期刊文献+
共找到32,371篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of discrete fracture networks on simulating hydraulic fracturing,induced seismicity and trending transition of relative modulus in coal seams 被引量:1
1
作者 Xin Zhang Guangyao Si +3 位作者 Qingsheng Bai Joung Oh Biao Jiao Wu Cai 《International Journal of Coal Science & Technology》 2025年第1期263-278,共16页
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd... Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data. 展开更多
关键词 discrete fracture network Hydraulic fracturing discrete element method Induced seismicity Relative modulus
在线阅读 下载PDF
Discretization and assembly connection technology of cement concrete pavement structure: A review
2
作者 Mingjing Fang Longjie Xiang +3 位作者 Yao Wang Shaojie Li Hanhui Wang Hua Xie 《Journal of Road Engineering》 2025年第3期378-393,共16页
Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time ... Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field. 展开更多
关键词 Cement concrete pavement Precast concrete pavement Pavement discretization discrete unit Assembly and connection
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method 被引量:1
3
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method PROPPANT SPHERICITY CFD-DEM
在线阅读 下载PDF
Cyber-Attacks With Resource Constraints on Discrete Event Systems Under Supervisory Control
4
作者 Zhaoyang He Naiqi Wu +1 位作者 Rong Su Zhiwu Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期585-595,共11页
With the development of cyber-physical systems,system security faces more risks from cyber-attacks.In this work,we study the problem that an external attacker implements covert sensor and actuator attacks with resourc... With the development of cyber-physical systems,system security faces more risks from cyber-attacks.In this work,we study the problem that an external attacker implements covert sensor and actuator attacks with resource constraints(the total resource consumption of the attacks is not greater than a given initial resource of the attacker)to mislead a discrete event system under supervisory control to reach unsafe states.We consider that the attacker can implement two types of attacks:One by modifying the sensor readings observed by a supervisor and the other by enabling the actuator commands disabled by the supervisor.Each attack has its corresponding resource consumption and remains covert.To solve this problem,we first introduce a notion of combined-attackability to determine whether a closedloop system may reach an unsafe state after receiving attacks with resource constraints.We develop an algorithm to construct a corrupted supervisor under attacks,provide a verification method for combined-attackability in polynomial time based on a plant,a corrupted supervisor,and an attacker's initial resource,and propose a corresponding attack synthesis algorithm.The effectiveness of the proposed method is illustrated by an example. 展开更多
关键词 Cyber-attack cyber-physical system discrete event system supervisory control
在线阅读 下载PDF
Image Watermarking Algorithm Base on the Second Order Derivative and Discrete Wavelet Transform
5
作者 Maazen Alsabaan Zaid Bin Faheem +1 位作者 Yuanyuan Zhu Jehad Ali 《Computers, Materials & Continua》 2025年第7期491-512,共22页
Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embe... Image watermarking is a powerful tool for media protection and can provide promising results when combined with other defense mechanisms.Image watermarking can be used to protect the copyright of digital media by embedding a unique identifier that identifies the owner of the content.Image watermarking can also be used to verify the authenticity of digital media,such as images or videos,by ascertaining the watermark information.In this paper,a mathematical chaos-based image watermarking technique is proposed using discrete wavelet transform(DWT),chaotic map,and Laplacian operator.The DWT can be used to decompose the image into its frequency components,chaos is used to provide extra security defense by encrypting the watermark signal,and the Laplacian operator with optimization is applied to the mid-frequency bands to find the sharp areas in the image.These mid-frequency bands are used to embed the watermarks by modifying the coefficients in these bands.The mid-sub-band maintains the invisible property of the watermark,and chaos combined with the second-order derivative Laplacian is vulnerable to attacks.Comprehensive experiments demonstrate that this approach is effective for common signal processing attacks,i.e.,compression,noise addition,and filtering.Moreover,this approach also maintains image quality through peak signal-to-noise ratio(PSNR)and structural similarity index metrics(SSIM).The highest achieved PSNR and SSIM values are 55.4 dB and 1.In the same way,normalized correlation(NC)values are almost 10%–20%higher than comparative research.These results support assistance in copyright protection in multimedia content. 展开更多
