Study of chaotic synchronization as a fundamental phenomenon in the nonlinear dynamical systems theory has been recently raised many interests in science, engineering, and technology. In this paper, we develop a new m...Study of chaotic synchronization as a fundamental phenomenon in the nonlinear dynamical systems theory has been recently raised many interests in science, engineering, and technology. In this paper, we develop a new mathematical framework in study of chaotic synchronization of discrete-time dynamical systems. In the novel drive-response discrete-time dynamical system which has been coupled using convex link function, we introduce a synchronization threshold which passes that makes the drive-response system lose complete coupling and synchronized behaviors. We provide the application of this type of coupling in synchronized cycles of well-known Ricker model. This model displays a rich cascade of complex dynamics from stable fixed point and cascade of period-doubling bifurcation to chaos. We also numerically verify the effectiveness of the proposed scheme and demonstrate how this type of coupling makes this chaotic system and its corresponding coupled system starting from different initial conditions, quickly get synchronized.展开更多
This paper investigates the issue of stabilization for discrete-time dynamical systems(DDS)by event-triggered impulsive control(ETIC). Based on some relatively simple threshold constants, three levels of event con...This paper investigates the issue of stabilization for discrete-time dynamical systems(DDS)by event-triggered impulsive control(ETIC). Based on some relatively simple threshold constants, three levels of event conditions are set and thus the ETIC scheme is designed. Three cases for ETIC with and without time-delays and data dropouts are studied respectively, and the criteria on exponential stability are derived for the controlled DDS. The stabilization in the form of exponential stability is achieved for DDS under the designed ETIC with or without time-delays. And in the case of the ETIC data dropouts, the conditions of exponential stabilization are derived for DDS and the maximal allowable dropout rates for ETIC are estimated. Finally, one example with numerical simulations is worked out for illustration.展开更多
In this paper, by using both the linear stability analysis and Lyapunov function approach, some conditions for stabilizing synchronization behavior in a discrete-time complex dynamical network were derived. These cond...In this paper, by using both the linear stability analysis and Lyapunov function approach, some conditions for stabilizing synchronization behavior in a discrete-time complex dynamical network were derived. These conditions were determined by the coupling strength and the eigenvalues of coupling configuration matrix. Furthermore, some explicit results were obtained when the coupling map between the nodes is equal to the dynamics function of the network, which implies that the product of the coupling strength and the eigenvalues is bounded.展开更多
This paper introduces a model-free reinforcement learning technique that is used to solve a class of dynamic games known as dynamic graphical games. The graphical game results from to make all the agents synchronize t...This paper introduces a model-free reinforcement learning technique that is used to solve a class of dynamic games known as dynamic graphical games. The graphical game results from to make all the agents synchronize to the state of a command multi-agent dynamical systems, where pinning control is used generator or a leader agent. Novel coupled Bellman equations and Hamiltonian functions are developed for the dynamic graphical games. The Hamiltonian mechanics are used to derive the necessary conditions for optimality. The solution for the dynamic graphical game is given in terms of the solution to a set of coupled Hamilton-Jacobi-Bellman equations developed herein. Nash equilibrium solution for the graphical game is given in terms of the solution to the underlying coupled Hamilton-Jacobi-Bellman equations. An online model-free policy iteration algorithm is developed to learn the Nash solution for the dynamic graphical game. This algorithm does not require any knowledge of the agents' dynamics. A proof of convergence for this multi-agent learning algorithm is given under mild assumption about the inter-connectivity properties of the graph. A gradient descent technique with critic network structures is used to implement the policy iteration algorithm to solve the graphical game online in real-time.展开更多
