期刊文献+
共找到10,072篇文章
< 1 2 250 >
每页显示 20 50 100
Design Optimization of a Self-circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method 被引量:1
1
作者 Gaojia Zhu Yunhao Li Longnv Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期170-176,共7页
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s... With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined. 展开更多
关键词 Permanent magnet wind generator Hydrogen cooling Taguchi method Fluidic-thermal coupled fields
在线阅读 下载PDF
Winding Function Model-based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-drive Systems 被引量:1
2
作者 Mehrage Ghods Jawad Faiz Ali A Pourmoosa 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期216-226,共11页
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h... The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy. 展开更多
关键词 Index Terms—Permanent magnet transverse flux generator winding function 3D-FEM Cogging torque PROTOTYPING
在线阅读 下载PDF
Evaluating the Dependability Measures of a Hybrid Wind–Wave Power Generation System Under Varied Weather Conditions
3
作者 Panagiotis M.Psomas Agapios N.Platis +3 位作者 Ioannis K.Dagkinis Branislav Dragovic Theodore E.Lilas Nikitas V.Nikitakos 《哈尔滨工程大学学报(英文版)》 2025年第4期753-773,共21页
New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates beca... New renewable energy exploitation technologies in offshore structures are vital for future energy production systems.Offshore hybrid wind-wave power generation(HWWPG)systems face increased component failure rates because of harsh weather,significantly affecting the maintenance procedures and reliability.Different types of failure rates of the wind turbine(WT)and wave energy converter(WEC),e.g.,the degradation and failure rates during regular wind speed fluctuation,the degradation and failure rates during intense wind speed fluctuation are considered.By incorporating both WT and WEC,the HWWPG system is designed to enhance the overall amount of electrical energy produced by the system over a given period under varying weather conditions.The universal generating function technique is used to calculate the HWWPG system dependability measures in a structured and efficient manner.This research highlights that intense weather conditions increase the failure rates of both WT and WEC,resulting in higher maintenance costs and more frequent downtimes,thus impacting the HWWPG system’s reliability.Although the HWWPG system can meet the energy demands in the presence of high failure rates,the reliance of the hybrid system on both WT and WEC helps maintain a relatively stable demand satisfaction during periods of high energy demand despite adverse weather conditions.To confirm the added value and applicability of the developed model,a case study of an offshore hybrid platform is conducted.The findings underscore the system’s robustness in maintaining energy production under varied weather conditions,though higher failure rates and maintenance costs arise in intense scenarios. 展开更多
关键词 wind energy Wave energy Offshore hybrid platform Dependability measures Markov chain Universal generating function
在线阅读 下载PDF
Rare-earth Magnet Free Flux-switching Generator for Wind Turbines in Micro-grids:A Review
4
作者 Tugberk Ozmen BatıEren Ergun +1 位作者 Mehmet Onur Gulbahce Nevzat Onat 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期295-309,共15页
In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy so... In traditional electricity generation plants,large powerful synchronous,induction,and direct current generators were used.With the proliferation of microgrids focused on electricity generation from renewable energy sources in today’s power grids,studies have been conducted on different types of generators.Instead of the traditional generator architecture,generators with brushless structures,particularly those utilizing magnets for excitation,have found broad applications.Fluxswitching generators(FSGs)are innovative types owing to their robust structure,active stator design,and high power density capabilities.However,designs have typically relied on rare-earth element magnets.Rare-earth magnets possess negative characteristics such as price uncertainty,the potential risk of scarcity in the future,and limited geographical production,leading to research on FSGs that do not depend on rare-earth magnets.This study comprehensively examines FSGs that do not use rare-earth element magnets.The study delves into the usage areas,operational mechanisms,structural diversities,and counterparts in the literature of these generators. 展开更多
关键词 FLUX-SWITCHING generator MICRO-GRID wind energy
在线阅读 下载PDF
Scenario-based analysis and probability assessment of sub-synchronous oscillation caused by wind farms with direct-driven wind generators 被引量:5
5
作者 Zhi AN Chen SHEN +3 位作者 Zetian ZHENG Feng LIU Xiaoqing CHANG Wei WEI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第2期243-253,共11页
