole piece of soil is separated by a series of parallel planes,and two parallel planes are used as a stratum.Each radial discrete plane is separated when it passes through the strata,and the change in the soil properties of discrete points on the truncated plane is considered separately inside the strata.Considering the spatial and temporal characteristics of seismic waves,a pseudo-dynamic analysis of the tunnel face is carried out.The tunnel face active damage types under earthquake conditions are quantitatively analyzed,and the corresponding support pressure design diagrams are given for the case without weak strata.For the case containing weak strata,the presence of weak strata can have adverse effects on the face.The failure mechanism of the weak strata is given by the discretization method.For different friction angles,the presence of the weak strata changes the friction angles of the soils.For the thickness,location and angle of the weak strata,the variation in the support pressure is given in this paper.To more intuitively depict the change in the failure mechanism in the presence of weak strata,the change in the failure mechanism under different thicknesses and weaknesses of weak strata is plotted.
基金supported by the National Natural Science Foundation of China under Grant No.70871084Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 200806360001the Scientific Research Fund of Sichuan Provincial Education Department under Grant No.10ZA136
文摘This paper studies a single server discrete-time Erlang loss system with Bernoulli arrival process and no waiting space. The server in the system is assumed to provide two different types of services, namely essential and optional services, to the customer. During the operation of the system, the arrival of the catastrophe will break the system down and simultaneously induce customer to leave the system immediately. Using a new type discrete supplementary variable technique, the authors obtain some performance characteristics of the queueing system, including the steady-state availability and failure frequency of the system, the steady-state probabilities for the server being idle, busy, breakdown and the loss probability of the system etc. Finally, by the numerical examples, the authors study the influence of the system parameters on several performance measures.
基金Supported by the National Natural Science Foundation of China(61174209)
文摘A dual-rate preview control strategy for a type of discrete-time system is proposed based on the theory of multirate control. First, by using the discrete lifting technique, the general dual-rate discrete-time system is converted into a single-rate augmented system. On this basis, the augmented error system is constructed by introducing a first-order difference operator and the previewable reference signal. Then the tracking problem is transformed into a regulator problem of the augmented error system. The optimal preview control law of the augmented error system is obtained by using standard linear quadratic optimal preview control theory, and then the optimal preview controller of the original system is derived. In addition, the necessary and sufficient conditions for the controller are given.Finally, simulation results show the effectiveness of the proposed method.