This paper gives a novel delay-dependent admissibility condition of discrete-time singular systems with time-varying delays. For convenience, the time-varying delay is assumed to be the sum of delay lower bound and th...This paper gives a novel delay-dependent admissibility condition of discrete-time singular systems with time-varying delays. For convenience, the time-varying delay is assumed to be the sum of delay lower bound and the integral multiples of a constant delay. Specially, if the constant delay is of unit length, the delay is an interval-like time-varying delay. The proposed admissibility condition is presented and expressed in terms of linear matrix inequality (LMI) by Lyapunov approach. Generally, the uncertainty of time-varying delay would lead to conservatism. In this paper, this critical issue is tackled by accurately estimating the time-varying delay. Consequently, the proposed admissibility condition is less conservative than the existing results, which is demonstrated by a numerical example.展开更多
Stochastic stability analysis and control synthesis problems are studied for a class of nonhomogeneous Markovian jump discretetime singular systems( MJDSS). The time-varying character is considered to be the model in ...Stochastic stability analysis and control synthesis problems are studied for a class of nonhomogeneous Markovian jump discretetime singular systems( MJDSS). The time-varying character is considered to be the model in a polytopic sense. Based on the parameter dependent stochastic Lyapunov functional and the matrix analysis techniques, sufficient criteria are derived to ensure regularity, causality and stochastic stability of the closed-loop singular system in terms of linear matrix inequalities. Finally,one example is provided to illustrate the effectiveness of our results.展开更多
A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to ...A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.展开更多
This paper investigates the problem of outlier-resistant distributed fusion filtering(DFF)for a class of multi-sensor nonlinear singular systems(MSNSSs)under a dynamic event-triggered scheme(DETS).To relieve the effec...This paper investigates the problem of outlier-resistant distributed fusion filtering(DFF)for a class of multi-sensor nonlinear singular systems(MSNSSs)under a dynamic event-triggered scheme(DETS).To relieve the effect of measurement outliers in data transmission,a self-adaptive saturation function is used.Moreover,to further reduce the energy consumption of each sensor node and improve the efficiency of resource utilization,a DETS is adopted to regulate the frequency of data transmission.For the addressed MSNSSs,our purpose is to construct the local outlier-resistant filter under the effects of the measurement outliers and the DETS;the local upper bound(UB)on the filtering error covariance(FEC)is derived by solving the difference equations and minimized by designing proper filter gains.Furthermore,according to the local filters and their UBs,a DFF algorithm is presented in terms of the inverse covariance intersection fusion rule.As such,the proposed DFF algorithm has the advantages of reducing the frequency of data transmission and the impact of measurement outliers,thereby improving the estimation performance.Moreover,the uniform boundedness of the filtering error is discussed and a corresponding sufficient condition is presented.Finally,the validity of the developed algorithm is checked using a simulation example.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems i...Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.展开更多
The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of...The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.展开更多
In this paper,the problem of designing robust H-infinity output feedback controller and l2-gain controller are investigated for a class of discrete-time singular piecewise-affine systems with input saturation and stat...In this paper,the problem of designing robust H-infinity output feedback controller and l2-gain controller are investigated for a class of discrete-time singular piecewise-affine systems with input saturation and state constraints. Based on a singular piecewise Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques,the H-infinity stabilization condition is established and the l2-gain controller is investigated,and meanwhile,the input saturation disturbance tolerance condition is proposed. Under energy bounded disturbance,the domain of attraction is well estimated and the l2-gain controller is designed in some restricted region. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. Meanwhile,by using the corresponding optimization methods,the domain of attraction and the disturbance tolerance level is maximized,and the H-infinity performance γ is minimized.Finally,numerical examples are given to illustrate the effectiveness of the proposed design methods.展开更多
The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and...The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.展开更多
This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncerta...This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.展开更多
In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to...In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.展开更多
This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so t...This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integra...By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.展开更多
This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The obj...This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The objective is to design a suitable robust SOF controller guaranteeing the regularity,causality and asymptotic stability of the resulting closed-loop system under arbitrary switching laws. Based on the basic matrix inequality sufficient condition for checking the admissibility of switched singular systems,together with some matrix inequality convexifying techniques,the SOF controller synthesis is developed for the underlying systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities( LMIs). A simulation example is given to show the effectiveness of the proposed method.展开更多