In this paper,a stochastic linear quadratic optimal tracking scheme is proposed for unknown linear discrete-time(DT)systems based on adaptive dynamic programming(ADP)algorithm.First,an augmented system composed of the...In this paper,a stochastic linear quadratic optimal tracking scheme is proposed for unknown linear discrete-time(DT)systems based on adaptive dynamic programming(ADP)algorithm.First,an augmented system composed of the original system and the command generator is constructed and then an augmented stochastic algebraic equation is derived based on the augmented system.Next,to obtain the optimal control strategy,the stochastic case is converted into the deterministic one by system transformation,and then an ADP algorithm is proposed with convergence analysis.For the purpose of realizing the ADP algorithm,three back propagation neural networks including model network,critic network and action network are devised to guarantee unknown system model,optimal value function and optimal control strategy,respectively.Finally,the obtained optimal control strategy is applied to the original stochastic system,and two simulations are provided to demonstrate the effectiveness of the proposed algorithm.展开更多
This paper studies data-driven learning-based methods for the finite-horizon optimal control of linear time-varying discretetime systems. First, a novel finite-horizon Policy Iteration (PI) method for linear time-vary...This paper studies data-driven learning-based methods for the finite-horizon optimal control of linear time-varying discretetime systems. First, a novel finite-horizon Policy Iteration (PI) method for linear time-varying discrete-time systems is presented. Its connections with existing in finite-horizon PI methods are discussed. Then, both data-drive n off-policy PI and Value Iteration (VI) algorithms are derived to find approximate optimal controllers when the system dynamics is completely unknown. Under mild conditions, the proposed data-driven off-policy algorithms converge to the optimal solution. Finally, the effectiveness and feasibility of the developed methods are validated by a practical example of spacecraft attitude control.展开更多
A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to ...A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.展开更多
A device is defined as a memristor if it exhibits a pinched hysteresis loop in the current–voltage plane,and the loop area shrinks with increasing driven frequency until it gets a single-valued curve.However,the expl...A device is defined as a memristor if it exhibits a pinched hysteresis loop in the current–voltage plane,and the loop area shrinks with increasing driven frequency until it gets a single-valued curve.However,the explaination of the underlying mechanism for these fingerprints is still limited.In this paper,we propose the differential form of the memristor function,and we disclose the dynamical mechanism of the memristor according to the differential form.The symmetry of the curve is only determined by the driven signal,and the shrinking loop area results from the shrinking area enclosed by driven signal and the time coordinate axis.Significantly,we find the condition for the phase transition of a memristor,and the resistance switches between the positive resistance,local zero resistance,and local negative resistance.This phase transition is confirmed in the HP memristor.These results advance the understanding of the dynamics mechanism and phase transition of a memristor.展开更多
In this paper, we propose a new robust selfbtuning control, called the generalized minimum variance a/-equivalent self- tuning control (GMVSTC-a/) for the linear timevarying (LTV) systems, which can be described b...In this paper, we propose a new robust selfbtuning control, called the generalized minimum variance a/-equivalent self- tuning control (GMVSTC-a/) for the linear timevarying (LTV) systems, which can be described by the discrete-time auto-regressive exogenous (ARX) mathematical model in the presence of unmodelled dynamics. The estimation of the parameters contained in this mathematical model is made on the basis of the proposed modified recursive least squares (m-RLS) parametric estimation algorithm with dead zone and forgetting factor. The stability analysis of the proposed parametric estimation algorithm m-RLS is treated on the basis of a Lyapunov function. A numerical simulation example is used to prove the performances and the effectiveness of the explicit scheme of the proposed robust self-tuning control GMVSTC-a/.展开更多
The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More ...The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investi- gated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.展开更多
In this paper,we investigate the dynamical stability of transonic shock solutions for the full compressible Euler system in a two dimensional nozzle with a symmetric divergent part.Building upon the existence and uniq...In this paper,we investigate the dynamical stability of transonic shock solutions for the full compressible Euler system in a two dimensional nozzle with a symmetric divergent part.Building upon the existence and uniqueness results for steady symmetric transonic shock solutions to the nonisentropic Euler system established in[Z.P.Xin and H.C.Yin,The transonic shock in a nozzle,2-D and 3-D complete Euler systems,J.Differential Equations 245(2008)],we prove the dynamical stability of the transonic shock solutions under small perturbations.More precisely,if the initial unsteady transonic flow is located in the symmetric divergent part of the nozzle and the flow is a symmetric small perturbation of the steady transonic flow,we use the characteristic method to establish the dynamical stability.展开更多
Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal defo...Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process.展开更多
Biological neurons exhibit a double-membrane structure and perform specialized functions.Replicating the doublemembrane architecture in artificial neurons to mimic biological neuronal functions is a compelling researc...Biological neurons exhibit a double-membrane structure and perform specialized functions.Replicating the doublemembrane architecture in artificial neurons to mimic biological neuronal functions is a compelling research challenge.In this study,we propose a multifunctional neural circuit composed of two capacitors,two linear resistors,a phototube cell,a nonlinear resistor,and a memristor.The phototube and charge-controlled memristor serve as sensors for external light and electric field signals,respectively.By applying Kirchhoff's and Helmholtz's laws,we derive the system's nonlinear dynamical equations and energy function.We further investigate the circuit's dynamics using methods from nonlinear dynamics.Our results show that the circuit can exhibit both periodic and chaotic patterns under stimulation by external light and electric fields.展开更多
Within the framework of the isospin-dependent quantum molecular dynamics model,the fusion cross section and fusion mechanism of neutron-deficient Pu isotopes in the reactions24,26,30Si+196Hg were investigated.We found...Within the framework of the isospin-dependent quantum molecular dynamics model,the fusion cross section and fusion mechanism of neutron-deficient Pu isotopes in the reactions24,26,30Si+196Hg were investigated.We found that the fusion cross sections are higher in the reaction with a more neutron-rich beam owing to the lower dynamical barrier.The dynamical barrier decreases with decreasing incident energy,which explains the fusion enhancement at the sub-barrier energy.The peak value of N/Z ratio in the neck region is the highest in reaction30Si+196Hg,indirectly leading to the lowest dynamical barrier.Compared with the proton density distribution,the neck region for neutrons is larger,indicating that neutrons transfer more quickly than protons,leading to a high N/Z ratio in the neck.The time distribution of the appearance of dynamical barriers is wider at lower incident energies,indicating that the fusion process took longer to exchange nucleons.The single-particle potential barrier decreases with time evolution and finally disappears at a lower impact parameter,which is favorable for fusion events.展开更多
Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulse...Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD.In particular,Rabi error and detuning are primary systemic errors arising from finite pulse duration,incorrect time control,and frequency instability.Here,we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors.By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 orπ,our protocol can significantly reduce the influences of Rabi error and detuning.Our protocol is general and can be combined with the most existing DD sequences such as universal DD,knill DD,XY,etc.As an example,we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals.Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences,which can be applicable for various quantum sensing scenarios.展开更多
The recent discovery of type-Ⅶboron-carbon clathrates with calculated superconducting transition temperatures approaching~100 K has sparked interest in exploring new conventional superconductors that may be stabilize...The recent discovery of type-Ⅶboron-carbon clathrates with calculated superconducting transition temperatures approaching~100 K has sparked interest in exploring new conventional superconductors that may be stabilized at ambient pressure.The electronic structure of the clathrate is highly tunable based on the ability to substitute different metal atoms within the cages,which may also be large enough to host small molecules.Here we introduce molecular hydrogen(H_(2))within the clathrate cages and investigate its impact on electron-phonon coupling interactions and the superconducting transition temperature(T_(c)).Our approach involves combining molecular hydrogen with the new diamond-like covalent framework,resulting in a hydrogen-encapsulated clathrate,(H_(2))B_(3)C_(3).A notable characteristic of(H_(2))B_(3)C_(3)is the dynamic behavior of the H_(2)molecules,which exhibit nearly free rotations within the B-C cages,resulting in a dynamic structure that remains cubic on average.The static structure of(H_(2))B_(3)C_(3)(a snapshot in its dynamic trajectory)is calculated to be dynamically stable at ambient and low pressures.Topological analysis of the electron density reveals weak van der Waals interactions between molecular hydrogen and the B-C cages,marginally influencing the electronic structure of the material.The electron count and electronic structure calculations indicate that(H_(2))B_(3)C_(3)is a hole conductor,in which H_(2)molecules donate a portion of their valence electron density to the metallic cage framework.Electron-phonon coupling calculation using the Migdal-Eliashberg theory predicts that(H_(2))B_(3)C_(3)possesses a T_(c) of 46 K under ambient pressure.These results indicate potential for additional light-element substitutions within the type-Ⅶclathrate framework and suggest the possibility of molecular hydrogen as a new approach to optimizing the electronic structures of this new class of superconducting materials.展开更多
