Considering that cathode of microbial electrochemical system(MES)is a good electrons source for methane production via direct/indirect electron transfer to electroactive microorganisms,and that Fe(0)is also a confirme...Considering that cathode of microbial electrochemical system(MES)is a good electrons source for methane production via direct/indirect electron transfer to electroactive microorganisms,and that Fe(0)is also a confirmed electron donor for some electroactive microorganisms through metal-microbe direct electron transfer(DET),Fe(0)-cathode was equipped into an MES digester to enhance cathodic methane production.The results of this study indicated that the potential DET participator,Clostridium possibly obtained electrons directly from Fe(0)-cathode via metal-microbe electrons transfer,then transferred electrons directly to the definite DET participators,Methanosarcina/Methanothrix via microbemicrobe electrons transfer for CH_(4)production.In addition,Methanobacterium is another specially enriched methanogen on Fe(0)-cathode,which might obtain electrons directly from Fe(0)-cathode to produce CH_(4) via metal/electrode-microbe DET.The increment of conductivity of cathodic sludge in Fe(0)-cathode MES digester(R1)further confirmed the enrichment of electroactive microorganisms participating in DET process.As a consequence,a higher CH_(4) production(1205–1508 m L/d)and chemical oxygen demand(COD)removal(79.0%-93.8%)were achieved in R1 compared with graphite-cathode MES digester(R2,720–1090 m L/d and 63.6%-85.6%)and the conventional anaerobic digester(R3,384–428 m L/d and 35.2%-41.0%).In addition,energy efficiency calculated indicated that the output energy of CH_(4) production was 8.16 folds of electricity input in Fe(0)-cathode MES digester.展开更多
Extracellular electron transfer(EET)plays a critical role in bioelectrochemical processes,allowing cou-pling between microorganisms and extracellular solid-state electrodes,metals,or other cells in energy metabolism.P...Extracellular electron transfer(EET)plays a critical role in bioelectrochemical processes,allowing cou-pling between microorganisms and extracellular solid-state electrodes,metals,or other cells in energy metabolism.Previous studies have suggested a role for outer-surface c-type cytochromes in direct metal-to-microbe electron transfer by Geobacter sulfurreducens,a model electroactive bacterium.Here,we ex-amined the possibility of other microbially produced electrical contacts by deleting the gene for PilA,the protein monomer that G.sulfurreducens assembles into electrically conductive protein nanowires(e-pili).Deleting pilA gene inhibited electron extraction from pure iron and 316L stainless steel up to 31%and 81%,respectively more than deleting the gene for the outer-surface cytochrome OmcS.This PilA-deficient phenotype,and the observation that relatively thick biofilms(21.7μm)grew on the metal surfaces at multi-cell distances from the metal surfaces suggest that e-pili contributed significantly to microbial cor-rosion via direct metal-to-microbe electron transfer.These results have implications for the fundamental understanding of electron harvest via e-pili by electroactive microbes,their uses in bioenergy production,as well as in monitoring and mitigation of metal biocorrosion.展开更多
The direct electrochemical behavior between the glucose oxidase (GOD) and the multi walled carbon nanotubes (MWNTs) has been studied. Two pairs of cyclic voltammetric peaks corresponding to the two different processe...The direct electrochemical behavior between the glucose oxidase (GOD) and the multi walled carbon nanotubes (MWNTs) has been studied. Two pairs of cyclic voltammetric peaks corresponding to the two different processes, i.e. mass transport and surface reaction of GOD are observed on this MWNTs. The formal potentials with E o′=-0.45 V and E o′=-0.55 V were obtained respectively. The GOD film was observed on the carbon nanotube by the TEM.展开更多
Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational ch...Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational change of glucose oxidase is observed by changing 0.1 mol/L phosphate buffer to acetonitrile containing 10% v/v of water and 0.05 mol/L tetrabutyalammonium perchlorate, and vice versa.展开更多
