The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has under...The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets.展开更多
Background:The COVID-1’s impact on influenza activity is of interest to inform future flu prevention and control strategies.Our study aim to examine COVID-19’s effects on influenza in Fujian Province,China,using a r...Background:The COVID-1’s impact on influenza activity is of interest to inform future flu prevention and control strategies.Our study aim to examine COVID-19’s effects on influenza in Fujian Province,China,using a regression discontinuity design.Methods:We utilized influenza-like illness(ILI)percentage as an indicator of influenza activity,with data from all sentinel hospitals between Week 4,2020,and Week 51,2023.The data is divided into two groups:the COVID-19 epidemic period and the post-epidemic period.Statistical analysis was performed with R software using robust RD design methods to account for potential confounders including seasonality,temperature,and influenza vaccination rates.Results:There was a discernible increase in the ILI percentage during the post-epidemic period.The robustness of the findings was confirmed with various RD design bandwidth selection methods and placebo tests,with certwo bandwidth providing the largest estimated effect size:a 14.6-percentage-point increase in the ILI percentage(β=0.146;95%CI:0.096–0.196).Sensitivity analyses and adjustments for confounders consistently pointed to an increased ILI percentage during the post-epidemic period compared to the epidemic period.Conclusion:The 14.6 percentage-point increase in the ILI percentage in Fujian Province,China,after the end of the COVID-19 pandemic suggests that there may be a need to re-evaluate and possibly enhance public health measures to control influenza transmission.Further research is needed to fully understand the factors contributing to this rise and to assess the ongoing impacts of post-pandemic behavioral changes.展开更多
Rock discontinuities such as joints widely exist in natural rock masses,and wave attenuation through rock masses is mainly caused by discontinuities.The displacement discontinuity model(DDM)has been widely used in the...Rock discontinuities such as joints widely exist in natural rock masses,and wave attenuation through rock masses is mainly caused by discontinuities.The displacement discontinuity model(DDM)has been widely used in theoretical and numerical analysis of wave propagation across rock discontinuity.However,the circumstance under which the DDM is applicable to predict wave propagation across rock discontinuity remains poorly understood.In this study,theoretical analysis and ultrasonic laboratory tests were carried out to examine the theoretical applicability of the DDM for wave propagation,where specimens with rough joints comprising regular rectangular asperities of different spacings and heights were prepared by 3D printing technology.It is found that the theoretical applicability of the DDM to predict wave propagation across rock discontinuity is determined by three joint parameters,i.e.the dimensionless asperity spacing(L),the dimensionless asperity height(H)and the groove density(D).Through theoretical analysis and laboratory tests,the conditions under which the DDM is applicable are derived as follows:and,.With increase in the groove density,the thresholds of the dimensionless asperity spacing and the dimensionless asperity height show a decreasing trend.In addition,the transmission coefficient in the frequency domain decreases with increasing groove density,dimensionless asperity spacing or dimensionless asperity height.The findings can facilitate our understanding of DDM for predicting wave propagation across rock discontinuity.展开更多
The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across divers...The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.展开更多
This study presents a framework for the semi-automatic detection of rock discontinuities using a threedimensional(3D)point cloud(PC).The process begins by selecting an appropriate neighborhood size,a critical step for...This study presents a framework for the semi-automatic detection of rock discontinuities using a threedimensional(3D)point cloud(PC).The process begins by selecting an appropriate neighborhood size,a critical step for feature extraction from the PC.The effects of different neighborhood sizes(k=5,10,20,50,and 100)have been evaluated to assess their impact on classification performance.After that,17 geometric and spatial features were extracted from the PC.Next,ensemble methods,AdaBoost.M2,random forest,and decision tree,have been compared with Artificial Neural Networks to classify the main discontinuity sets.The McNemar test indicates that the classifiers are statistically significant.The random forest classifier consistently achieves the highest performance with an accuracy exceeding 95%when using a neighborhood size of k=100,while recall,F-score,and Cohen's Kappa also demonstrate high success.SHapley Additive exPlanations(SHAP),an Explainable AI technique,has been used to evaluate feature importance and improve the explainability of black-box machine learning models in the context of rock discontinuity classification.The analysis reveals that features such as normal vectors,verticality,and Z-values have the greatest influence on identifying main discontinuity sets,while linearity,planarity,and eigenvalues contribute less,making the model more transparent and easier to understand.After classification,individual discontinuity sets were detected using a revised DBSCAN from the main discontinuity sets.Finally,the orientation parameters of the plane fitted to each discontinuity were derived from the plane parameters obtained using the Random Sample Consensus(RANSAC).Two real-world datasets(obtained from SfM and LiDAR)and one synthetic dataset were used to validate the proposed method,which successfully identified rock discontinuities and their orientation parameters(dip angle/direction).展开更多
Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected ...Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds.展开更多
The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation met...The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests.展开更多
This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient a...This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient and accurate rock trace identification.A thirteen-dimensional database consisting of basic,vector,and discontinuity features is established from image samples.All data points are classified as either‘‘trace”or‘‘non-trace”to divide the ultimate results into candidate trace samples.It is found that the SMOTE technology can effectively improve classification performance by recommending an optimized imbalance ratio of 1:5 to 1:4.Then,sixteen classifiers generated from four basic machine learning(ML)models are applied for performance comparison.The results reveal that the proposed RS-SMOTE-GBT classifier outperforms the other fifteen hybrid ML algorithms for both trace and nontrace classifications.Finally,discussions on feature importance,generalization ability and classification error are conducted for the proposed classifier.The experimental results indicate that more critical features affecting the trace classification are primarily from the discontinuity features.Besides,cleaning up the sedimentary pumice and reducing the area of fractured rock contribute to improving the overall classification performance.The proposed method provides a new alternative approach for the identification of 3D rock trace.展开更多
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by...This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.展开更多
In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for ...In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models.展开更多
An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primar...An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored.展开更多
Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrest...Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.展开更多
Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it...Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it is closely related to the stability of a rock block.To further study the shear rate-dependent behavior of rock discontinuities,shear tests with alternating shear rates(SASRs)were conducted on rock discontinuities with various surface morphologies.The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results,and three stages were identified with respect to the shear stress and shear deformation states.The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth,which increased with an increase in normal stress and/or the joint roughness coefficient.The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency,and the shear rate was found to have no influence on the initial crack stress.展开更多
A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal def...A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.展开更多
The 660-km discontinuity that separates the Earth's upper and lower mantle has primarily been attributed to phase changes in olivine and other minerals.Resolving the sharpness is essential for predicting the compo...The 660-km discontinuity that separates the Earth's upper and lower mantle has primarily been attributed to phase changes in olivine and other minerals.Resolving the sharpness is essential for predicting the composition of the mantle and for understanding its dynamic effects.In this study,we used S-to-P conversions from the 660-km interface,termed S660P,arriving in the P-wave coda from one earthquake in the Izu–Bonin subduction zone recorded by stations in Alaska.The S660P signals were of high quality,providing us an unprecedented opportunity to resolve the sharpness of the discontinuity.Our study demonstrated,based on the impedance contrast given by the IASP91 model,that the discontinuity has a transitional thickness of^5 km.In addition,we observed a prominent arrival right after the S660P,which was best explained by S-to-P conversions from a deeper discontinuity at a depth of^720 km with a transitional thickness of^20 km,termed S720P.The 720-km discontinuity is most likely the result of a phase transition from majoritic garnet to perovskite in the segregated oceanic crust(mainly the mid-oceanic ridge basalt composition)at the uppermost lower mantle beneath this area.The inferred phase changes are also consistent with predictions from mineral physics experiments.展开更多
A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is establishe...A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.展开更多
