This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspecti...This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.展开更多
Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time ...Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.展开更多
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc...This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.展开更多
Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propos...Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propose a quasi-orthogonal spacetime block code(QOSTBC)that can achieve a full transmission code rate for backscatter communication systems with a four-antenna tag and then extend the scheme to support tags with 2i antennas.Specifically,we first present the system model for the backscatter system.Next,we propose the QOSTBC scheme to encode the tag signals.Then,we provide the corresponding maximum likelihood detection algorithms to recover the tag signals.Finally,simulation results are provided to demonstrate that our proposed QOSTBC scheme and the detection algorithm can achieve a better transmission code rate or symbol error rate performance for backscatter communication systems compared with benchmark schemes.展开更多
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-...In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.展开更多
The discretization of random fields is the first and most important step in the stochastic analysis of engineering structures with spatially dependent random parameters.The essential step of discretization is solving ...The discretization of random fields is the first and most important step in the stochastic analysis of engineering structures with spatially dependent random parameters.The essential step of discretization is solving the Fredholm integral equation to obtain the eigenvalues and eigenfunctions of the covariance functions of the random fields.The collocation method,which has fewer integral operations,is more efficient in accomplishing the task than the timeconsuming Galerkin method,and it is more suitable for engineering applications with complex geometries and a large number of elements.With the help of isogeometric analysis that preserves accurate geometry in analysis,the isogeometric collocation method can efficiently achieve the results with sufficient accuracy.An adaptive moment abscissa is proposed to calculate the coordinates of the collocation points to further improve the accuracy of the collocation method.The adaptive moment abscissae led to more accurate results than the classical Greville abscissae when using the moment parameter optimized with intelligent algorithms.Numerical and engineering examples illustrate the advantages of the proposed isogeometric collocation method based on the adaptive moment abscissae over existing methods in terms of accuracy and efficiency.展开更多
We see the whole universe as a collection of very simple binary physical systems. With this assumption, we put forward a detailed model of discrete spaces. Our own universe with its four dimensions, shared between one...We see the whole universe as a collection of very simple binary physical systems. With this assumption, we put forward a detailed model of discrete spaces. Our own universe with its four dimensions, shared between one time-like dimension and three space-like dimensions, as well as the Minkowski metrics, are emerging properties of the model.展开更多
A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channe...A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.展开更多
This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the ...This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.展开更多
The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is...The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.展开更多
A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design...A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTR...In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Φ and a random Markov kernel (RMK) p(γ). In Section 3, the authors es-tablish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov br...展开更多
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization ...This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input.展开更多
A new method for discretization of continuous attributes is put forward to overcome the limitation of the traditional rough sets, which cannot deal with continuous attributes.The method is based on an improved algorit...A new method for discretization of continuous attributes is put forward to overcome the limitation of the traditional rough sets, which cannot deal with continuous attributes.The method is based on an improved algorithm to produce candidate cut points and an algorithm of reduction based on variable precision rough information entropy. With the guarantee of consistency of decision system, the method can reduce the number of cut points and im- prove efficiency of reduction. Adopting variable precision rough information entropy as measure criterion, it has a good tolerance to noise. Experiments show that the algorithm yields satisfying reduction results.展开更多
The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and ...The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and spatial resolutions of 1 h and 0.313°x0.312°, respectively. The efficiency of the analysis was evaluated by processing weather buoy data from the Pacific Ocean and measuring propagation loss in the Yellow Sea of China. The distribution features of evaporation duct height (EDH) and the related meteorological factors for different seas were analyzed. The global EDH is generally high and demonstrates a latitudinal distribution for oceans at low latitudes. The average EDH is approximately 11 m over oceans beside the equator with a latitude of less than 20°. The reasons for the formation of the global EDH features were also analyzed for different sea areas.展开更多
Space-time spreading (STS) and orthogonal transmit diversity (OTD) are towtransmit diversity schemes proposed by cdma2000 standard. In this paper, performance comparisonanalysis of the two transmits diversity schemes ...Space-time spreading (STS) and orthogonal transmit diversity (OTD) are towtransmit diversity schemes proposed by cdma2000 standard. In this paper, performance comparisonanalysis of the two transmits diversity schemes in multipath channel under multiuser situation arecarried out. Link level simulation in forward link cdma2000 is performed in IMT-2000 channel.Performance analysis and simulation results show that the performance improvement provided STS overOTD decreases as the increase of propagation path number and decrease of the user number.展开更多
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention R...The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.展开更多
基金co-supported by the National Natural Science Foundation of China(No.51976172)the National Science and Technology Major Project of China(No.2017-Ⅱ-0009-0023)。
文摘This paper revisits the Space-Time Gradient(STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric GaussSeidel/Gauss-Seidel(LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-countreduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.
基金supported by the Research Program of Wuhan Building Energy Efficiency Office(grant number 202331).
文摘Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.