On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1...On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.展开更多
This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the ty...This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.展开更多
We provide the breakdown mechanism of pressureless gases when the initial vor-ticity is zero.In other words,the maximum norm of the divergence and Ilull control the breakdown of the solution.Then we show that the solu...We provide the breakdown mechanism of pressureless gases when the initial vor-ticity is zero.In other words,the maximum norm of the divergence and Ilull control the breakdown of the solution.Then we show that the solution must blow up for certain initial data in both non-relativistic and relativistic settings.展开更多
基金supported by National Natural Science Foundation of China (Nos.61035005,61175041,60904009)Program for Liaoning Excellent Talents in University (No. LJQ2011118)Natural Science Foundation of Liaoning Province (No. 201202201)
文摘This paper gives a novel delay-dependent admissibility condition of discrete-time singular systems with time-varying delays. For convenience, the time-varying delay is assumed to be the sum of delay lower bound and the integral multiples of a constant delay. Specially, if the constant delay is of unit length, the delay is an interval-like time-varying delay. The proposed admissibility condition is presented and expressed in terms of linear matrix inequality (LMI) by Lyapunov approach. Generally, the uncertainty of time-varying delay would lead to conservatism. In this paper, this critical issue is tackled by accurately estimating the time-varying delay. Consequently, the proposed admissibility condition is less conservative than the existing results, which is demonstrated by a numerical example.
基金National Natural Science Youth Foundation of China(No.61503238)National Natural Science Foundation of China(No.61673257)
文摘Stochastic stability analysis and control synthesis problems are studied for a class of nonhomogeneous Markovian jump discretetime singular systems( MJDSS). The time-varying character is considered to be the model in a polytopic sense. Based on the parameter dependent stochastic Lyapunov functional and the matrix analysis techniques, sufficient criteria are derived to ensure regularity, causality and stochastic stability of the closed-loop singular system in terms of linear matrix inequalities. Finally,one example is provided to illustrate the effectiveness of our results.
文摘A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.
基金Project supported by the National Natural Science Foundation of China(No.12171124)the Natural Science Foundation of Heilongjiang Province of China(No.ZD2022F003)+1 种基金the National High-end Foreign Experts Recruitment Plan of China(No.G2023012004L)the Alexander von Humboldt Foundation of Germany。
文摘This paper investigates the problem of outlier-resistant distributed fusion filtering(DFF)for a class of multi-sensor nonlinear singular systems(MSNSSs)under a dynamic event-triggered scheme(DETS).To relieve the effect of measurement outliers in data transmission,a self-adaptive saturation function is used.Moreover,to further reduce the energy consumption of each sensor node and improve the efficiency of resource utilization,a DETS is adopted to regulate the frequency of data transmission.For the addressed MSNSSs,our purpose is to construct the local outlier-resistant filter under the effects of the measurement outliers and the DETS;the local upper bound(UB)on the filtering error covariance(FEC)is derived by solving the difference equations and minimized by designing proper filter gains.Furthermore,according to the local filters and their UBs,a DFF algorithm is presented in terms of the inverse covariance intersection fusion rule.As such,the proposed DFF algorithm has the advantages of reducing the frequency of data transmission and the impact of measurement outliers,thereby improving the estimation performance.Moreover,the uniform boundedness of the filtering error is discussed and a corresponding sufficient condition is presented.Finally,the validity of the developed algorithm is checked using a simulation example.
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
基金supported by the National Natural Science Foundation of China (6090400960974004)
文摘Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金supported by the National Natural Science Foundation of China (No.60874007)
文摘The decentralized H-infinity control problem for discrete-time singular large-scale systems is considered. Based on the bounded real lemma of discrete-time singular systems, a sufficient condition for the existence of decentralized H-infinity controller for discrete-time singular large-scale systems is presented in terms of the solvability to a certain system of linear matrix inequalities by linear matrix inequality (LMI) approach, and the feasible solutions to the system of LMIs provide a parameterized representation of a set of decentralized H-infinity controller. The given example shows the application of the method.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘In this paper,the problem of designing robust H-infinity output feedback controller and l2-gain controller are investigated for a class of discrete-time singular piecewise-affine systems with input saturation and state constraints. Based on a singular piecewise Lyapunov function combined with S-procedure and some matrix inequality convexifying techniques,the H-infinity stabilization condition is established and the l2-gain controller is investigated,and meanwhile,the input saturation disturbance tolerance condition is proposed. Under energy bounded disturbance,the domain of attraction is well estimated and the l2-gain controller is designed in some restricted region. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. Meanwhile,by using the corresponding optimization methods,the domain of attraction and the disturbance tolerance level is maximized,and the H-infinity performance γ is minimized.Finally,numerical examples are given to illustrate the effectiveness of the proposed design methods.