The photocatalytic activity of CdS can be greatly improved by co-modification of NiS and TiO_2 materials; furthermore the order of connection affects much. A directional electron transfer route via CdS → TiO_2→ NiS ...The photocatalytic activity of CdS can be greatly improved by co-modification of NiS and TiO_2 materials; furthermore the order of connection affects much. A directional electron transfer route via CdS → TiO_2→ NiS is found crucial to the enhancement of ternary catalyst, where TiO_2 acts as an electron reservoir and Ni S works as an effective cocatalyst. Cd S/TiO_2@Ni S with Ni S loaded on TiO_2 has an activity of H_2 evolution 2.5 times higher than NiS@Cd S/TiO_2 with Ni S pre-loaded on Cd S. Faster e-/h+separation rates is obtained of Cd S/TiO_2@Ni S under visible light than under extra UV light irradiation, which in turn demonstrates the importance of directional electron transfer route.展开更多
he electrochemistry of cytochrome C was investigated at a spectrographicgraphite electrode. In phosphate buffer solution (pH= 7. 0) , cytochrome C showedstable and quasi-reversible response. The formal potential E ̄(o...he electrochemistry of cytochrome C was investigated at a spectrographicgraphite electrode. In phosphate buffer solution (pH= 7. 0) , cytochrome C showedstable and quasi-reversible response. The formal potential E ̄(o') was 0. 015 V (at25℃ , vs. SCE) and the heterogeneous electron transfer rate constant k_s obtainedvaried form 1. 10×10 ̄(-3) cm · s ̄(-1) to 1. 80k×10 ̄(-3) cm · s ̄(-1). The thermodynamic pa-rameters of the electron transfer reaction of cvtochrome C was also estimated. Fur-thermore, the effect of the various electrode surface states on the electrochemistryof cytochrome C was discussed.展开更多
Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon na...Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.展开更多
To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice stra...To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.展开更多
Direct electrochemistry and electrocatalysis of myoglobin(Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide(DTAB) film modified carbon ceramic(CC) electrode.Cyclic voltammetry showed a pai...Direct electrochemistry and electrocatalysis of myoglobin(Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide(DTAB) film modified carbon ceramic(CC) electrode.Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb(Fe~Ⅱ/Fe~Ⅲ) at about—0.3 V vs.SCE(pH = 6.98).The currents of the redox peak were linear to scan rate,and rate constant(Ks) was estimated to be 3.03 s^(-1).The formal potential(E°') of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of -36.44 mV/pH,implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation.The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide(H2O2).展开更多
基金the financial support from the National Natural Scientific Foundation of China(No.52000020)the National Natural Scientific Foundation of China(No.21876022)。
文摘Considering that cathode of microbial electrochemical system(MES)is a good electrons source for methane production via direct/indirect electron transfer to electroactive microorganisms,and that Fe(0)is also a confirmed electron donor for some electroactive microorganisms through metal-microbe direct electron transfer(DET),Fe(0)-cathode was equipped into an MES digester to enhance cathodic methane production.The results of this study indicated that the potential DET participator,Clostridium possibly obtained electrons directly from Fe(0)-cathode via metal-microbe electrons transfer,then transferred electrons directly to the definite DET participators,Methanosarcina/Methanothrix via microbemicrobe electrons transfer for CH_(4)production.In addition,Methanobacterium is another specially enriched methanogen on Fe(0)-cathode,which might obtain electrons directly from Fe(0)-cathode to produce CH_(4) via metal/electrode-microbe DET.The increment of conductivity of cathodic sludge in Fe(0)-cathode MES digester(R1)further confirmed the enrichment of electroactive microorganisms participating in DET process.As a consequence,a higher CH_(4) production(1205–1508 m L/d)and chemical oxygen demand(COD)removal(79.0%-93.8%)were achieved in R1 compared with graphite-cathode MES digester(R2,720–1090 m L/d and 63.6%-85.6%)and the conventional anaerobic digester(R3,384–428 m L/d and 35.2%-41.0%).In addition,energy efficiency calculated indicated that the output energy of CH_(4) production was 8.16 folds of electricity input in Fe(0)-cathode MES digester.
基金supported by the National Natu-ral Science Foundation of China(Nos.U2006219 and 52101078)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202120)+2 种基金the National Key Research and Development Pro-gram of China(No.2020YFA0907300)the Fundamental Research Funds for the Central Universities of the Ministry of Education of China(Nos.N2102009 and N2002019)the Liaoning Revitaliza-tion Talents Program(No.XLYC1907158).