Rocks encountered in foundations of heavy structures are invariably intersected by discontinuities(joints).In the past,several studies have been performed by researchers to incorporate the effect of fully persistent j...Rocks encountered in foundations of heavy structures are invariably intersected by discontinuities(joints).In the past,several studies have been performed by researchers to incorporate the effect of fully persistent joints in the assessment of the load-carrying capacity of rocks.However,in the field,the joints are non-persistent,and an assumption of full persistency will underestimate the capacity.Recently,Shaunik&Singh have studied the influence of non-persistency,number of joint segments and discontinuity orientation on the strength behaviour of rock specimens(Shaunik and Singh,2019).Bell’s approach can be used to obtain the bearing capacity of shallow foundations placed in jointed rocks.In the present study,results of the experimental work(Shaunik and Singh,2019)conducted by Shaunik&Singh have been used to suggest expressions by extending Bell’s approach for computing bearing capacity of the foundation placed near the crown of a rock slope.Easy to use design charts are also presented for field application.Finally,a real-life problem from Indian Garhwal Himalayas is considered,and the approach suggested in this study is utilised to obtain the bearing capacity of a bridge foundation as a function of uniaxial compressive strength(UCS)of intact rock,joint friction,spacing and orientation of joint,nonpersistency and number of joint segments.展开更多
This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infi...This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero.展开更多
The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is...The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is few result for general gases including ideal polytropic gas. We prove that if the solution to the corresponding Euler system of general gas satisfying (1.4) is piecewise constant with a contact discontinuity, then there exist smooth solutions to Navier-Stokes equations which converge to the inviscid solutions at a rate of k1/4 as the heat-conductivity coefficient k tends to zero. The key is to construct a viscous contact wave of general gas suitable to our proof (see Section 2). Notice that we have no need to restrict the strength of the contact discontinuity to be small.展开更多
A hyperbolic conservation equation can easily generate strong discontinuous solutions such as shock waves and contact discontinuity.By introducing the arc-length parameter,the pseudo arc-length method(PALM)smoothens t...A hyperbolic conservation equation can easily generate strong discontinuous solutions such as shock waves and contact discontinuity.By introducing the arc-length parameter,the pseudo arc-length method(PALM)smoothens the discontinuous solution in the arc-length space.This in turn weakens the singularity of the equation.To avoid constructing a high-order scheme directly in the deformed physical space,the entire calculation process is conducted in a uniform orthogonal arc-length space.Furthermore,to ensure the stability of the equation,the time step is reduced by limiting the moving speed of the mesh.Given that the calculation does not involve the interpolation process of physical quantities after the mesh moves,it maintains a high computational efficiency.The numerical examples show that the algorithm can effectively reduce numerical oscillations while maintaining excellent characteristics such as high precision and high resolution.展开更多
基金funding support from the National Natural Science Foundation of China(Grant No.42007269)the Young Talent Fund of Xi'an Association for Science and Technology(Grant No.959202313094)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102263401).
文摘The characterization and clustering of rock discontinuity sets are a crucial and challenging task in rock mechanics and geotechnical engineering.Over the past few decades,the clustering of discontinuity sets has undergone rapid and remarkable development.However,there is no relevant literature summarizing these achievements,and this paper attempts to elaborate on the current status and prospects in this field.Specifically,this review aims to discuss the development process of clustering methods for discontinuity sets and the state-of-the-art relevant algorithms.First,we introduce the importance of discontinuity clustering analysis and follow the comprehensive characterization approaches of discontinuity data.A bibliometric analysis is subsequently conducted to clarify the current status and development characteristics of the clustering of discontinuity sets.The methods for the clustering analysis of rock discontinuities are reviewed in terms of single-and multi-parameter clustering methods.Single-parameter methods can be classified into empirical judgment methods,dynamic clustering methods,relative static clustering methods,and static clustering methods,reflecting the continuous optimization and improvement of clustering algorithms.Moreover,this paper compares the current mainstream of single-parameter clustering methods with multi-parameter clustering methods.It is emphasized that the current single-parameter clustering methods have reached their performance limits,with little room for improvement,and that there is a need to extend the study of multi-parameter clustering methods.Finally,several suggestions are offered for future research on the clustering of discontinuity sets.
基金supported by the Youth Scientific Research Project of Fujian Provincial Center for Disease Control and Prevention(2022QN02)the Fujian Provincial Health Youth Scientific Research Project(2023QNA040).