Recently, explanations of the sub-synchronous oscillation(SSO) caused by wind farms based on directdriven wind generators(DDWGs) have been published in the literatures, in which the controller parameters of DDWGs and ... Recently, explanations of the sub-synchronous oscillation(SSO) caused by wind farms based on directdriven wind generators(DDWGs) have been published in the literatures, in which the controller parameters of DDWGs and the system equivalent parameters play an important role. However, more than one set of parameters can cause weakly damped sub-synchronous modes. The most vulnerable and highly possible scenario is still unknown. To find scenarios that have potential oscillation risks, this paper proposes a small disturbance model of wind farms with DDWGs connected to the grid using a state-space modeling technique. Taguchi’s orthogonal array testing is introduced to generate different scenarios.Multiple scenarios with different parameter settings that may lead to SSOs are found. A probabilistic analysis method based on the Gaussian mixture model is employed to evaluate the consistency of these scenarios with the actual accidents. Electromagnetic transient simulations are performed to verify the findings. 展开更多
关键词 direct-driven wind generator Subsynchronous OSCILLATION Probabilistic assessment RANDOMNESS
原文传递
A Novel Open-winding Permanent Magnetic Starter-generator 被引量:13
6
作者 魏佳丹 周波 +3 位作者 韩楚 邓清唐 史明明 刘颖 《中国电机工程学报》 EI CSCD 北大核心 2011年第36期I0008-I0008,243,共1页
针对永磁电机应用于车载起动/发电系统时存在的电压调节困难、适用转速范围窄、功率因数较低等问题,提出一种新型永磁车载起动/发电系统。通过引入绕组开路型永磁电机,绕组一端接整流桥形成输出直流侧,另一端接逆变桥形成控制端,... 针对永磁电机应用于车载起动/发电系统时存在的电压调节困难、适用转速范围窄、功率因数较低等问题,提出一种新型永磁车载起动/发电系统。通过引入绕组开路型永磁电机,绕组一端接整流桥形成输出直流侧,另一端接逆变桥形成控制端,构成具有宽转速范围和高效率的永磁电机起动/发电系统。分析该系统的起动、发电一体化工作原理,给出了通过逆变侧变换器实现发电机电压、电流控制的方案。仿真和实验结果表明,该新型车载起动/发电系统具有优良的发电调压控制性能,并且适应较宽的转速范围。 展开更多
关键词 永磁起动机 永磁发电机 开放式 绕组 起动发电机 电压调节 功率因数 生成模式
原文传递
A fault warning for inter-turn short circuit of excitation winding of synchronous generator based on GRU-CNN 被引量:7
7
作者 Junqing Li Jing Liu Yating Chen 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期236-248,共13页
Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding ... Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally. 展开更多
关键词 Synchronous generator Inter-turn short circuit Excitation winding Fault warning GRU-CNN IPSO
在线阅读 下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
8
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
在线阅读 下载PDF
Design of Adaptive Robust Guaranteed Cost Controller for Wind Power Generator 被引量:2
9
作者 Zhong-Qiang Wu Jian-Ping Xie 《International Journal of Automation and computing》 EI CSCD 2013年第2期111-117,共7页
According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is es... According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is established and a new adaptive robust guaranteed cost controller (AGCC) is proposed in this paper. First, the uncertain parameters of the system are estimated by using the adaptive method, then the estimated uncertain parameters and robust guaranteed cost control method are used to design a state feedback controller. The controller s feedback gain is obtained by solving a set of linear matrix inequality (LMI) constraints, such that the controller can meet a quadratic performance evaluation criterion. The simulation results show that we can realize the goal of maximum wind energy capture in low wind speed by the optimal torque control and constant power control in high wind speed by variable pitch control with good dynamic characteristics, robustness and the ability of suppressing disturbance. 展开更多
关键词 wind power generator linear parameters varying (LPV) system adaptive control robust control guaranteed cost control
原文传递
Performance analysis of 20 Pole 1.5 KW Three Phase Permanent Magnet Synchronous Generator for low Speed Vertical Axis Wind Turbine 被引量:2
10
作者 Shahrukh Adnan Khan Rajprasad K. Rajkumar +1 位作者 Rajparthiban K. Rajkumar Aravind CV 《Energy and Power Engineering》 2013年第4期423-428,共6页
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati... This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed. 展开更多
关键词 Vertical Axis wind TURBINE Three Phase Multi-pole PERMANENT MAGNET SYNCHRONOUS generator Low wind Speed Modeling Performance Analysis
在线阅读 下载PDF
An analytic electromagnetic calculation method for performance evolution of doubly fed induction generators for wind turbines 被引量:1
11
作者 张文娟 黄守道 +1 位作者 高剑 CHEN Zhe 《Journal of Central South University》 SCIE EI CAS 2013年第10期2763-2774,共12页
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D... An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method. 展开更多
关键词 ELECTROMAGNETIC calculation DOUBLY fed INDUCTION generator(DFIG) wind TURBINE
在线阅读 下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
12
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 Battery energy storage power quality wind energy generating system.