In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assist...Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.展开更多
Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth acros...Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.展开更多
文摘Study of chaotic synchronization as a fundamental phenomenon in the nonlinear dynamical systems theory has been recently raised many interests in science, engineering, and technology. In this paper, we develop a new mathematical framework in study of chaotic synchronization of discrete-time dynamical systems. In the novel drive-response discrete-time dynamical system which has been coupled using convex link function, we introduce a synchronization threshold which passes that makes the drive-response system lose complete coupling and synchronized behaviors. We provide the application of this type of coupling in synchronized cycles of well-known Ricker model. This model displays a rich cascade of complex dynamics from stable fixed point and cascade of period-doubling bifurcation to chaos. We also numerically verify the effectiveness of the proposed scheme and demonstrate how this type of coupling makes this chaotic system and its corresponding coupled system starting from different initial conditions, quickly get synchronized.
基金supported by the National Natural Science Foundation of China under Grant No.61673165the Hong Kong Research Grants Council of GRF Project under Grant No.17200415the Hunan Provincial Natural Science Foundation of China under Grants Nos.2015JJ2045 and 2017JJ2070
文摘This paper investigates the issue of stabilization for discrete-time dynamical systems(DDS)by event-triggered impulsive control(ETIC). Based on some relatively simple threshold constants, three levels of event conditions are set and thus the ETIC scheme is designed. Three cases for ETIC with and without time-delays and data dropouts are studied respectively, and the criteria on exponential stability are derived for the controlled DDS. The stabilization in the form of exponential stability is achieved for DDS under the designed ETIC with or without time-delays. And in the case of the ETIC data dropouts, the conditions of exponential stabilization are derived for DDS and the maximal allowable dropout rates for ETIC are estimated. Finally, one example with numerical simulations is worked out for illustration.
基金Project supported by the National Natural Science Foundation of China (Grant No.10471087), and Science Foundation of Shanghai Municipal Commission of Education (Grant No.03AK33)
文摘In this paper, by using both the linear stability analysis and Lyapunov function approach, some conditions for stabilizing synchronization behavior in a discrete-time complex dynamical network were derived. These conditions were determined by the coupling strength and the eigenvalues of coupling configuration matrix. Furthermore, some explicit results were obtained when the coupling map between the nodes is equal to the dynamics function of the network, which implies that the product of the coupling strength and the eigenvalues is bounded.
基金supported by the Deanship of Scientific Research at King Fahd University of Petroleum & Minerals Project(No.JF141002)the National Science Foundation(No.ECCS-1405173)+3 种基金the Office of Naval Research(Nos.N000141310562,N000141410718)the U.S. Army Research Office(No.W911NF-11-D-0001)the National Natural Science Foundation of China(No.61120106011)the Project 111 from the Ministry of Education of China(No.B08015)
文摘This paper introduces a model-free reinforcement learning technique that is used to solve a class of dynamic games known as dynamic graphical games. The graphical game results from to make all the agents synchronize to the state of a command multi-agent dynamical systems, where pinning control is used generator or a leader agent. Novel coupled Bellman equations and Hamiltonian functions are developed for the dynamic graphical games. The Hamiltonian mechanics are used to derive the necessary conditions for optimality. The solution for the dynamic graphical game is given in terms of the solution to a set of coupled Hamilton-Jacobi-Bellman equations developed herein. Nash equilibrium solution for the graphical game is given in terms of the solution to the underlying coupled Hamilton-Jacobi-Bellman equations. An online model-free policy iteration algorithm is developed to learn the Nash solution for the dynamic graphical game. This algorithm does not require any knowledge of the agents' dynamics. A proof of convergence for this multi-agent learning algorithm is given under mild assumption about the inter-connectivity properties of the graph. A gradient descent technique with critic network structures is used to implement the policy iteration algorithm to solve the graphical game online in real-time.