关键词 discrete wavelet transform LAPLACIAN image watermarking CHAOS multimedia security
在线阅读 下载PDF
Dynamical study of discrete prey-predator system incorporating proportional prey refuge with interval parameters
6
作者 Prasun K.Santra Ghanshaym S.Mahapatra 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第2期276-296,共21页
This paper presents the dynamical properties of a discrete-time prey-predator model with refuge in prey under imprecise biological parameters.We consider the refuge concept of prey,which is proportional to the density... This paper presents the dynamical properties of a discrete-time prey-predator model with refuge in prey under imprecise biological parameters.We consider the refuge concept of prey,which is proportional to the density of prey species with interval parameters.The model develops with natural interval parameters since the uncertainties of parameters of any ecological system are a widespread phenomenon in nature.The equilibria of the model are obtained,and the dynamic behaviours of the proposed system are examined.Simulations of the model are performed for different parameters of the model.Numerical simulations show that the proposed discrete model exhibits rich dynamics of a chaotic and complex nature.Our study,through analytical derivation and numerical example,presents the effect of refuge on population dynamics under imprecise biological parameters. 展开更多
关键词 discrete prey-predator model REFUGE interval number stability analysis BIFURCATION
在线阅读 下载PDF
Design of Universal Platform Architecture for Complex Discrete Storage System
7
作者 Yangyang Zhang Haiting Xu +1 位作者 Dong Wang Bo Xu 《Journal of Electronic Research and Application》 2025年第1期209-217,共9页
The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process... The flexible satellite batch production line is a complex discrete production system with multiple cross-disciplinary fields and mixed serial parallel tasks.As the source of the satellite batch production line process,the warehousing system has urgent needs such as uncertain production scale and rapid iteration and optimization of business processes.Therefore,the requirements and architecture of complex discrete warehousing systems such as flexible satellite batch production lines are studied.The physical system of intelligent equipment is abstracted as a digital model to form the underlying module,and a digital fusion framework of“business domain+middleware platform+intelligent equipment information model”is constructed.The granularity of microservice splitting is calculated based on the dynamic correlation relationship between user access instances and database table structures.The general warehousing functions of the platform are divided to achieve module customization,addition,and configuration.An open discrete warehousing system based on microservices is designed.Software architecture and design develop complex discrete warehousing systems based on the SpringCloud framework.This architecture achieves the decoupling of business logic and physical hardware,enhances the maintainability and scalability of the system,and greatly improves the system’s adaptability to different complex discrete warehousing business scenarios. 展开更多
关键词 Satellite batch production line Complex discrete production Warehousing system Architecture design FLEXIBILITY Microservices
在线阅读 下载PDF
Accessing Elastic Properties of Porous Solid Oxide Fuel Cell Electrodes Using 2D Image-Based Discrete Element Modeling and Deep Learning
8
作者 Shihao Zhou Yan Zeng +6 位作者 Xuhao Liu Xianhang Li Christophe L.Martin Naoki Shikazono Shotaro Hara Zilin Yan Zheng Zhong 《Acta Mechanica Solida Sinica》 2025年第3期384-401,共18页
The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is ess... The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is essential for enhancing the performance and durability of SOFCs.Accurate prediction of mechanical properties of porous electrode can be achieved by microscale finite element modeling based on three-dimensional(3D)microstructures,which requires expensive 3D tomography techniques and massive computational resources.In this study,we proposed a cost-effective alternative approach to access the mechanical properties of porous electrodes,with the elastic properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δc)athode serving as a case study.Firstly,a stochastic modeling was used to reconstruct 3D microstructures from two-dimensional(2D)cross-sections as an alternative to expensive tomography.Then,the discrete element method(DEM)was used to predict the elastic properties of porous ceramics based on the discretized 3D microstructures reconstructed by stochastic modeling.Based on 2D microstructure and the elastic properties calculated by the DEM modeling of the 3D reconstructed porous microstructures,a convolutional neural network(CNN)based deep learning model was built to predict the elastic properties rapidly from 2D microstructures.The proposed combined framework can be implemented with limited computational resources and provide a basis for rapid prediction of mechanical properties and parameter estimation for multiscale modeling of SOFCs. 展开更多
