This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulat...This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.展开更多
A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to ...A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.展开更多
The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating...The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating the need for knowledge of the physical order of the controlled plant.Utilizing an ideal solution and equivalent dynamics,the approach integrates an adaptive network with feedback and robust controllers to establish a closed-loop system.A learning law is derived under practical conditions of the designed parameters,ensuring effective closed-loop performance based on pure-output feedback.The controller’s effectiveness is validated through both numerical and experimental systems,with results meeting the conditions specified in the main theorem.Comparative analysis highlights the controller’s highly satisfactory performance and its advantages.This research offers a promising approach to adaptive control for discrete-time systems with non-strict dynamics,providing practical solutions for systems with unknown dynamics and indeterminate system order.展开更多
This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-K...This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.展开更多
Objective:Artemether is a semi-synthetic derivative of artemisinin and is widely used in the treatment of Plasmodium(P.)falciparum malaria.This study aimed to characterize the safety profile of artemether based on 15-...Objective:Artemether is a semi-synthetic derivative of artemisinin and is widely used in the treatment of Plasmodium(P.)falciparum malaria.This study aimed to characterize the safety profile of artemether based on 15-year data retrived from FDA adverse event reporting system(FAERS).Methods:This is a retrospective analysis on 15-year data of artemether-related adverse effects(AEs)retrieved from the FAERS.AEs were classified according to System Organ Class(SOC)and Preferred Terms(PT).Signal detection was performed using Reporting Odds Ratios(ROR),Proportional Reporting Ratios(PRR),and Empirical Bayes Geometric Mean(EBGM).Stratified analyses examined the impact of demographic factors such as sex,age,and time-to-onset.Temporal patterns and associated risk factors were also investigated.Results:Haemolytic anaemia and haemolysis emerged as the most frequently reported AEs,exhibiting significantly elevated RORs(males:ROR 381.36,95%CI 247.06-588.60;females:ROR 455.11,95%CI 286.43-723.12).Sex-specific differences were evident,with females showing a higher incidence of reproductive-related AEs,including spontaneous abortion and premature labour.Temporal trend analysis revealed that the majority of AEs occurred within the first 30 days after the initiation of artemether administration,indicating a rapid onset.The most affected SOCs were blood and lymphatic system disorders and hepatobiliary disorders.Conclusions:Artemether is associated with a notable frequency of early-onset AEs,particularly hematological and hepatobiliary disorders.The observed sex-specific vulnerability to reproductive AEs highlights the need for sex-conscious clinical approaches.Enhanced post-treatment monitoring and further investigations into the drug’s pharmacokinetics and mechanistic pathways are recommended.展开更多
Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water re...Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.展开更多
An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time...An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities.Then,according to the Lyapunov functional method,the sufficient conditions for the existence of event-triggered robust guaranteed cost controller for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities are given.Furthermore,based on the sufficient conditions and the linear matrix inequality(LMI)technique,the problem of designing event-triggered robust guaranteed cost controller is transformed into a feasible solution problem of LMI.Finally,a numerical example is given to demonstrate that,under the proposed event-triggered robust guaranteed cost control,the closed-loop system is asymptotically stable and fewer communication resources are occupied.展开更多
A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,whic...A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.展开更多
To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary stat...To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.展开更多
A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalize...A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalized regression vector and defining the time delay and the rational dynamic parameters in the same vector.The gradient algorithm is used to deal with the identification problem.The effectiveness of this method is illustrated through simulation.展开更多
This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, ...This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.展开更多
This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all ag...This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.展开更多
The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bo...The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.展开更多
Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By app...Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.展开更多
Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems i...Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.展开更多
A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining...A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.展开更多
This paper presents a discrete-time model to describe the movements of a group of trains, in which some operational strategies, including traction operation, braking operation and impact of stochastic disturbance, are...This paper presents a discrete-time model to describe the movements of a group of trains, in which some operational strategies, including traction operation, braking operation and impact of stochastic disturbance, are defined. To show the dynamic characteristics of train traffic flow with stochastic disturbance, some numerical experiments on a railway line are simulated. The computational results show that the discrete-time movement model can well describe the movements of trains on a rail line with the moving-block signalling system. Comparing with the results of no disturbance, it finds that the traffic capacity of the rail line will decrease with the influence of stochastic disturbance. Additionally, the delays incurred by stochastic disturbance can be propagated to the subsequent trains, and then prolong their traversing time on the rail line. It can provide auxiliary information for rescheduling trains When the stochastic disturbance occurs on the railway.展开更多