基金This work was supported by the National Natural Science Foundation of China(No.61873248)the Hubei Provincial Natural Science Foundation of China(Nos.2017CFA030,2015CFA010)the 111 project(No.B17040).
文摘In this paper,a stochastic linear quadratic optimal tracking scheme is proposed for unknown linear discrete-time(DT)systems based on adaptive dynamic programming(ADP)algorithm.First,an augmented system composed of the original system and the command generator is constructed and then an augmented stochastic algebraic equation is derived based on the augmented system.Next,to obtain the optimal control strategy,the stochastic case is converted into the deterministic one by system transformation,and then an ADP algorithm is proposed with convergence analysis.For the purpose of realizing the ADP algorithm,three back propagation neural networks including model network,critic network and action network are devised to guarantee unknown system model,optimal value function and optimal control strategy,respectively.Finally,the obtained optimal control strategy is applied to the original stochastic system,and two simulations are provided to demonstrate the effectiveness of the proposed algorithm.
基金The work of B. Pang and Z.-P. Jiang has been supported in part by the National Science Foundation (No. ECCS-1501044).
文摘This paper studies data-driven learning-based methods for the finite-horizon optimal control of linear time-varying discretetime systems. First, a novel finite-horizon Policy Iteration (PI) method for linear time-varying discrete-time systems is presented. Its connections with existing in finite-horizon PI methods are discussed. Then, both data-drive n off-policy PI and Value Iteration (VI) algorithms are derived to find approximate optimal controllers when the system dynamics is completely unknown. Under mild conditions, the proposed data-driven off-policy algorithms converge to the optimal solution. Finally, the effectiveness and feasibility of the developed methods are validated by a practical example of spacecraft attitude control.
文摘A robust Adaptive Discrete-time Sliding Mode Controller (ADSMC) is formulated, and is applied to control the pitch motion of a simulated Flapping-Wing Micro Air Vehicle (FWMAV). There is great potential for FWMAVs to be used as aerial tools to assist with gathering data and surveying environments. Thanks to modern manufacturing and technology, along with an increased comprehension behind the aerodynamics of wing flaps, these vehicles are now a reality, though not without limitations. Given their diminutive size, FWMAVs are susceptible to real-world disturbances, such as wind gusts, and are sensitive to particular variations in their build quality. While external forces such as wind gusts can be reasonably bounded, the unknown variations in the state may be difficult to characterize or bound without affecting performance. To address these problems, an ADSMC is developed. First, the FWMAV model is converted from continuous-time to discrete-time. Second, an ADSMC for the newly discretized FWMAV model is developed. Using this controller, the trajectory tracking performance of the FWMAV is assessed against a traditional discrete sliding mode controller, and is found to have a decreased chattering frequency and decreased control effort for the same task. Therefore, the ADSMC is assessed as the superior controller, despite being completely unaware of the model parameters or wind gust.
