To efficiently obtain P from soil,most terrestrial plants form symbiosis with arbuscular mycorrhizal(AM)fungi and thus have two P uptake pathways,i.e.,the direct pathway(DP)via roots,particularly root hairs,and the my...To efficiently obtain P from soil,most terrestrial plants form symbiosis with arbuscular mycorrhizal(AM)fungi and thus have two P uptake pathways,i.e.,the direct pathway(DP)via roots,particularly root hairs,and the mycorrhizal pathway(MP)via AM fungal hyphae.AM fungi form an extraradical hyphal network to expand their contact area with soil and release carbon-rich compounds,which provide a high-energy habitat for soil bacteria.The bacteria affected by AM fungi support P nutrition of AM fungi by secreting extracellular phosphatases.During the P acquisition process,both DP and MP function and require C fixed by plant photosynthesis to maintain P transport.Plants make trade-offs between DP and MP based on C inputs and P benefits.This review first systematically explores the potential trade-offs between plant C inputs and P gains of DP and MP as well as the factors that influence such trade-offs.Then the response of AM fungi to soil nutrient heterogeneity and the mechanisms by which AM fungi select bacteria to mineralize organic P and increase the P contribution of MP were analyzed.Future studies need to apply emerging methods and technologies to accurately quantify the contribution of DP and MP to plant P absorption under different conditions and provide the theoretical basis for optimizing sustainable agricultural production systems.展开更多
Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substanti...Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substantia nigra pars reticulata) neurons were specifically labeled, and then subjected to double-labeled immunohistochemistry for mu-OPIOID Receptor (specifically-labeled striatal patch compartment), D1, and D2, respectively. The experimental findings showed that there are no statistically significant differences in the soma diameter and the number of primary dendrites between the striato-direct (substantia nigra pars reticularis) and indirect (globus pallidum externum) neurons labeled retrograde by BDA3 kDa. In addition, these two kinds of projection neurons revealed no obvious coexistence. This evidence indicates that as a highly sensitive neural pathway tracer, BDA could yield reliably and exquisitely detailed labeling of target neurons and synaptic structures. The variance of the morphologic structures and the localization of neurons were not statistically significant between the striato-substantia nigra pars reticularis and the globus pallidum externum projection neurons. Mesencephalic and thalamic neurons correlated with striatal neurons in morphology. Especially the latter which make typical excitatory synaptic contacts with striato-direct and -indirect neurons. Thus, this evidence suggests that thalamic neurons may extensively excite striatal neurons.展开更多
The secondary motor cortex(M2)encodes choice-related information and plays an important role in cue-guided actions.M2 neurons innervate the dorsal striatum(DS),which also contributes to decision-making behavior,yet ho...The secondary motor cortex(M2)encodes choice-related information and plays an important role in cue-guided actions.M2 neurons innervate the dorsal striatum(DS),which also contributes to decision-making behavior,yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear.Using mice performing a visual Go/No-Go task,we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm(FA)rate to the reward-irrelevant No-Go stimulus.The choice signal of M2 neurons correlated with behavioral performance,and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS.By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs,we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus,and inactivating their early responses increased the FA rate.These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.展开更多
Formic acid oxidation(FAO)is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways.Herein,PtAu bimetallic nanoparticles loaded onto Co and N co-doping c...Formic acid oxidation(FAO)is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways.Herein,PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes(CoNC NFs)were designed to improve the selectivity of the direct reaction pathway for efficient FAO.Based on these subtle nanomaterials,the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail.The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO,which is crucial for enhancing the oxidation efficiency of formic acid.In particular,the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1(PtAu/CoNC-3)manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts.The FAO mass activity of the PtAu/CoNC-3 sample reached 0.88 A·mg_(Pt)^(-1),which is 26.0 times higher than that of Pt/C.The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C,which indicates that the synergistic effect of Pt,Au,and CoNC NFs is critical for the resistance of Pt to CO poisoning.This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.展开更多
基金funded by the National Key R&D Program of China(2022YFD1901304)China Scholarship Council(202206350052)。
文摘To efficiently obtain P from soil,most terrestrial plants form symbiosis with arbuscular mycorrhizal(AM)fungi and thus have two P uptake pathways,i.e.,the direct pathway(DP)via roots,particularly root hairs,and the mycorrhizal pathway(MP)via AM fungal hyphae.AM fungi form an extraradical hyphal network to expand their contact area with soil and release carbon-rich compounds,which provide a high-energy habitat for soil bacteria.The bacteria affected by AM fungi support P nutrition of AM fungi by secreting extracellular phosphatases.During the P acquisition process,both DP and MP function and require C fixed by plant photosynthesis to maintain P transport.Plants make trade-offs between DP and MP based on C inputs and P benefits.This review first systematically explores the potential trade-offs between plant C inputs and P gains of DP and MP as well as the factors that influence such trade-offs.Then the response of AM fungi to soil nutrient heterogeneity and the mechanisms by which AM fungi select bacteria to mineralize organic P and increase the P contribution of MP were analyzed.Future studies need to apply emerging methods and technologies to accurately quantify the contribution of DP and MP to plant P absorption under different conditions and provide the theoretical basis for optimizing sustainable agricultural production systems.