文摘Extracellular electron transfer(EET)plays a critical role in bioelectrochemical processes,allowing cou-pling between microorganisms and extracellular solid-state electrodes,metals,or other cells in energy metabolism.Previous studies have suggested a role for outer-surface c-type cytochromes in direct metal-to-microbe electron transfer by Geobacter sulfurreducens,a model electroactive bacterium.Here,we ex-amined the possibility of other microbially produced electrical contacts by deleting the gene for PilA,the protein monomer that G.sulfurreducens assembles into electrically conductive protein nanowires(e-pili).Deleting pilA gene inhibited electron extraction from pure iron and 316L stainless steel up to 31%and 81%,respectively more than deleting the gene for the outer-surface cytochrome OmcS.This PilA-deficient phenotype,and the observation that relatively thick biofilms(21.7μm)grew on the metal surfaces at multi-cell distances from the metal surfaces suggest that e-pili contributed significantly to microbial cor-rosion via direct metal-to-microbe electron transfer.These results have implications for the fundamental understanding of electron harvest via e-pili by electroactive microbes,their uses in bioenergy production,as well as in monitoring and mitigation of metal biocorrosion.
文摘The direct electrochemical behavior between the glucose oxidase (GOD) and the multi walled carbon nanotubes (MWNTs) has been studied. Two pairs of cyclic voltammetric peaks corresponding to the two different processes, i.e. mass transport and surface reaction of GOD are observed on this MWNTs. The formal potentials with E o′=-0.45 V and E o′=-0.55 V were obtained respectively. The GOD film was observed on the carbon nanotube by the TEM.
文摘Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational change of glucose oxidase is observed by changing 0.1 mol/L phosphate buffer to acetonitrile containing 10% v/v of water and 0.05 mol/L tetrabutyalammonium perchlorate, and vice versa.
基金Supported by the Scientific Research Starting Foundation for Doctors(trxyD H1512)the Foundation for Youth Talent Growth Project in the Ministry of Science and Technology of China(20171184)the Mutual Foundation in the Ministry of Science and Technology of China(20177315)
文摘The photocatalytic activity of CdS can be greatly improved by co-modification of NiS and TiO_2 materials; furthermore the order of connection affects much. A directional electron transfer route via CdS → TiO_2→ NiS is found crucial to the enhancement of ternary catalyst, where TiO_2 acts as an electron reservoir and Ni S works as an effective cocatalyst. Cd S/TiO_2@Ni S with Ni S loaded on TiO_2 has an activity of H_2 evolution 2.5 times higher than NiS@Cd S/TiO_2 with Ni S pre-loaded on Cd S. Faster e-/h+separation rates is obtained of Cd S/TiO_2@Ni S under visible light than under extra UV light irradiation, which in turn demonstrates the importance of directional electron transfer route.
文摘he electrochemistry of cytochrome C was investigated at a spectrographicgraphite electrode. In phosphate buffer solution (pH= 7. 0) , cytochrome C showedstable and quasi-reversible response. The formal potential E ̄(o') was 0. 015 V (at25℃ , vs. SCE) and the heterogeneous electron transfer rate constant k_s obtainedvaried form 1. 10×10 ̄(-3) cm · s ̄(-1) to 1. 80k×10 ̄(-3) cm · s ̄(-1). The thermodynamic pa-rameters of the electron transfer reaction of cvtochrome C was also estimated. Fur-thermore, the effect of the various electrode surface states on the electrochemistryof cytochrome C was discussed.
基金financially supported by National Key Research and Development Program of China(No.2021YFA1401103)the National Natural Science Foundation of China(Nos.61825403,61921005 and 61904049)。
文摘Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.
基金supported by the National Key Research&Development Program of Ministry of Science and Technology of the People’s Republic of China(grant number 2018YFC1900901).
文摘To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.
基金supported by the Shaanxi Provincial Natural Science Foundation for Young Scientist(No. 2009JQ2011)the Shaanxi Provincial Education Department Foundation(No.08JK322)+1 种基金the Youth Science and Technology Foundation of Xi'an University of Architecture and Technology(No.QN0620)Youth Scientist Foundation of Xi'an University of Architecture and Technology(No.RC0942)
文摘Direct electrochemistry and electrocatalysis of myoglobin(Mb) were studied with Mb immobilized on dodecyltrimethylammonium bromide(DTAB) film modified carbon ceramic(CC) electrode.Cyclic voltammetry showed a pair of well-defined and nearly reversible redox peaks of Mb(Fe~Ⅱ/Fe~Ⅲ) at about—0.3 V vs.SCE(pH = 6.98).The currents of the redox peak were linear to scan rate,and rate constant(Ks) was estimated to be 3.03 s^(-1).The formal potential(E°') of Mb in the DTAB/CC electrodes shifted linearly with pH with a slope of -36.44 mV/pH,implying that the electron transfer between DTAB and CC electrodes is accompanied by proton transportation.The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide(H2O2).