This paper gives a novel delay-dependent admissibility condition of discrete-time singular systems with time-varying delays. For convenience, the time-varying delay is assumed to be the sum of delay lower bound and th...This paper gives a novel delay-dependent admissibility condition of discrete-time singular systems with time-varying delays. For convenience, the time-varying delay is assumed to be the sum of delay lower bound and the integral multiples of a constant delay. Specially, if the constant delay is of unit length, the delay is an interval-like time-varying delay. The proposed admissibility condition is presented and expressed in terms of linear matrix inequality (LMI) by Lyapunov approach. Generally, the uncertainty of time-varying delay would lead to conservatism. In this paper, this critical issue is tackled by accurately estimating the time-varying delay. Consequently, the proposed admissibility condition is less conservative than the existing results, which is demonstrated by a numerical example.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
基金supported in part by the National Natural Science Foundation of China(62473221)the Natural Science Foundation of Shandong Province,China(ZR2024MF006)Qingdao Natural Science Foundation(24-4-4-zrjj-165-jch)。
文摘This paper is concerned with event-triggered control of discrete-time systems with or without input saturation.First,an accumulative-error-based event-triggered scheme is devised for control updates.When the accumulated error between the current state and the latest control update exceeds a certain threshold,an event is triggered.Such a scheme can ensure the event-generator works at a relatively low rate rather than falls into hibernation especially after the system steps into its steady state.Second,the looped functional method for continuous-time systems is extended to discrete-time systems.By introducing an innovative looped functional that links the event-triggered scheme,some sufficient conditions for the co-design of control gain and event-triggered parameters are obtained in terms of linear matrix inequalities with a couple of tuning parameters.Then,the proposed method is applied to discrete-time systems with input saturation.As a result,both suitable control gains and event-triggered parameters are also co-designed to ensure the system trajectories converge to the region of attraction.Finally,an unstable reactor system and an inverted pendulum system are given to show the effectiveness of the proposed method.
文摘A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.
文摘The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating the need for knowledge of the physical order of the controlled plant.Utilizing an ideal solution and equivalent dynamics,the approach integrates an adaptive network with feedback and robust controllers to establish a closed-loop system.A learning law is derived under practical conditions of the designed parameters,ensuring effective closed-loop performance based on pure-output feedback.The controller’s effectiveness is validated through both numerical and experimental systems,with results meeting the conditions specified in the main theorem.Comparative analysis highlights the controller’s highly satisfactory performance and its advantages.This research offers a promising approach to adaptive control for discrete-time systems with non-strict dynamics,providing practical solutions for systems with unknown dynamics and indeterminate system order.
文摘This paper addresses the problem of event-triggered finite-time H<sub>∞</sub> filter design for a class of discrete-time nonlinear stochastic systems with exogenous disturbances. The stochastic Lyapunov-Krasoviskii functional method is adopted to design a filter such that the filtering error system is stochastic finite-time stable (SFTS) and preserves a prescribed performance level according to the pre-defined event-triggered criteria. Based on stochastic differential equations theory, some sufficient conditions for the existence of H<sub>∞</sub> filter are obtained for the suggested system by employing linear matrix inequality technique. Finally, the desired H<sub>∞</sub> filter gain matrices can be expressed in an explicit form.
文摘Objective:Artemether is a semi-synthetic derivative of artemisinin and is widely used in the treatment of Plasmodium(P.)falciparum malaria.This study aimed to characterize the safety profile of artemether based on 15-year data retrived from FDA adverse event reporting system(FAERS).Methods:This is a retrospective analysis on 15-year data of artemether-related adverse effects(AEs)retrieved from the FAERS.AEs were classified according to System Organ Class(SOC)and Preferred Terms(PT).Signal detection was performed using Reporting Odds Ratios(ROR),Proportional Reporting Ratios(PRR),and Empirical Bayes Geometric Mean(EBGM).Stratified analyses examined the impact of demographic factors such as sex,age,and time-to-onset.Temporal patterns and associated risk factors were also investigated.Results:Haemolytic anaemia and haemolysis emerged as the most frequently reported AEs,exhibiting significantly elevated RORs(males:ROR 381.36,95%CI 247.06-588.60;females:ROR 455.11,95%CI 286.43-723.12).Sex-specific differences were evident,with females showing a higher incidence of reproductive-related AEs,including spontaneous abortion and premature labour.Temporal trend analysis revealed that the majority of AEs occurred within the first 30 days after the initiation of artemether administration,indicating a rapid onset.The most affected SOCs were blood and lymphatic system disorders and hepatobiliary disorders.Conclusions:Artemether is associated with a notable frequency of early-onset AEs,particularly hematological and hepatobiliary disorders.The observed sex-specific vulnerability to reproductive AEs highlights the need for sex-conscious clinical approaches.Enhanced post-treatment monitoring and further investigations into the drug’s pharmacokinetics and mechanistic pathways are recommended.
