In this paper, authors study the qualitative behavior of solutions of the discrete population model xn-xn-1=xn (a+bxn-k-cx2n-k),where a ∈ (0, 1), b ∈ (-∞, 0),c ∈ (0,∞ ), and k is a positive integer. They hot only...In this paper, authors study the qualitative behavior of solutions of the discrete population model xn-xn-1=xn (a+bxn-k-cx2n-k),where a ∈ (0, 1), b ∈ (-∞, 0),c ∈ (0,∞ ), and k is a positive integer. They hot only obtain necessary as well as sufficient and necessary conditions for the oscillation of ail eventually positive solutions about the positive equilibrium, but also obtain some sufficient conditions for the convergence of eventually positive solutions. Furthermore, authors also show that such model is uniformly persistent, and that all its eventually positive solutions are bounded.展开更多
文摘In this paper, authors study the qualitative behavior of solutions of the discrete population model xn-xn-1=xn (a+bxn-k-cx2n-k),where a ∈ (0, 1), b ∈ (-∞, 0),c ∈ (0,∞ ), and k is a positive integer. They hot only obtain necessary as well as sufficient and necessary conditions for the oscillation of ail eventually positive solutions about the positive equilibrium, but also obtain some sufficient conditions for the convergence of eventually positive solutions. Furthermore, authors also show that such model is uniformly persistent, and that all its eventually positive solutions are bounded.