关键词 Porous ceramics MICROSTRUCTURE Stochastic reconstruction discrete element method Deep learning
原文传递
Deformation monitoring at shield tunnel joints:Laboratory test and discrete element simulation
9
作者 Maoyi Mao Xiaowei Yang +2 位作者 Chun Liu Tao Zhao Hui Liu 《Deep Underground Science and Engineering》 2025年第1期149-157,共9页
Shield tunnel,composed of several segments,is widely used in urban underground engineering.When the tunnel is under load,relative displacement occurs between adjacent segments.In the past,distributed optical fiber sen... Shield tunnel,composed of several segments,is widely used in urban underground engineering.When the tunnel is under load,relative displacement occurs between adjacent segments.In the past,distributed optical fiber sensing technology was used to perform strain monitoring,but there is an urgent need to determine how to transform strain into displacement.In this study,optical frequency domain reflectometry was applied in laboratory tests.Aiming at the shear process and center settlement process of shield tunnel segments,two kinds of quantitative calculation methods were put forward to carry out a quantitative analysis.Meanwhile,the laboratory test process was simulated numerically utilizing the discrete element numerical analysis method.Optical fiber,an atypical geotechnical material,was innovatively applied for discrete element modeling and numerical simulation.The results show that the measured displacement of the dial gauge,the calculated results of the numerical model,and the displacement quantitatively calculated from the optical fiber data agree with each other in general.The latter two methods can potentially be utilized in engineering application of deformation monitoring at shield tunnel joints,but need to be further calibrated and adjusted in detail. 展开更多
关键词 discrete element method distributed optical fiber MatDEM OFDR shield tunnel
原文传递
Job Preferences of Centers for Disease Control and Prevention Workers:A Discrete Choice Experiment in China
10
作者 Yan Guo Hanlin Nie +6 位作者 Hao Chen Stephen Nicholas Elizabeth Maitland Sisi Chen Lieyu Huang Xiumin Zhang Xuefeng Shi 《Biomedical and Environmental Sciences》 2025年第6期740-750,共11页
Objective This study explored the job choice preferences of Center for Disease Prevention and Control(CDC)workers to provide CDC management information and recommendations for optimizing employee retention and motivat... Objective This study explored the job choice preferences of Center for Disease Prevention and Control(CDC)workers to provide CDC management information and recommendations for optimizing employee retention and motivation policies.Methods A discrete choice experiment was conducted in nine provinces across China.Seven key attributes were identified to analyze the job preferences of CDC workers.Mixed logit models,latent class models,and policy simulation tools were used.Results A valid sample of 5,944 cases was included in the analysis.All seven attributes significantly influenced the job choices of CDC workers.Heterogeneity analyses identified two main groups based on different levels of preference for attribute utility.Income-prioritizers were concerned with income and opportunities for career development,whereas bianzhi-prioritizers were concerned with bianzhi and welfare benefits.The policy simulation analysis revealed that income-prioritizers had a relatively higher sensitivity to multiple job preference incentives.Conclusion Income and bianzhi were the two key attributes influencing the job choices and retention preferences of CDC workers.Heterogeneity in job preferences was also identified.Based on the preference characteristics of different subgroups,policy content should be skewed to differentiate the importance of incentives. 展开更多
关键词 Job preferences CDC workers discrete choice experiment China
暂未订购
Chaotic Analysis and Control of a Two-Peak Discrete Chaotic System
11
作者 ZHANG Liang HAN Qin 《Wuhan University Journal of Natural Sciences》 2025年第3期276-282,共7页