基金Supported by National Natural Science Foundation of China (60674021), Program for New Century Excellent Talents in University (NCET-04-0283), the Funds for Creative Research Groups of China (60521003), Program for Changjiang Scholars and Innovative Research Team in University (IRT0421), the State Key Program of National Natural Science of China (60534010) and the Funds of Ph. D. Program of Ministry of Education, China (20060145019)
文摘使量子化的动态产量反馈 H 控制为的问题分离时间线性时间不变(LTI ) 系统在这份报纸被调查。考虑的 quantizer 动态、镇静一可调节激增参数和静态的 quantizer。静态的 quantizer 范围具有实际意义并且充分被考虑。首先,考虑量子化错误,使量子化的控制策略控制器状态依赖于不仅而且在系统测量产量上,它被建议以便使量子化的靠近环的系统是 asymptotically 稳定的,与规定 H,性能跳。根据这结果,然后,一个反复的基于 LMI 的优化算法被开发优化静态的 quantizer 范围为靠近环的系统满足 H 表演要求。一个例子被举说明建议方法的有效性。
基金supported by the National Natural Science Foundation of China under Grant Nos.62071496,62061008the Research and Innovation Project of Graduate of Central South University under Grant No.2023ZZTS0168.
文摘A device is defined as a memristor if it exhibits a pinched hysteresis loop in the current–voltage plane,and the loop area shrinks with increasing driven frequency until it gets a single-valued curve.However,the explaination of the underlying mechanism for these fingerprints is still limited.In this paper,we propose the differential form of the memristor function,and we disclose the dynamical mechanism of the memristor according to the differential form.The symmetry of the curve is only determined by the driven signal,and the shrinking loop area results from the shrinking area enclosed by driven signal and the time coordinate axis.Significantly,we find the condition for the phase transition of a memristor,and the resistance switches between the positive resistance,local zero resistance,and local negative resistance.This phase transition is confirmed in the HP memristor.These results advance the understanding of the dynamics mechanism and phase transition of a memristor.
基金partially funded by the Australian Research Council(No.DP110102076)
文摘In this paper, we propose a new robust selfbtuning control, called the generalized minimum variance a/-equivalent self- tuning control (GMVSTC-a/) for the linear timevarying (LTV) systems, which can be described by the discrete-time auto-regressive exogenous (ARX) mathematical model in the presence of unmodelled dynamics. The estimation of the parameters contained in this mathematical model is made on the basis of the proposed modified recursive least squares (m-RLS) parametric estimation algorithm with dead zone and forgetting factor. The stability analysis of the proposed parametric estimation algorithm m-RLS is treated on the basis of a Lyapunov function. A numerical simulation example is used to prove the performances and the effectiveness of the explicit scheme of the proposed robust self-tuning control GMVSTC-a/.
文摘The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investi- gated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.
基金supported in part by NSFC(Grant Nos.12271205,12171498).
文摘In this paper,we investigate the dynamical stability of transonic shock solutions for the full compressible Euler system in a two dimensional nozzle with a symmetric divergent part.Building upon the existence and uniqueness results for steady symmetric transonic shock solutions to the nonisentropic Euler system established in[Z.P.Xin and H.C.Yin,The transonic shock in a nozzle,2-D and 3-D complete Euler systems,J.Differential Equations 245(2008)],we prove the dynamical stability of the transonic shock solutions under small perturbations.More precisely,if the initial unsteady transonic flow is located in the symmetric divergent part of the nozzle and the flow is a symmetric small perturbation of the steady transonic flow,we use the characteristic method to establish the dynamical stability.
基金supported by the Natural Science Foundation of Shaanxi Province of China(No.2023-JC-QN-0466)the National Natural Science Foundation of China(Nos.52305421 and 52175363)+1 种基金the General Research Fund of Hong Kong(No.15223520)the project No.1-ZE1W from the Hong Kong Polytechnic University.