基金National Key Research and Development Program of China,No.2023YFC3206605,No.2021YFC3201102National Natural Science Foundation of China,No.41971035。
文摘Precipitation events,which follow a life cycle of initiation,development,and decay,represent the fundamental form of precipitation.Comprehensive and accurate detection of these events is crucial for effective water resource management and flood control.However,current investigations on their spatio-temporal patterns remain limited,largely because of the lack of systematic detection indices that are specifically designed for precipitation events,which constrains event-scale research.In this study,we defined a set of precipitation event detection indices(PEDI)that consists of five conventional and fourteen extreme indices to characterize precipitation events from the perspectives of intensity,duration,and frequency.Applications of the PEDI revealed the spatial patterns of hourly precipitation events in China and its first-and second-order river basins from 2008 to 2017.Both conventional and extreme precipitation events displayed spatial distribution patterns that gradually decreased in intensity,duration,and frequency from southeast to northwest China.Compared with those in northwest China,the average values of most PEDIs in southeast China were usually 2-10 times greater for first-order river basins and 3-15 times greater for second-order basins.The PEDI could serve as a reference method for investigating precipitation events at global,regional,and basin scales.
基金supported by the National Natural Science Foundation of China(61573129 U1804147)+2 种基金the Innovative Scientists and Technicians Team of Henan Provincial High Education(20IRTSTHN019)the Innovative Scientists and Technicians Team of Henan Polytechnic University(T2019-2 T2017-1)
文摘An event-triggered scheme is proposed to solve the problems of robust guaranteed cost control for a class of two-dimensional(2-D)discrete-time systems.Firstly,an eventtriggered scheme is proposed for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities.Then,according to the Lyapunov functional method,the sufficient conditions for the existence of event-triggered robust guaranteed cost controller for 2-D discrete-time systems with parameter uncertainties and sector nonlinearities are given.Furthermore,based on the sufficient conditions and the linear matrix inequality(LMI)technique,the problem of designing event-triggered robust guaranteed cost controller is transformed into a feasible solution problem of LMI.Finally,a numerical example is given to demonstrate that,under the proposed event-triggered robust guaranteed cost control,the closed-loop system is asymptotically stable and fewer communication resources are occupied.
基金Project(50721063) supported by the National Natural Science Foundation of China
文摘A novel discrete-time reaching law was proposed for uncertain discrete-time system,which contained process noise and measurement noise.The proposed method reserves all the advantages of discrete-time reaching law,which not only decreases the band width of sliding mode and strengthens the system robustness,but also improves the dynamic performance and stability capability of the system.Moreover,a discrete-time sliding mode control strategy based on Kalman filter method was designed,and Kalman filter was employed to eliminate the influence of system noise.Simulation results show that there is no chattering phenomenon in the output of controller and the state variables of controlled system,and the proposed algorithm is also feasible and has strong robustness to external disturbances.
基金supported by the National Natural Science Foundation of China (60874054)
文摘To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.
基金supported by Ministry of the Higher Education and Scientific Research in Tunisia
文摘A new approach for simultaneous online identification of unknown time delay and dynamic parameters of discrete-time delay systems is proposed in this paper.The proposed algorithm involves constructing a new generalized regression vector and defining the time delay and the rational dynamic parameters in the same vector.The gradient algorithm is used to deal with the identification problem.The effectiveness of this method is illustrated through simulation.