基金supported by the Advance Research Project of Civil Aerospace Technology(Grant No.D020304)National Nat-ural Science Foundation of China(Grant Nos.52205257 and U22B2083).
文摘This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.
基金supported by Beijing Municipal Natural Science Foundation(L222002)the Natural Science Foundation of China(U22B2004).
文摘Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propose a quasi-orthogonal spacetime block code(QOSTBC)that can achieve a full transmission code rate for backscatter communication systems with a four-antenna tag and then extend the scheme to support tags with 2i antennas.Specifically,we first present the system model for the backscatter system.Next,we propose the QOSTBC scheme to encode the tag signals.Then,we provide the corresponding maximum likelihood detection algorithms to recover the tag signals.Finally,simulation results are provided to demonstrate that our proposed QOSTBC scheme and the detection algorithm can achieve a better transmission code rate or symbol error rate performance for backscatter communication systems compared with benchmark schemes.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-02160).
文摘In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.
基金Supported by National Natural Science Foundation of China(Grant Nos.U22A6001 and 52375273)Major Project of Science and Technology Innovation 2030(Grant No.2021ZD0113100)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24E050005)。
文摘The discretization of random fields is the first and most important step in the stochastic analysis of engineering structures with spatially dependent random parameters.The essential step of discretization is solving the Fredholm integral equation to obtain the eigenvalues and eigenfunctions of the covariance functions of the random fields.The collocation method,which has fewer integral operations,is more efficient in accomplishing the task than the timeconsuming Galerkin method,and it is more suitable for engineering applications with complex geometries and a large number of elements.With the help of isogeometric analysis that preserves accurate geometry in analysis,the isogeometric collocation method can efficiently achieve the results with sufficient accuracy.An adaptive moment abscissa is proposed to calculate the coordinates of the collocation points to further improve the accuracy of the collocation method.The adaptive moment abscissae led to more accurate results than the classical Greville abscissae when using the moment parameter optimized with intelligent algorithms.Numerical and engineering examples illustrate the advantages of the proposed isogeometric collocation method based on the adaptive moment abscissae over existing methods in terms of accuracy and efficiency.
文摘We see the whole universe as a collection of very simple binary physical systems. With this assumption, we put forward a detailed model of discrete spaces. Our own universe with its four dimensions, shared between one time-like dimension and three space-like dimensions, as well as the Minkowski metrics, are emerging properties of the model.
文摘A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.
文摘This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.
基金The National Natural Science Foundation of China(No60572072,60496311)the National High Technology Research and Development Program of China (863Program) (No2006AA01Z264)+1 种基金the National Basic Research Program of China (973Program) (No2007CB310603)the PhD Programs Foundation of Ministry of Educa-tion of China (No20060286016)
文摘The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.
文摘A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
基金Supported by the National Natural Science Foundation of China (10771185 and 10871200)
文摘In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Φ and a random Markov kernel (RMK) p(γ). In Section 3, the authors es-tablish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov br...
基金financial support for the first author’s PhD program by the President’s Graduate Fellowship in Singapore
文摘This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input.
文摘A new method for discretization of continuous attributes is put forward to overcome the limitation of the traditional rough sets, which cannot deal with continuous attributes.The method is based on an improved algorithm to produce candidate cut points and an algorithm of reduction based on variable precision rough information entropy. With the guarantee of consistency of decision system, the method can reduce the number of cut points and im- prove efficiency of reduction. Adopting variable precision rough information entropy as measure criterion, it has a good tolerance to noise. Experiments show that the algorithm yields satisfying reduction results.
基金The National Natural Science Foundation of China under contract No.11174235the Fundamental Research Funds for the Central Universities under contract No.3102014JC02010301
文摘The statistical features of the evaporation duct over the global ocean were comprehensively investigated with reanalysis data sets from the National Centers for Environmental Prediction. These data sets have time and spatial resolutions of 1 h and 0.313°x0.312°, respectively. The efficiency of the analysis was evaluated by processing weather buoy data from the Pacific Ocean and measuring propagation loss in the Yellow Sea of China. The distribution features of evaporation duct height (EDH) and the related meteorological factors for different seas were analyzed. The global EDH is generally high and demonstrates a latitudinal distribution for oceans at low latitudes. The average EDH is approximately 11 m over oceans beside the equator with a latitude of less than 20°. The reasons for the formation of the global EDH features were also analyzed for different sea areas.
文摘Space-time spreading (STS) and orthogonal transmit diversity (OTD) are towtransmit diversity schemes proposed by cdma2000 standard. In this paper, performance comparisonanalysis of the two transmits diversity schemes in multipath channel under multiuser situation arecarried out. Link level simulation in forward link cdma2000 is performed in IMT-2000 channel.Performance analysis and simulation results show that the performance improvement provided STS overOTD decreases as the increase of propagation path number and decrease of the user number.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
基金supported by the National Natural Science Foundation of China(Nos.62106283 and 72001214)。
文摘The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.