在线阅读 下载PDF
High Voltage Ride-through Control Strategy of Doubly Fed Induction Wind Generators Based on Virtual Impedance 被引量:2
13
作者 XIE Zhen ZHANG Xing +1 位作者 YANG Shuying SONG Haihua QU Tingyu 《中国电机工程学报》 EI CSCD 北大核心 2012年第27期I0001-I0001,共1页
With the rapid increase of wind farms,the grid code needs to be improved to meet the requirement of wind farms and enhance grid stability.Doubly-fed induction generators are largely used in wind turbines,but they are ... With the rapid increase of wind farms,the grid code needs to be improved to meet the requirement of wind farms and enhance grid stability.Doubly-fed induction generators are largely used in wind turbines,but they are very sensitive to grid disturbances.The voltage swell can be caused by switching on capacitor banks or switching off large loads,which may result in the reversal of the power flow in the grid convertor;the current may flow from the grid into the DC link,which may step up DC voltage,and result in large faults of rotor currents and instantaneous power oscillation.The grid reactive compensation devices can not have the automatic swithing function after the low voltage fault,which will result in local reactive power surplus,so some wind power generators will retreat from the grid under high voltage protection. 展开更多
关键词 wind power generator doubly fed induction generator(DFIG) virtual impedance high voltage ride through(HVRT)
原文传递
GENERATOR VIBRATION FAULT DIAGNOSIS METHOD BASED ON ROTOR VIBRATION AND STATOR WINDING PARALLEL BRANCHES CIRCULATING CURRENT CHARACTERISTICS 被引量:2
14
作者 Wan Shuting Li Heming +1 位作者 Li Yonggang Tang Guiji 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期592-596,共5页
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or... Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above. 展开更多
关键词 generator Fault diagnosis Rotor vibration characteristic Stator winding parallel branches circulating current
在线阅读 下载PDF
Enhancement of Wind Energy Conversion Using Axial Flux Generator 被引量:1
15
作者 Ibrahim Al-Bahadly Saran Chowdary Neppalli 《Journal of Power and Energy Engineering》 2019年第2期43-58,共16页
This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phas... This paper investigates the application of the axial flux machine (AFM) to the wind energy conversion systems (WECS) to obtain high power and torque at reduced cost. By developing mathematical equations using the phase and active transformations, the three-phase model is transformed to two-phase equations by making both the stator and rotor as reference frames, finally converting to arbitrary reference frame, which is useful for the modelling of the axial flux machine. The torque, current, and voltage equations are expressed to improve the simulation reliability. Based on the developed equations, the mathematical model for the axial flux machine is developed using the MATLAB/Simulink. Starting with the axial flux motor model, when the load on the motor increases, how the parameters like torque, current, and speed of the motor vary are explored in this paper. Then for the axial flux generator model, when the wind speed exceeds the rated speed how the torque, line voltages, currents, power and speed of the generator behave are investigated and presented in this paper. The developed model in this paper could be extended to a twin-rotor axial flux synchronous machine, which will lead to the development of more efficient WECS. 展开更多
关键词 AXIAL FLUX Machine AXIAL FLUX generators Power CONVERTER wind Energy
暂未订购
Performance Analysis of Composite Magnetic Circuit Permanent Magnet Wind Generator 被引量:1
16
作者 Gensheng Li Zongxiao Yang Ximei Li 《World Journal of Engineering and Technology》 2019年第4期18-25,共8页
In order to reduce the starting wind speed of the wind wheel and improve the efficiency of the wind wheel, this paper proposes a new type of composite magnetic circuit permanent magnet generator, which changes the rel... In order to reduce the starting wind speed of the wind wheel and improve the efficiency of the wind wheel, this paper proposes a new type of composite magnetic circuit permanent magnet generator, which changes the relationship between the magnetic induction intensity and the air gap by changing the structure of the main magnetic circuit. The structure greatly improves the air gap sensitivity of the generator, which makes the structural design of the permanent magnet generator easier to implement. Finally, the effectiveness and feasibility of the method are verified by simulation. 展开更多
关键词 COMPOSITE MAGNETIC CIRCUIT generator STARTING wind Speed MAIN MAGNETIC CIRCUIT
在线阅读 下载PDF
Electromagnetic and Mechanical Stress Analysis of Wind-Driven Synchronous Reluctance Generator 被引量:2
17