文摘Background:The COVID-1’s impact on influenza activity is of interest to inform future flu prevention and control strategies.Our study aim to examine COVID-19’s effects on influenza in Fujian Province,China,using a regression discontinuity design.Methods:We utilized influenza-like illness(ILI)percentage as an indicator of influenza activity,with data from all sentinel hospitals between Week 4,2020,and Week 51,2023.The data is divided into two groups:the COVID-19 epidemic period and the post-epidemic period.Statistical analysis was performed with R software using robust RD design methods to account for potential confounders including seasonality,temperature,and influenza vaccination rates.Results:There was a discernible increase in the ILI percentage during the post-epidemic period.The robustness of the findings was confirmed with various RD design bandwidth selection methods and placebo tests,with certwo bandwidth providing the largest estimated effect size:a 14.6-percentage-point increase in the ILI percentage(β=0.146;95%CI:0.096–0.196).Sensitivity analyses and adjustments for confounders consistently pointed to an increased ILI percentage during the post-epidemic period compared to the epidemic period.Conclusion:The 14.6 percentage-point increase in the ILI percentage in Fujian Province,China,after the end of the COVID-19 pandemic suggests that there may be a need to re-evaluate and possibly enhance public health measures to control influenza transmission.Further research is needed to fully understand the factors contributing to this rise and to assess the ongoing impacts of post-pandemic behavioral changes.
基金supported by the National Key R&D Program of China (No.2022YFC3004602)the National Natural Science Foundation of China (No.52325404)the Shenzhen Science and Technology Program (No.JCYJ20220818095605012).
文摘Rock discontinuities such as joints widely exist in natural rock masses,and wave attenuation through rock masses is mainly caused by discontinuities.The displacement discontinuity model(DDM)has been widely used in theoretical and numerical analysis of wave propagation across rock discontinuity.However,the circumstance under which the DDM is applicable to predict wave propagation across rock discontinuity remains poorly understood.In this study,theoretical analysis and ultrasonic laboratory tests were carried out to examine the theoretical applicability of the DDM for wave propagation,where specimens with rough joints comprising regular rectangular asperities of different spacings and heights were prepared by 3D printing technology.It is found that the theoretical applicability of the DDM to predict wave propagation across rock discontinuity is determined by three joint parameters,i.e.the dimensionless asperity spacing(L),the dimensionless asperity height(H)and the groove density(D).Through theoretical analysis and laboratory tests,the conditions under which the DDM is applicable are derived as follows:and,.With increase in the groove density,the thresholds of the dimensionless asperity spacing and the dimensionless asperity height show a decreasing trend.In addition,the transmission coefficient in the frequency domain decreases with increasing groove density,dimensionless asperity spacing or dimensionless asperity height.The findings can facilitate our understanding of DDM for predicting wave propagation across rock discontinuity.
基金support in dataset preparation.This study was funded by National Natural Science Foundation of China(Nos.42422704 and 52379109)Opening the fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2024K028)Science and Technology Research and Design Projects of China State Construction Engineering Corporation Ltd.(No.CSCEC-2024-Q-68).
文摘The identification of rock mass discontinuities is critical for rock mass characterization.While high-resolution digital outcrop models(DOMs)are widely used,current digital methods struggle to generalize across diverse geological settings.Large-scale models(LSMs),with vast parameter spaces and extensive training datasets,excel in solving complex visual problems.This study explores the potential of using one such LSM,Segment anything model(SAM),to identify facet-type discontinuities across several outcrops via interactive prompting.The findings demonstrate that SAM effectively segments two-dimensional(2D)discontinuities,with its generalization capability validated on a dataset of 2426 identified discontinuities across 170 outcrops.The model achieves 0.78 mean IoU and 0.86 average precision using 11-point prompts.To extend to three dimensions(3D),a framework integrating SAM with Structure-from-Motion(SfM)was proposed.By utilizing the inherent but often overlooked relationship between image pixels and point clouds in SfM,the identification process was simplified and generalized across photogrammetric devices.Benchmark studies showed that the framework achieved 0.91 average precision,identifying 87 discontinuities in Dataset-3D.The results confirm its high precision and efficiency,making it a valuable tool for data annotation.The proposed method offers a practical solution for geological investigations.