The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the... The nonlinear dynamic characteristics of a two-peak discrete chaotic system are studied.Through the study of the nonlinear dy‐namic behavior of the system,it is found that with the change of the system parameters,the system starts from a chaotic state,and then goes through intermittent chaos,stable region,period-doubling bifurcation to a chaotic state again.The systems critical conditions and pro‐cess to generate intermittent chaos are analyzed.The feedback control method sets linear and nonlinear controllers for the system to control the chaos.By adjusting the value of control parameters,the intermittent chaos can be delayed or disappear,and the stability region and period-doubling bifurcation process of the system can be expanded.Both linear controllers and nonlinear controllers have the same control effect.The numerical simulation analysis verifies the correctness of the theoretical analysis. 展开更多
关键词 two-peak discrete chaotic system intermittent chaos linear controller nonlinear controller chaos control
原文传递
Optimization of Fracture Propagation in Coal Seams Using Discrete Lattice Method:Case Study of the L Block,China
12
作者 Xuesong Xing Li Wang +4 位作者 Guangai Wu Chengyong Peng Yanan Hou Jingyu Zi Biao Yin 《Energy Engineering》 2025年第7期2911-2930,共20页
Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuse... Hydraulic fracturing,an effective method for enhancing coal seam productivity,largely determines coalbed methane(CBM)production,which is significantly influenced by geological and engineering factors.This study focuses on the L block to investigate the mechanisms influencing efficient fracture propagation and enhanced stimulated reservoir volume(SRV)in fracturing.To explore the mechanisms influencing effective fracture propagation and enhanced SRV,the L block was selected as the research object,with a comprehensive consideration of geological background,reservoir properties,and dynamic production data.By combining the discrete lattice method with numer-ical analysis and true triaxial experimental simulation,the fracture morphology of a single cluster and the propagation patterns of multiple clusters of complex fractures were obtained.Additionally,the optimization of temporary plugging timing and the fracture map under multiple factors were innovatively proposed.Results indicate that greater flow rate and viscosity can effectively overcome the stress shadow effect of the outermost fractures(1st and 6th clusters),increasing the fracture pressure of the single cluster and the equilibrium degree of multiple fracture propagation,thus forming a more complex fracture network.Moreover,when viscosity exceeds 45 pressure concentrates at fracture mPa⋅s,tips,promoting discontinuous propagation and reducing flow resistance.Conversely,increased gangue thickness and spacing between horizontal wells increase the vertical propagation pressure,suppressing fracture growth and reducing central flow velocity.This study provides a multi-cluster fracture propagation map for optimizing volumetric fracturing in coal seams and suggests that the optimal temporary plugging time significantly enhances the SRV. 展开更多
关键词 Coalbed methane hydraulic fracturing discrete lattice method multi-cluster fracturing temporary plugging
在线阅读 下载PDF
Investigation of the effect of particle composition on its distribution homogeneity in aggregate blend using discrete element method
13
作者 Weixiao Yu Sudi Wang +1 位作者 Zhenlong Gong Yinghao Miao 《Journal of Road Engineering》 2025年第1期116-127,共12页
The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRE... The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture. 展开更多
关键词 Aggregate blend Distribution homogeneity Particle combination discrete element method
在线阅读 下载PDF
A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
14
作者 Weiping Wu Mengjiao Wang Qigui Yang 《Chinese Physics B》 2025年第5期303-309,共7页
Since the method of discretizing memristors was proposed,discrete memristors(DMs)have become a very important topic in recent years.However,there has been little research on non-autonomous discrete memristors(NDMs)and... Since the method of discretizing memristors was proposed,discrete memristors(DMs)have become a very important topic in recent years.However,there has been little research on non-autonomous discrete memristors(NDMs)and their applications.Therefore,in this paper,a new NDM is constructed,and a non-autonomous hyperchaotic map is proposed by connecting this non-autonomous memristor in parallel with an autonomous memristor.This map exhibits complex dynamical behaviors,including infinitely many fixed points,initial-boosted attractors,initial-boosted bifurcations,and the size of the attractors being controlled by the initial value.In addition,a simple pseudo-random number generator(PRNG)was designed using the non-autonomous hyperchaotic map,and the pseudo-random numbers(PRNs)generated by it were tested using the National Institute of Standards and Technology(NIST)SP800-22 test suite.Finally,the non-autonomous hyperchaotic map is implemented on the STM32 hardware experimental platform. 展开更多