基金supported by the Guangdong Province Introduced Innovative R&D Team of Big Data-Mathematical Earth Sciences and Extreme Geological Events Team(grant number 2021ZT09H399)the National Natural Science Foundation of China(grant number 42430111,42050103).
文摘The investigations of physical attributes of oceans,including parameters such as heat flow and bathymetry,have garnered substantial attention and are particularly valuable for examining Earth’s thermal structures and dynamic processes.Nevertheless,classical plate cooling models exhibit disparities when predicting observed heat flow and seafloor depth for extremely young and old lithospheres.Furthermore,a comprehensive analysis of global heat flow predictions and regional ocean heat flow or bathymetry data with physical models has been lacking.In this study,we employed power-law models derived from the singularity theory of fractal density to meticulously fit the latest ocean heat flow and bathymetry.Notably,power-law models offer distinct advantages over traditional plate cooling models,showcasing robust self-similarity,scale invariance,or scaling properties,and providing a better fit to observed data.The outcomes of our singularity analysis concerning heat flow and bathymetry across diverse oceanic regions exhibit a degree of consistency with the global ocean spreading rate model.In addition,we applied the similarity method to predict a higher resolution(0.1°×0.1°)global heat flow map based on the most recent heat flow data and geological/geophysical observables refined through linear correlation analysis.Regions displaying significant disparities between predicted and observed heat flow are closely linked to hydrothermal vent fields and active structures.Finally,combining the actual bathymetry and predicted heat flow with the power-law models allows for the quantitative and comprehensive detection of anomalous regions of ocean subsidence and heat flow,which deviate from traditional plate cooling models.The anomalous regions of subsidence and heat flow show different degrees of anisotropy,providing new ideas and clues for further analysis of ocean topography or hydrothermal circulation of mid-ocean ridges.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper is concerned with the problem of designing robust H∞and H2static output feedback controllers for a class of discrete-time piecewise-affine singular systems with norm-bounded time-varying parameters uncertainties. Based on a piecewise singular Lyapunov function combined with S-procedure,Projection lemma and some matrix inequality convexifying techniques,sufficient conditions in terms of linear matrix inequalities are given for the existence of an output-feedback controller for the discrete-time piecewiseaffine singular systems with a prescribed H∞disturbance attenuation level,and the H2norm is smaller than a given positive number. It is shown that the controller gains can be obtained by solving a family of LMIs parameterized by one or two scalar variables. The numerical examples are given to illustrate the effectiveness of the proposed design methods.
文摘In this paper,we construct a power type functional which is the approximation functional of the Singular Trudinger-Moser functional.Moreover,we obtain the concentration level of the functional and show it converges to the concentration level of singular Trudinger-Moser functional on the unit ball.
文摘This paper proposes the continuous-time singular value decomposition (SVD) for the impulse response function, a special kind of Green’s functions, in order to find a set of singular functions and singular values so that the convolutions of such function with the set of singular functions on a specified domain are the solutions to the inhomogeneous differential equations for those singular functions. A numerical example was illustrated to verify the proposed method. Besides the continuous-time SVD, a discrete-time SVD is also presented for the impulse response function, which is modeled using a Toeplitz matrix in the discrete system. The proposed method has broad applications in signal processing, dynamic system analysis, acoustic analysis, thermal analysis, as well as macroeconomic modeling.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
文摘By introducing noncanonical vortex pairs to partially coherent beams, spatial correlation singularity (SCS) and orbital angular momenta (OAM) of the resulting beams are studied using the Fraunhofer diffraction integral. The effect of noncanonical strength, off-axis distance and vortex sign on spatial correlation singularities in far field is stressed. Furthermore, far-field OAM spectra and densities are also investigated, and the OAM detection and crosstalk probabilities are discussed. The results show that the number of dislocations of SCS always equals the sum of absolute values of topological charges for canonical or noncanonical vortex pairs. Although the sum of the product of each OAM mode and its power weight equals the algebraic sum of topological charges for canonical vortex pairs, the relationship no longer holds in the noncanonical case except for opposite-charge vortex pairs. The changes of off-axis distance, noncanonical strength or coherence length can lead to a more dominant power in adjacent mode than that in center detection mode, which also indicates that crosstalk probabilities of adjacent modes exceed the center detection probability. This work may provide potential applications in OAM-based optical communication, imaging, sensing and computing.