作者 Kitaba Tefera Praveen Tripathy Senior Ravindranath Adda 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期107-114,共8页
The investigation explores the mechanical stress and electromagnetic performance for a wind-driven synchronous reluctance generator(SRG).The change in the mechanical stress due to the presence of centripetal force,win... The investigation explores the mechanical stress and electromagnetic performance for a wind-driven synchronous reluctance generator(SRG).The change in the mechanical stress due to the presence of centripetal force,wind speed,and rotor speed are evaluated for different thickness of tangential and radial ribs.Moreover,the variation in the electromagnetic feature such as the q−and d−axes flux,reactance ratio,inductance,torque and torque ripple are discussed for different thickness of tangential and radial ribs.Increasing both tangential and radial ribs thickness has an effect on the electromagnetic performance,but it is observed that effect is significantly more with the variation of tangential rib thickness.Similarly,the mechanical stress analysis for rotor design has been explored in this paper.It is observed that high concentration of peak stress on the rotor ribs,which limits the range of rotor speed. 展开更多
关键词 ELECTROMAGNETIC mechanical integrity synchronous reluctance generator stress and safety factor wind speed.
在线阅读 下载PDF
Comparative Performance of Fixed-Speed and Variable-Speed Wind Turbine Generator Systems 被引量:2
18
作者 Mohamed Mansour Mohamed Nejib Mansouri Mohamed Faouzi Mimouni 《Journal of Mechanics Engineering and Automation》 2011年第1期74-81,共8页
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t... In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation. 展开更多
关键词 Fixed speed wind generator variable speed wind generator squirrel cage induction generator permanent magnet synchronous generator (PMSG) maximum power point tracking (MPPT) pitch control.
在线阅读 下载PDF
Switched Reluctance Generator for Variable Speed Wind Energy Applications 被引量:1
19
作者 Amissa Arifin Ibrahim Al-Bahadly 《Smart Grid and Renewable Energy》 2011年第1期27-36,共10页
The aim of this paper is to analyze the potential of switched reluctance generator (SRG) in wind energy application. The machine comprises of switched reluctance generator, power converter and controller. In this pape... The aim of this paper is to analyze the potential of switched reluctance generator (SRG) in wind energy application. The machine comprises of switched reluctance generator, power converter and controller. In this paper the main ele-ments that form the generator system is discussed. It also highlights the common type of converter and structure used for SRG in wind energy application and types of control strategy available. Using power converter for switching the generator can operate over a wide speed range. Its applications in high speed area such as starter/generator for air-craft and gas turbine has been established, however the low/medium speed operation is still at an early stage of re-search. In order to subject the machine to various parameters, offline modeling is being investigated to produce the best optimum design. 展开更多
关键词 SWITCHED Reluctance generator (SRG) wind Energy Variable SPEED DRIVES
暂未订购
Isolated MicroGrid’s Voltage and Frequency Characteristic with Induction Generator Based Wind Turbine 被引量:1
20
作者 Woo-Kyu Chae Hak-Ju Lee +2 位作者 Sung-Wook Hwang Il-Keun Song Jae-Eon Kim 《Smart Grid and Renewable Energy》 2014年第7期180-192,共13页
To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery sys... To save on the island area's power supply cost and protect the clean environment, the Isolated MicroGrid is being duly considered. Consisting of the Wind Turbine Generator (WT), photovoltaic generator, battery system, back-up diesel generator, etc., Isolated MicroGrid, which usually uses the inverter to maintain voltage and frequency of the system, is very weak in terms of voltage and frequency stability compared to the large-scale electrical power system. If wind turbine generator is applied to this weak power system, it could experience many problems in terms of maintaining its voltage and frequency. In this paper, the measurement result of voltage and frequency is presented for MicroGrid, which consists of the Wind Turbine Generator adopting the induction generator and the battery system. MicroGrid’s voltage waveform distortion and Wind Turbine Generator’s output oscillation problems are analyzed using PSCAD/EMTDC. Based on the analyzed result, the importance of type and capacity choice has been suggested in case the Wind Turbine Generator is applied to the Isolated MicroGrid. 展开更多
关键词 MICROGRID wind TURBINE INDUCTION generator Battery VOLTAGE Frequency PSCAD/EMTDC
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部