关键词 non-autonomous discrete memristors hyperchaotic map initials-boosted attractors initialsboosted bifurcations
原文传递
Investigation of hanging crosstie problem at bridge approaches:a train–track–bridge model coupled with discrete element method
15
作者 Zhongyi Liu Wenjing Li +2 位作者 Travis A.Shoemaker Erol Tutumluer Youssef M.A.Hashash 《Railway Engineering Science》 2025年第3期458-473,共16页
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio... Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations. 展开更多
关键词 Hanging crosstie Crosstie gap Transition zone Model coupling discrete element method Train-track model
在线阅读 下载PDF
Discrete element analyses of stiffness distribution of gap-graded soils with particle property disparity
16
作者 Deyun Liu Mengting Wang Ci Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2603-2618,共16页
Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between ... Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between coarser and finer particles,this research differentiates the stiffness distribution of gap-graded soils from the perspective of contact and particle types.Results indicate that particle property disparity significantly influence the small-strain stiffness characteristics,consequently altering the overall stiffness distribution in gap-graded soil specimens.Specifically,with the equivalent coarser particle property,an increase in particle Young's modulus of finer particles results in an augmentation of small-strain stiffness values,alongside an increased stiffness distribution contribution from finer particles.Nevertheless,this study reveals that even with a higher particle Young's modulus of finer particles,the proportion of small-strain stiffness transferred by finer particles remains consistently lower than their volume fraction.Furthermore,the proportion of stiffness transferred by finer particles may fall below their contribution to stress transmission.This investigation accentuates the subtle yet significant effects of particle property variations on small strain stiffness and its subsequent distribution,providing a foundation for advancing the significance of particle property disparities in evaluating soil responses. 展开更多
关键词 discrete element method Particle property disparity Gap-graded soils Stiffness distribution Small-strain stiffness
在线阅读 下载PDF
Numerical simulation of vortex-induced vibration of deepwater drilling riser based on discrete vortex method
17
作者 Yan-Bin Wang Hong-Chuan Zhao +1 位作者 De-Li Gao Rui Li 《Petroleum Science》 2025年第5期2042-2061,共20页
Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce f... Deepwater drilling riser is the key equipment connecting the subsea wellhead and floating drilling platform.Due to complex marine environment,vortex-induced vibration(ViV)will be generated on riser,which will induce fatigue failure and even cause unpredictable drilling accidents.Therefore,it is important to study the ViV characteristics of deepwater drilling riser and reveal the main controlling factors for ensuring the safe and efficient operation of deepwater drilling engineering.In this paper,the ViV of deepwater drilling riser is numerically simulated in time domain based on the discrete vortex method(DvM).A hydrodynamic analysis model and governing equation of VIV is proposed with considering the effect of riser motion using DVM and slice method,where the governing equation is solved by Runge-Kutta method.Model validation is performed,which verified the correctness and accuracy of the mechanical model and the solution method.On this basis,the influence of the number of control points,current velocity,riser outer diameter,shear flow and top tension on the ViV characteristics of deepwater drilling risers are discussed in detail.The results show that with the increase of current velocity,the vibration amplitude of deepwater drilling riser decreases obviously,while the vibration frequency increases gradually.However,if the outer diameter of riser increases,the vibration amplitude increases,while the vibration frequency decreases gradually.The top tension also has great influence on the VIV of riser.When the top tension is 1.25 G,the VIV is suppressed to a certain extent.This study has guiding significance for optimal design and engineering control of deepwater drilling riser. 展开更多
关键词 Deepwater drilling riser Vortex-induced vibration discrete vortex method Numerical simulation VIV suppression