文摘This study presents a framework for the semi-automatic detection of rock discontinuities using a threedimensional(3D)point cloud(PC).The process begins by selecting an appropriate neighborhood size,a critical step for feature extraction from the PC.The effects of different neighborhood sizes(k=5,10,20,50,and 100)have been evaluated to assess their impact on classification performance.After that,17 geometric and spatial features were extracted from the PC.Next,ensemble methods,AdaBoost.M2,random forest,and decision tree,have been compared with Artificial Neural Networks to classify the main discontinuity sets.The McNemar test indicates that the classifiers are statistically significant.The random forest classifier consistently achieves the highest performance with an accuracy exceeding 95%when using a neighborhood size of k=100,while recall,F-score,and Cohen's Kappa also demonstrate high success.SHapley Additive exPlanations(SHAP),an Explainable AI technique,has been used to evaluate feature importance and improve the explainability of black-box machine learning models in the context of rock discontinuity classification.The analysis reveals that features such as normal vectors,verticality,and Z-values have the greatest influence on identifying main discontinuity sets,while linearity,planarity,and eigenvalues contribute less,making the model more transparent and easier to understand.After classification,individual discontinuity sets were detected using a revised DBSCAN from the main discontinuity sets.Finally,the orientation parameters of the plane fitted to each discontinuity were derived from the plane parameters obtained using the Random Sample Consensus(RANSAC).Two real-world datasets(obtained from SfM and LiDAR)and one synthetic dataset were used to validate the proposed method,which successfully identified rock discontinuities and their orientation parameters(dip angle/direction).
基金supported by the National Natural Science Foundation of China(Grant No.42407232)the Sichuan Science and Technology Program(Grant No.2024NSFSC0826).
文摘Recognizing discontinuities within rock masses is a critical aspect of rock engineering.The development of remote sensing technologies has significantly enhanced the quality and quantity of the point clouds collected from rock outcrops.In response,we propose a workflow that balances accuracy and efficiency to extract discontinuities from massive point clouds.The proposed method employs voxel filtering to downsample point clouds,constructs a point cloud topology using K-d trees,utilizes principal component analysis to calculate the point cloud normals,and employs the pointwise clustering(PWC)algorithm to extract discontinuities from rock outcrop point clouds.This method provides information on the location and orientation(dip direction and dip angle)of the discontinuities,and the modified whale optimization algorithm(MWOA)is utilized to identify major discontinuity sets and their average orientations.Performance evaluations based on three real cases demonstrate that the proposed method significantly reduces computational time costs without sacrificing accuracy.In particular,the method yields more reasonable extraction results for discontinuities with certain undulations.The presented approach offers a novel tool for efficiently extracting discontinuities from large-scale point clouds.
基金supported by the China Geological Survey (No.1212011014030)the Major State Basic Research Development Program of China (973 Program) (No.2011CB710600)
文摘The estimation of shear strength of rock mass discontinuity is always a focal, but difficult, problem in the field of geotechnical engineering. Considering the disadvantages and limitation of exist- ing estimation methods, a new approach based on the shadow area percentage (SAP) that can be used to quantify surface roughness is proposed in this article. Firstly, by the help of laser scanning technique, the three-dimensional model of the surface of rock discontinuity was established. Secondly, a light source was simulated, and there would be some shadows produced on the model surface. Thirdly, to obtain the value of SAP of each specimen, the shadow detection technique was introduced for use. Fourthly, compared with the result from direct shear testing and based on statistics, an empirical for- mula was found among SAP, normal stress, and shear strength. Data of Yujian (~ River were used as an example, and the following conclusions have been made. (1) In the case of equal normal stress, the peak shear stress is positively proportional to the SAP. (2) The formula for estimating was derived, and the predictions of peak-shear strength made with this equation well agreed with the experimental re- suits obtained in laboratory tests.