文摘Since the as-cast microstructure benefits dynamic recrystallization(DRX)nucleation,the present research is focused on the microstructure evolution associated with the dendrites and precipitates during the thermal deformation of an ingot without homogenization treatment aiming at exploring a new efficient strategy of ingot cogging for superalloys.The as-cast samples were deformed at the sub-solvus temperature,and the DRX evolution from dendritic arms(DAs)to inter-dendritic regions(IDRs)was discussed based on the observation of the fishnet-like DRX microstructures and the gradient of DRX grain size at IDRs.The difference in the precipitates at DAs and IDRs played an essential role during the deformation and DRX process,which finally resulted in very different microstructures in the two areas.A selective straininduced grain boundary bulging(SIGBB)mechanism was found to function well and dominate the DRX nucleation at DAs.The grain boundary was able to migrate and bulge to nucleate on the condition that the boundary was located at DAs and had a great difference in dislocation density between its opposite sides at the same time.As for DRX nucleation at IDRs,the particle-stimulated nucleation(PSN)mechanism played a leading role,and the progressive subgrain rotation(PSR)and geometric DRX were two important supplementary mechanisms.The dislocation accumulation around the coarse precipitates at IDR resulted in progressive orientation rotation,which would generate DRX nuclei once the maximum misorientation there was sufficient to form a high-angle boundary with the matrix.The PSR or geometric DRX functioned at the severely elongated IDRs at the later stage of deformation,depending on the thickness of the elongated IDRs.The uniform microstructure was obtained by the deformation without homogenization and the subsequent annealing treatment.The smaller strain,the lower annealing temperature,and the much shorter soaking time requested in the above process lead to a smaller risk of cracking and a lower consumption of energy during the ingot-cogging process.
基金Project supported by the Gansu Provincial Department of Education University Teacher Innovation Fund Project(Grant No.2024A-168)the Qingyang Science and Technology Plan Project(Grant No.QY-STK-2024B-193)the Horizontal Research Project of Longdong University(Grant No.HXZK2422)。
文摘Biological neurons exhibit a double-membrane structure and perform specialized functions.Replicating the doublemembrane architecture in artificial neurons to mimic biological neuronal functions is a compelling research challenge.In this study,we propose a multifunctional neural circuit composed of two capacitors,two linear resistors,a phototube cell,a nonlinear resistor,and a memristor.The phototube and charge-controlled memristor serve as sensors for external light and electric field signals,respectively.By applying Kirchhoff's and Helmholtz's laws,we derive the system's nonlinear dynamical equations and energy function.We further investigate the circuit's dynamics using methods from nonlinear dynamics.Our results show that the circuit can exhibit both periodic and chaotic patterns under stimulation by external light and electric fields.
基金supported by the National Natural Science Foundation of China(No.12405145)。
文摘Within the framework of the isospin-dependent quantum molecular dynamics model,the fusion cross section and fusion mechanism of neutron-deficient Pu isotopes in the reactions24,26,30Si+196Hg were investigated.We found that the fusion cross sections are higher in the reaction with a more neutron-rich beam owing to the lower dynamical barrier.The dynamical barrier decreases with decreasing incident energy,which explains the fusion enhancement at the sub-barrier energy.The peak value of N/Z ratio in the neck region is the highest in reaction30Si+196Hg,indirectly leading to the lowest dynamical barrier.Compared with the proton density distribution,the neck region for neutrons is larger,indicating that neutrons transfer more quickly than protons,leading to a high N/Z ratio in the neck.The time distribution of the appearance of dynamical barriers is wider at lower incident energies,indicating that the fusion process took longer to exchange nucleons.The single-particle potential barrier decreases with time evolution and finally disappears at a lower impact parameter,which is favorable for fusion events.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.92476201,12025509,12305022,and 12475029)+1 种基金the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)Guangdong Provincial Quantum Science Strategic Initiative Fund(Grant Nos.GDZX2305006 and GDZX2405002)。
文摘Dynamical decoupling(DD),usually implemented by sophisticated sequences of instantaneous control pulses,is a well-established quantum control technique for quantum information and quantum sensing.In practice,the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD.In particular,Rabi error and detuning are primary systemic errors arising from finite pulse duration,incorrect time control,and frequency instability.Here,we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors.By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 orπ,our protocol can significantly reduce the influences of Rabi error and detuning.Our protocol is general and can be combined with the most existing DD sequences such as universal DD,knill DD,XY,etc.As an example,we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals.Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences,which can be applicable for various quantum sensing scenarios.