原文传递
Design of a novel discrete dual-switching tracking differentiator
18
作者 HAN Kun ZHANG Hao-bo 《Journal of Central South University》 2025年第6期2208-2223,共16页
Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differ... Signal filtering and differential acquisition are classic yet challenging issues in control engineering.The discrete-time optimal control(DTOC)based on classic tracking differentiator(TD)can effectively extract differentiation signals and filter signals,while eliminating the chattering problem that arises during the discretization of the continuous solution.However,under external disturbance,the convergence mode may change,leading to overshoot and noise amplification.In this paper,a dual-switching strategy is proposed,which can alternate between the base double-integral system and its dual system according to the quadrant of the system’s state.And a novel linearized control law is also introduced,deriving a novel dual-switch tracking differentiator.Further analysis of system convergence and time optimality is provided.Simulation results show that the application of this dual-switching strategy notably reduces overshoot in both tracking and differential signals while enhancing noise filtering performance.Moreover,experiments conducted on a permanent magnet synchronous motor(PMSM)platform,where the proposed TD acts as a filter in the speed feedback loop,demonstrate that the standard deviation between the reference speed and the target speed(at a constant speed of 378 r/min)decreased from 5.63 r/min to 4.93 r/min,compared to the moving average algorithm. 展开更多
关键词 tracking differentiator discrete time optimal control dual-switching strategy speed filtering
在线阅读 下载PDF
Impact of injection pressure and polyaxial stress on hydraulic fracture propagation and permeability evolution in graywacke:Insights from discrete element models of a laboratory test
19
作者 Haimeng Shen Jeoung Seok Yoon +3 位作者 Arno Zang Hannes Hofmann Xiaying Li Qi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2344-2359,共16页
Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensiona... Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability. 展开更多
关键词 Hydraulic fracture discrete element model(DEM) Polyaxial stress Permeability evolution Crack front Fluid pressure front
在线阅读 下载PDF
Integrated Discrete Cell Complexes and Finite Element Analysis for Microstructure Topology Evolution during Severe Plastic Deformation
20
作者 Siying Zhu Weijian Gao +1 位作者 Min Yi Zhuhua Zhang 《Computers, Materials & Continua》 2025年第10期657-679,共23页
Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we c... Microstructure topology evolution during severe plastic deformation(SPD)is crucial for understanding and optimising the mechanical properties of metallic materials,though its prediction remains challenging.Herein,we combine discrete cell complexes(DCC),a fully discrete algebraic topology model-with finite element analysis(FEA)to simulate and analyse the microstructure topology of pure copper under SPD.Using DCC,we model the evolution of microstructure topology characterised by Betti numbers(β_(0),β_(1),β_(2))and Euler characteristic(χ).This captures key changes in GBNs and topological features within representative volume elements(RVEs)containing several hundred grains during SPD-induced recrystallisation.As SPD cycles increase,high-angle grain boundaries(HAGBs)progressively form.Topological analysis reveals an overall decrease in β_(0)values,indicating fewer isolated HAGB substructures,while β_(2) values show a steady upward trend,highlighting new grain formation.Leveraging DCC-derived RVE topology and FEA-generated plastic strain data,we directly simulate the evolution and spatial distribution of microstructure topology and HAGB fraction in a copper tube undergoing cyclic parallel tube channel angular pressing(PTCAP),a representative SPD technique.Within the tube,the HAGB fraction continuously increases with PTCAP cycles,reflecting the microstructure’s gradual transition from subgrains to fully-formed grains.Analysis of Betti number distribution and evolution reveals the microstructural reconstruction mechanism underpinning this subgrain to grain transition during PTCAP.We further demonstrate the significant influence of spatially non-uniform plastic strain distribution on microstructure reconstruction kinetics.This study demonstrates a feasible approach for simulating microstructure topology evolution of metals processed by cyclic SPD via the integration of DCC and FEA. 展开更多
关键词 Microstructure topology betti numbers discrete cell complexes finite element analysis severe plastic deformation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部