基金supported by Key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059)Natural Science Foundation Committee Program of China(No.51778474)Science and Technology Project of Yunnan Provincial Transportation Department(No.25 of 2018)。
文摘This paper presents a hybrid ensemble classifier combined synthetic minority oversampling technique(SMOTE),random search(RS)hyper-parameters optimization algorithm and gradient boosting tree(GBT)to achieve efficient and accurate rock trace identification.A thirteen-dimensional database consisting of basic,vector,and discontinuity features is established from image samples.All data points are classified as either‘‘trace”or‘‘non-trace”to divide the ultimate results into candidate trace samples.It is found that the SMOTE technology can effectively improve classification performance by recommending an optimized imbalance ratio of 1:5 to 1:4.Then,sixteen classifiers generated from four basic machine learning(ML)models are applied for performance comparison.The results reveal that the proposed RS-SMOTE-GBT classifier outperforms the other fifteen hybrid ML algorithms for both trace and nontrace classifications.Finally,discussions on feature importance,generalization ability and classification error are conducted for the proposed classifier.The experimental results indicate that more critical features affecting the trace classification are primarily from the discontinuity features.Besides,cleaning up the sedimentary pumice and reducing the area of fractured rock contribute to improving the overall classification performance.The proposed method provides a new alternative approach for the identification of 3D rock trace.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(Grant No.4182780021)Emeishan-Hanyuan Highway ProgramTaihang Mountain Highway Program。
文摘This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.
基金funded by the U.S.National Institute for Occupational Safety and Health(NIOSH)under the Contract No.75D30119C06044。
文摘In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models.
文摘An extended displacement discontinuity method (EDDM) is proposed to analyze the stress wave propagation in jointed viscoelastic rock mass (VRM).The discontinuities in a rock mass are divided into two groups.The primary group with an average geometrical size larger than or in the same order of magnitude of wavelength of a concerned stress wave is defined as 'macro-joints',while the secondary group with a high density and relatively small geometrical size compared to the wavelength is known as 'micro-defects'.The rock mass with micro-defects is modeled as an equivalent viscoelastic medium while the macro-joints in the rock mass are modeled explicitly as physical discontinuities.Viscoelastic properties of a micro-defected sedimentary rock are obtained by longitudinally impacting a cored long sedimentary rod with a pendulum.Wave propagation coefficient and dynamic viscoelastic modulus are measured.The EDDM is then successfully employed to analyze the wave propagation across macro-joint in VRM.The effect of the rock viscosity on the stress wave propagation is evaluated by comparing the results of VRM from the presented EDDM with those of an elastic rock mass (ERM) from the conventional displacement discontinuity method (CDDM).The CDDM is a special case of the EDDM under the condition that the rock viscosity is ignored.Comparison of the reflected and transmitted waves shows that the essential rock viscosity has a significant effect on stress wave attenuation.When a short propagation distance of a stress wave is considered,the results obtained from the CDDM approximate to the EDDM solutions,however,when the propagation distance is sufficiently long relative to the wavelength,the effect of rock viscosity on the stress wave propagation cannot be ignored.
基金support of the National Natural Science Foundation of China(Grant No.42102316)the Open Project of the Technology Innovation Center for Geological Environment Monitoring of Ministry of Natural Resources of China(Grant No.2022KFK1212005).
文摘Local geometric information and discontinuity features are key aspects of the analysis of the evolution and failure mechanisms of unstable rock blocks in rock tunnels.This study demonstrates the integration of terrestrial laser scanning(TLS)with distinct element method for rock mass characterization and stability analysis in tunnels.TLS records detailed geometric information of the surrounding rock mass by scanning and collecting the positions of millions of rock surface points without contact.By conducting a fuzzy K-means method,a discontinuity automatic identification algorithm was developed,and a method for obtaining the geometric parameters of discontinuities was proposed.This method permits the user to visually identify each discontinuity and acquire its spatial distribution features(e.g.occurrences,spac-ings,trace lengths)in great detail.Compared with hand mapping in conventional geotechnical surveys,the geometric information of discontinuities obtained by this approach is more accurate and the iden-tification is more efficient.Then,a discrete fracture network with the same statistical characteristics as the actual discontinuities was generated with the distinct element method,and a representative nu-merical model of the jointed surrounding rock mass was established.By means of numerical simulation,potential unstable rock blocks were assessed,and failure mechanisms were analyzed.This method was applied to detection and assessment of unstable rock blocks in the spillway and sand flushing tunnel of the Hongshiyan hydropower project after a collapse.The results show that the noncontact detection of blocks was more labor-saving with lower safety risks compared with manual surveys,and the stability assessment was more reliable since the numerical model built by this method was more consistent with the distribution characteristics of actual joints.This study can provide a reference for geological survey and unstable rock block hazard mitigation in tunnels subjected to complex geology and active rockfalls.