基金supported by Carnegie Canada and Natural Sciences and Engineering Research Council of Canada(NSERC)support from the U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences,under Award No.DESC0020683。
文摘The recent discovery of type-Ⅶboron-carbon clathrates with calculated superconducting transition temperatures approaching~100 K has sparked interest in exploring new conventional superconductors that may be stabilized at ambient pressure.The electronic structure of the clathrate is highly tunable based on the ability to substitute different metal atoms within the cages,which may also be large enough to host small molecules.Here we introduce molecular hydrogen(H_(2))within the clathrate cages and investigate its impact on electron-phonon coupling interactions and the superconducting transition temperature(T_(c)).Our approach involves combining molecular hydrogen with the new diamond-like covalent framework,resulting in a hydrogen-encapsulated clathrate,(H_(2))B_(3)C_(3).A notable characteristic of(H_(2))B_(3)C_(3)is the dynamic behavior of the H_(2)molecules,which exhibit nearly free rotations within the B-C cages,resulting in a dynamic structure that remains cubic on average.The static structure of(H_(2))B_(3)C_(3)(a snapshot in its dynamic trajectory)is calculated to be dynamically stable at ambient and low pressures.Topological analysis of the electron density reveals weak van der Waals interactions between molecular hydrogen and the B-C cages,marginally influencing the electronic structure of the material.The electron count and electronic structure calculations indicate that(H_(2))B_(3)C_(3)is a hole conductor,in which H_(2)molecules donate a portion of their valence electron density to the metallic cage framework.Electron-phonon coupling calculation using the Migdal-Eliashberg theory predicts that(H_(2))B_(3)C_(3)possesses a T_(c) of 46 K under ambient pressure.These results indicate potential for additional light-element substitutions within the type-Ⅶclathrate framework and suggest the possibility of molecular hydrogen as a new approach to optimizing the electronic structures of this new class of superconducting materials.
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金supported by the Scientific and Technological Innovation Project of SHASG(SCK2022-01)National Key Research and Development Program of China(2016YFC0803109)。
文摘Land subsidence significantly impacts the accuracy of the National Elevation Datum in China.In order to solve this issue,a dynamic and economical way was proposed to update the National Elevation Datum with the assistance of InSAR in the North China Plain,which served as the research area.Moreover,the GNSS result was used to correct the InSAR result for the vertical deformation field,which has a relatively unified deformation reference.By integrating the vertical deformation field with the national elevation control point,an analysis and evaluation of changes in the National Elevation Datum were conducted.In addition,a regional remeasurement scheme was formulated to achieve dynamic updates and mainte-nance of the National Elevation Datum on a regional scale.Through data acquisition and processing,we successfully improved reliability within the main subsidence areas for future use.As a result,updating the elevation values utilize a regional update method,and a dynamic and economical technical process to update the National Elevation Datum is shown in the study.
文摘Breast cancer’s heterogeneous progression demands innovative tools for accurate prediction.We present a hybrid framework that integrates machine learning(ML)and fractional-order dynamics to predict tumor growth across diagnostic and temporal scales.On the Wisconsin Diagnostic Breast Cancer dataset,seven ML algorithms were evaluated,with deep neural networks(DNNs)achieving the highest accuracy(97.72%).Key morphological features(area,radius,texture,and concavity)were identified as top malignancy predictors,aligning with clinical intuition.Beyond static classification,we developed a fractional-order dynamical model using Caputo derivatives to capture memory-driven tumor progression.The model revealed clinically interpretable patterns:lower fractional orders correlated with prolonged aggressive growth,while higher orders indicated rapid stabilization,mimicking indolent subtypes.Theoretical analyses were rigorously proven,and numerical simulations closely fit clinical data.The framework’s clinical utility is demonstrated through an interactive graphics user interface(GUI)that integrates real-time risk assessment with growth trajectory simulations.