基金supported by the Natural Science Foundation of China under Grant Nos.10747141 and 10735030Zhejiang Provincial Natural Science Foundation under Grant No.605408+3 种基金Ningbo Natural Science Foundation under Grant Nos.2007A610049 and 2008A61001National Basic Research Program of China (973 Program 2007CB814800)Programme for Changjiang Scholars and Innovative Research Team in University (IRT0734)K.C.Wong Magna Fund in Ningbo University
文摘This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system. Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discretetime chaotic systems. In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems. Numerical results demonstrate the effectiveness of the proposed control scheme.
基金supported by Deanship of Scientific research(CDSR)at KFUPM(RG-1316-1)
文摘This paper examines a consensus problem in multiagent discrete-time systems, where each agent can exchange information only from its neighbor agents. A decentralized protocol is designed for each agent to steer all agents to the same vector. The design condition is expressed in the form of a linear matrix inequality. Finally, a simulation example is presented and a comparison is made to demonstrate the effectiveness of the developed methodology.
基金supported by the National Science Fund of China for Distinguished Young Scholars(No.60725311)
文摘The main contribution of this paper is to present stability synthesis results for discrete-time piecewise affine (PWA) systems with polytopic time-varying uncertainties and for discrete-time PWA systems with norm-bounded uncertainties respectively.The basic idea of the proposed approaches is to construct piecewise-quadratic (PWQ) Lyapunov functions to guarantee the stability of the closed-loop systems.The partition information of the PWA systems is taken into account and each polytopic operating region is outer approximated by an ellipsoid,then sufficient conditions for the robust stabilization are derived and expressed as a set of linear matrix inequalities (LMIs).Two examples are given to illustrate the proposed theoretical results.
基金This work was supported by the National Natural Science Foundation of China (No.60274099) and the Foundation of Key Laboratory of Process Industry Automation, Ministry of Education
文摘Two approximation laws of sliding mode for discrete-time variable structure control systems are proposed to overcome the limitations of the exponential approximation law and the variable rate approximation law. By applying the proposed approximation laws of sliding mode to discrete-time variable structure control systems, the stability of origin can be guaranteed, and the chattering along the switching surface caused by discrete-time variable structure control can be restrained effectively. In designing of approximation laws, the problem that the system control input is restricted is also considered, which is very important in practical systems. Finally a simulation example shows the effectiveness of the two approximation laws proposed.
基金supported by the National Natural Science Foundation of China (6090400960974004)
文摘Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.
基金This work is supported by the National Natural Science Foundation of China (No.60421002) Priority supported financially by the New Century 151 Talent Project of Zhejiang Province.
文摘A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 70901006 and 60634010)the State Key Laboratory of Rail Traffic Control and Safety (Grant Nos. RCS2009ZT001 and RCS2008ZZ001)Beijing Jiaotong University, and the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No. 141034522)
文摘This paper presents a discrete-time model to describe the movements of a group of trains, in which some operational strategies, including traction operation, braking operation and impact of stochastic disturbance, are defined. To show the dynamic characteristics of train traffic flow with stochastic disturbance, some numerical experiments on a railway line are simulated. The computational results show that the discrete-time movement model can well describe the movements of trains on a rail line with the moving-block signalling system. Comparing with the results of no disturbance, it finds that the traffic capacity of the rail line will decrease with the influence of stochastic disturbance. Additionally, the delays incurred by stochastic disturbance can be propagated to the subsequent trains, and then prolong their traversing time on the rail line. It can provide auxiliary information for rescheduling trains When the stochastic disturbance occurs on the railway.
基金supported by National Natural Science Foundation of China (Nos.61035005,61175041,60904009)Program for Liaoning Excellent Talents in University (No. LJQ2011118)Natural Science Foundation of Liaoning Province (No. 201202201)
文摘This paper gives a novel delay-dependent admissibility condition of discrete-time singular systems with time-varying delays. For convenience, the time-varying delay is assumed to be the sum of delay lower bound and the integral multiples of a constant delay. Specially, if the constant delay is of unit length, the delay is an interval-like time-varying delay. The proposed admissibility condition is presented and expressed in terms of linear matrix inequality (LMI) by Lyapunov approach. Generally, the uncertainty of time-varying delay would lead to conservatism. In this paper, this critical issue is tackled by accurately estimating the time-varying delay. Consequently, the proposed admissibility condition is less conservative than the existing results, which is demonstrated by a numerical example.
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.