基金Projects(42002266,51908288)supported by the National Natural Science Foundation of ChinaProject(2020M673654)supported by the Chinese Postdoctoral Science FoundationProject(2019K284)supported by Jiangsu Post-doctoral Research Funding Program,China。
文摘Rock blocks sliding along discontinuities can cause serious disasters,such as landslides,earthquakes,or rock bursts.The shear rate-dependent behavior is a typical time-dependent behavior of a rock discontinuity,and it is closely related to the stability of a rock block.To further study the shear rate-dependent behavior of rock discontinuities,shear tests with alternating shear rates(SASRs)were conducted on rock discontinuities with various surface morphologies.The dynamic evolution of the shear rate dependency was studied in detail based on the shear test results,and three stages were identified with respect to the shear stress and shear deformation states.The test results revealed that dynamic changes in shear stiffness and the energy storage abilities of the rock discontinuities occurred in relation to the shear rate-dependent behavior of crack growth,which increased with an increase in normal stress and/or the joint roughness coefficient.The stage of decreasing shear stiffness corresponded to a stage of noticeable shear rate-dependency,and the shear rate was found to have no influence on the initial crack stress.
基金Project(2009318000046) supported by the Western Transport Technical Program of the Ministry of Transport,China
文摘A revised displacement discontinuity method(DDM) program is developed for the simulation of rock joint propagation and dilatancy analysis. The non-linear joint model used in the program adopts Barton-Bandis normal deformation model, Kulhaway shear deformation model and Mohr-Coulomb criterion. The joint propagation criterion is based on the equivalent stress intensity factor which can be obtained by regression analysis. The simulated rock joint propagation accords well with the existing knowledge. The closure and opening of joint is investigated by DDM, and it is shown that if the opening volume of propagated joint is larger than closure volume of the old joint, the joint dilatancy occurs. The dilatancy condition is mainly controlled by the normal stiffness of the rock joint. When the normal stiffness is larger than the critical value, joint dilatancy occurs. The critical normal stiffness of rock joint changes with the joint-load angle, and joint dilatancy is most possible to occur at 30°.
基金We are grateful for the thoughtful and constructive comments provided by two anonymous reviewers and the editor(Dr.Wei Leng).We also thank Jinfeng Hu for his contributions to this work at an early stage.Seismic data from the USArray network were accessed via the Data Management Center(DMC)of the Incorporated Research Institutions for Seismology(IRIS).Some figures were prepared using Generic Mapping Tools(GMT,Wessel and Smith,1999)GNUPLOT.This work was funded by the National Natural Science Foundation of China(grant no.91858205).
文摘The 660-km discontinuity that separates the Earth's upper and lower mantle has primarily been attributed to phase changes in olivine and other minerals.Resolving the sharpness is essential for predicting the composition of the mantle and for understanding its dynamic effects.In this study,we used S-to-P conversions from the 660-km interface,termed S660P,arriving in the P-wave coda from one earthquake in the Izu–Bonin subduction zone recorded by stations in Alaska.The S660P signals were of high quality,providing us an unprecedented opportunity to resolve the sharpness of the discontinuity.Our study demonstrated,based on the impedance contrast given by the IASP91 model,that the discontinuity has a transitional thickness of^5 km.In addition,we observed a prominent arrival right after the S660P,which was best explained by S-to-P conversions from a deeper discontinuity at a depth of^720 km with a transitional thickness of^20 km,termed S720P.The 720-km discontinuity is most likely the result of a phase transition from majoritic garnet to perovskite in the segregated oceanic crust(mainly the mid-oceanic ridge basalt composition)at the uppermost lower mantle beneath this area.The inferred phase changes are also consistent with predictions from mineral physics experiments.