基金Sponsored by the National Natural Science Foundation of China Grant No.61004038
文摘This paper is concerned with the problems of robust admissibility and static output feedback( SOF)stabilization for a class of discrete-time switched singular systems with norm-bounded parametric uncertainties.The objective is to design a suitable robust SOF controller guaranteeing the regularity,causality and asymptotic stability of the resulting closed-loop system under arbitrary switching laws. Based on the basic matrix inequality sufficient condition for checking the admissibility of switched singular systems,together with some matrix inequality convexifying techniques,the SOF controller synthesis is developed for the underlying systems. It is shown that the controller gains can be obtained by solving a set of strict linear matrix inequalities( LMIs). A simulation example is given to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(11931009,12271495,11971450,and 12071449)Anhui Initiative in Quantum Information Technologies(AHY150200)the Project of Stable Support for Youth Team in Basic Research Field,Chinese Academy of Sciences(YSBR-001).
文摘On a compact Riemann surface with finite punctures P_(1),…P_(k),we define toric curves as multivalued,totallyunramified holomorphic maps to P^(n)with monodromy in a maximal torus of PSU(n+1).Toric solutions to SU(n+1)Todasystems on X\{P_(1);…;P_(k)}are recognized by the associated toric curves in.We introduce character n-ensembles as-tuples of meromorphic one-forms with simple poles and purely imaginary periods,generating toric curves on minus finitelymany points.On X,we establish a correspondence between character-ensembles and toric solutions to the SU(n+1)system with finitely many cone singularities.Our approach not only broadens seminal solutions with two conesingularities on the Riemann sphere,as classified by Jost-Wang(Int.Math.Res.Not.,2002,(6):277-290)andLin-Wei-Ye(Invent.Math.,2012,190(1):169-207),but also advances beyond the limits of Lin-Yang-Zhong’s existencetheorems(J.Differential Geom.,2020,114(2):337-391)by introducing a new solution class.
基金co-supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF21-BJ-J-1180)。
文摘This paper addresses the Singular Optimal Control Problem(SOCP)for a surface-to-air missile with limited control,fully considering aerodynamic effects with a parabolic drag polar.This problem is an extension of the typical Goddard problem.First,the classical Legendre-Clebsch condition is applied to derive optimal conditions for the singular angle of attack,revealing that the missile turns by gravity along the singular arc.Second,the higher-order differentiation of the switching function provides the necessary conditions to determine the optimal thrust,expressed as linear functions of the costate variables.The vanishing coefficient determinant is then employed to decouple the control and costate variables,yielding the singular thrust solely dependent on state variables and identifying the singular surface.Moreover,the analytical singular control can be regarded as path constraints subject to the typical Optimal Control Problem(OCP),enabling the GPOPS-Ⅱ,a direct method framework that does not involve the singular condition,to solve the SOCP.Finally,three cases with different structures are presented to evaluate the performance of the proposed method.The results show that it takes a few steps to obtain the numerical optimal solution,which is consistent with the analytical solution derived from the calculus of variations,highlighting its great computational accuracy and effectiveness.
基金supported by the National Key R&D Program of China(2021YFA1001700)the NSFC(12071360)the Fundamental Research Funds for the Central Universities in China.
文摘We provide the breakdown mechanism of pressureless gases when the initial vor-ticity is zero.In other words,the maximum norm of the divergence and Ilull control the breakdown of the solution.Then we show that the solution must blow up for certain initial data in both non-relativistic and relativistic settings.