基金the National Natural Science Foundation of China, No. 31070941 20831006 30770679
文摘Using neural pathway tracing and immunohistochemical technique, the striato-direct pathway (BDA3 kDa injected into the rat lateral globus pallidus) and striato-indirect pathway (BDA3 kDa injected into the substantia nigra pars reticulata) neurons were specifically labeled, and then subjected to double-labeled immunohistochemistry for mu-OPIOID Receptor (specifically-labeled striatal patch compartment), D1, and D2, respectively. The experimental findings showed that there are no statistically significant differences in the soma diameter and the number of primary dendrites between the striato-direct (substantia nigra pars reticularis) and indirect (globus pallidum externum) neurons labeled retrograde by BDA3 kDa. In addition, these two kinds of projection neurons revealed no obvious coexistence. This evidence indicates that as a highly sensitive neural pathway tracer, BDA could yield reliably and exquisitely detailed labeling of target neurons and synaptic structures. The variance of the morphologic structures and the localization of neurons were not statistically significant between the striato-substantia nigra pars reticularis and the globus pallidum externum projection neurons. Mesencephalic and thalamic neurons correlated with striatal neurons in morphology. Especially the latter which make typical excitatory synaptic contacts with striato-direct and -indirect neurons. Thus, this evidence suggests that thalamic neurons may extensively excite striatal neurons.
基金This work was supported by the STI2030-Major Projects(2021ZD0203700/2021ZD0203703)the National Natural Science Foundation of China(31771151,32171030,and 32100829),the Lingang Lab(LG202104-01-03)+1 种基金Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32010200).
文摘The secondary motor cortex(M2)encodes choice-related information and plays an important role in cue-guided actions.M2 neurons innervate the dorsal striatum(DS),which also contributes to decision-making behavior,yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear.Using mice performing a visual Go/No-Go task,we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm(FA)rate to the reward-irrelevant No-Go stimulus.The choice signal of M2 neurons correlated with behavioral performance,and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS.By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs,we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus,and inactivating their early responses increased the FA rate.These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
基金support from the National Natural Science Foundation of China(Nos.51801188,12034002,and 51971025)the China Postdoctoral Science Foundation(No.2018M632792)+3 种基金program for the Innovation Team of Science and Technology in University of Henan(No.20IRTSTHN014)Excellent Youth Foundation of Henan Scientific Committee(No.202300410356)the CAS Interdisciplinary Innovation Team(No.JCTD-2019-01)Beijing Natural Science Foundation(No.2204085)。
文摘Formic acid oxidation(FAO)is a typical anode reaction in fuel cells that can be facilitated by modulating its direct and indirect reaction pathways.Herein,PtAu bimetallic nanoparticles loaded onto Co and N co-doping carbon nanoframes(CoNC NFs)were designed to improve the selectivity of the direct reaction pathway for efficient FAO.Based on these subtle nanomaterials,the influences of elemental composition and carbon-support materials on the two pathways of FAO were investigated in detail.The results of fuel cell tests verified that the appropriate amount of Au in PtAu/CoNC can promote a direct reaction pathway for FAO,which is crucial for enhancing the oxidation efficiency of formic acid.In particular,the obtained PtAu/CoNC with an optimal Pt/Au atomic ratio of 1:1(PtAu/CoNC-3)manifests the best catalytic performance among the analogous obtained Pt-based electrocatalysts.The FAO mass activity of the PtAu/CoNC-3 sample reached 0.88 A·mg_(Pt)^(-1),which is 26.0 times higher than that of Pt/C.The results of first-principles calculation and CO stripping jointly demonstrate that the CO adsorption of PtAu/CoNC is considerably lower than that of Pt/CoNC and PtAu/C,which indicates that the synergistic effect of Pt,Au,and CoNC NFs is critical for the resistance of Pt to CO poisoning.This work is of great significance for a deeper understanding of the oxidation mechanism of formic acid and provides a feasible and promising strategy for enhancing the catalytic performance of the catalyst by improving the direct reaction pathway for FAO.