基金partially supported by NSFC (10825102)for distinguished youth scholarsupported by the CAS-TWAS postdoctoral fellowships (FR number:3240223274)AMSS in Chinese Academy of Sciences
文摘A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.
基金A part of this research was carried from financial assistance obtained from NRDMS Division Department of Science and Technology,New Delhithe assistance received from DST and thank for the support.
文摘Rocks encountered in foundations of heavy structures are invariably intersected by discontinuities(joints).In the past,several studies have been performed by researchers to incorporate the effect of fully persistent joints in the assessment of the load-carrying capacity of rocks.However,in the field,the joints are non-persistent,and an assumption of full persistency will underestimate the capacity.Recently,Shaunik&Singh have studied the influence of non-persistency,number of joint segments and discontinuity orientation on the strength behaviour of rock specimens(Shaunik and Singh,2019).Bell’s approach can be used to obtain the bearing capacity of shallow foundations placed in jointed rocks.In the present study,results of the experimental work(Shaunik and Singh,2019)conducted by Shaunik&Singh have been used to suggest expressions by extending Bell’s approach for computing bearing capacity of the foundation placed near the crown of a rock slope.Easy to use design charts are also presented for field application.Finally,a real-life problem from Indian Garhwal Himalayas is considered,and the approach suggested in this study is utilised to obtain the bearing capacity of a bridge foundation as a function of uniaxial compressive strength(UCS)of intact rock,joint friction,spacing and orientation of joint,nonpersistency and number of joint segments.
基金supported by the Doctoral Scientific Research Funds of Anhui University(J10113190005)the Tian Yuan Foundation of China(11426031)
文摘This paper is concerned with a singular limit for the one-dimensional compress- ible radiation hydrodynamics model. The singular limit we consider corresponds to the physical problem of letting the Bouguer number infinite while keeping the Boltzmann number constant. In the case when the corresponding Euler system admits a contact discontinuity wave, Wang and Xie (2011) [12] recently verified this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact 1 discontinuity wave in the L∞-norm away from the discontinuity line at a rate of ε1/4, as the reciprocal of the Bouguer number tends to zero. In this paper, Wang and Xie's convergence rate is improved to ε7/8 by introducing a new a priori assumption and some refined energy estimates. Moreover, it is shown that the radiation flux q tends to zero in the L∞-norm away from the discontinuity line, at a convergence rate as the reciprocal of the Bouguer number tends to zero.
文摘The zero dissipation limit to the contact discontinuities for one-dimensional com- pressible Navier-Stokes equations was recently proved for ideal polytropic gas (see Huang et al. [15, 22] and Ma [31]), but there is few result for general gases including ideal polytropic gas. We prove that if the solution to the corresponding Euler system of general gas satisfying (1.4) is piecewise constant with a contact discontinuity, then there exist smooth solutions to Navier-Stokes equations which converge to the inviscid solutions at a rate of k1/4 as the heat-conductivity coefficient k tends to zero. The key is to construct a viscous contact wave of general gas suitable to our proof (see Section 2). Notice that we have no need to restrict the strength of the contact discontinuity to be small.
基金Project supported by the National Natural Science Foundation of China(Nos.11822203 and 12032006)
文摘A hyperbolic conservation equation can easily generate strong discontinuous solutions such as shock waves and contact discontinuity.By introducing the arc-length parameter,the pseudo arc-length method(PALM)smoothens the discontinuous solution in the arc-length space.This in turn weakens the singularity of the equation.To avoid constructing a high-order scheme directly in the deformed physical space,the entire calculation process is conducted in a uniform orthogonal arc-length space.Furthermore,to ensure the stability of the equation,the time step is reduced by limiting the moving speed of the mesh.Given that the calculation does not involve the interpolation process of physical quantities after the mesh moves,it maintains a high computational efficiency.The numerical examples show that the algorithm can effectively reduce numerical oscillations while maintaining excellent characteristics such as high precision and high resolution.