Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning re...Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.展开更多
The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.H...The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.展开更多
Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the su...Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the surface structure of the nanoparticles can broaden their absorption spectrum, thereby significantly improving the solar thermal conversion efficiency. This paper utilizes the finite element method to investigate the influence of surface pits on the photothermal properties of plasmonic nanoparticles, considering both material composition and surface micro-nano structures. Based on the findings, a novel Ti N nanoparticle is proposed to enhance photothermal performance. This nanoparticle exhibits the lowest average reflectance(0.0145) in the 300–1100 nm wavelength range and the highest light absorption intensity across the solar spectrum, enabling highly efficient solar energy conversion. It not only reduces material costs but also effectively broadens the light absorption spectrum of spherical plasmonic nanoparticles. The distributions of the electric field, magnetic field, and energy field of the nanoparticles indicate that the combination of the “lightning rod” effect and surface plasmon resonance(SPR) significantly enhances both the electric and magnetic fields, thereby increasing the localized heating effect and improving the photothermal performance. Additionally, the number and size of the pits have a significant impact on the absorption efficiency(η_(abs)) of TiN nanoparticles. When the surface of the nanoparticles has 38 pits, η_(abs) can reach90%, with the minimum optical penetration depth(h) of the nanofluid being 7 mm and the minimum volume fraction(f_(v))being 6.95×10^(-6). This study demonstrates that nanoparticles with micro-nano structures have immense potential in solar thermal applications, particularly in the field of direct absorption solar collectors.展开更多
An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar ...An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.展开更多
A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship betwe...A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.展开更多
A direct analysis method combining an iminodiacetate extraction disk (IED) with graphite furnace atomic absorption spectrometry was developed for the determination of Co, Ni, Cu, Cd, Sn, Pb, and Bi at sub-ppb levels i...A direct analysis method combining an iminodiacetate extraction disk (IED) with graphite furnace atomic absorption spectrometry was developed for the determination of Co, Ni, Cu, Cd, Sn, Pb, and Bi at sub-ppb levels in water. A 100 mL water sample was adjusted to pH 5.6 with nitric acid and a 1 mol?L–1 ammonium acetate solution, and then passed through an IED (diameter, 47 mm;effective filtering diameter, 35 mm) at a flow rate of 80 - 100 mL?min–1 to preconcentrate seven analytes. The IED was dried at 100?C for 20 min in an electric oven, and 110 - 145 small disks, each 2 mm in diameter, were punched out from the IED. A small disk was introduced into the graphite furnace and atomized according to a heating program. For Cd, Sn, Pb, and Bi measurements, Pd was used as a chemical modifier to enhance the absorbances. Calibration was performed using aqueous standard solutions. The detection limits, corresponding to three times the standard deviation (n = 5) of the blank values, were 0.092 μg·L–1 for Co, 0.12 μg·L–1 for Ni, 0.40 μg·L–1 for Cu, 0.077 μg·L–1 for Cd, 0.92 μg·L–1 for Sn, 0.61 μg·L–1 for Pb, and 0.80 μg·L–1 for Bi with an enrichment factor of 140 using a 100-mL water sample. A spike test for the seven analytes in tap water, rainwater, river water, and mineral drinking water showed quantitative recoveries (93% - 108%).展开更多
The nonlinear absorption properties of direct (GaN) and indirect (CdI2) band gap crystals have been studied by using an open aperture Z-scan technique under fundamental (1064 nm) and frequency doubled (532 nm) wavelen...The nonlinear absorption properties of direct (GaN) and indirect (CdI2) band gap crystals have been studied by using an open aperture Z-scan technique under fundamental (1064 nm) and frequency doubled (532 nm) wavelength respectively with 10 ns or 60 ps pulse durations. Direct band gap crystal exhibits two and three photon absorption at all input irradiances. On the other hand, at low input irradiance the indirect band gap crystal exhibits saturable absorption (SA). At higher input irradiances two and three photon absorption becomes dominant. A monotonic increase of the nonlinear absorption coefficients with increasing laser pulse duration from 60 ps to 10 ns is observed for GaN and CdI2 crystals.展开更多
Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticl...Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticles obstructs their large-scale application. In this work, a new method of using magnetic nanofluids in DASCs is proposed. By this method, not only high-quality energy is got as well as the problems of blockage and corrosion in heat exchanger are well avoided. The result shows that the maximum temperature can reach 98℃ under 3 solar irradiations and the photothermal conversion efficiency can be further increased by 12.8% when the concentration is 500 ppm after adding an external rotating magnetic field. The highest viscosity of working fluid reduced by 21% when the concentration is 500 ppm at 95℃ after separating the Fe_(3)O_(4)@C nanoparticles from the nanofluids via magnetic separation technology. Meanwhile, the obtained pure base liquids with high temperature flow to heat exchanger, which also reduces the flow resistance in pipeline and avoids the problems such as blockage and corrosion in heat exchanger. This research promotes a new way for the efficient utilization of solar energy.展开更多
The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<...The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures.展开更多
The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques.A stable and tunable optical frequency at wavelength of ...The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques.A stable and tunable optical frequency at wavelength of 1.5μm obtained by a cavity with high finesse of 96000 and a fiber laser has been demonstrated,calibrated by a commercial optical frequency comb.The locking performances have been analyzed by in-loop and out-loop noises,indicating that the absolute frequency instability could be down to 50 kHz over 1 s and keep to less than 110 kHz over 2.5 h.Then,the application of this stabilized laser to the direct absorption spectroscopy has been performed.With the help of balanced detection,the detection sensitivity,in terms of optical density,can reach to 9.4×10^(-6).展开更多
The γ-ray radiation will speed up the discharge of the storedcharge in nonvolatile MNOS structure. The radiation absorptionmechanism to enhance the discharge is discussed. A direct radiationemission model from the in...The γ-ray radiation will speed up the discharge of the storedcharge in nonvolatile MNOS structure. The radiation absorptionmechanism to enhance the discharge is discussed. A direct radiationemission model from the interface traps distributing both in energylevel and in space is given. The theoretical results based on thismodel are in good agreement with experimental measurements.展开更多
基金supported by the Chongqing New Youth Innovation Talent Program(No.CSTB2024NSCQ-QCXMX0086)Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-K202300606)+1 种基金National High-end Foreign Experts Introduction Plan(No.G2022035005L)Chongqing Talent Plan of Overall Rationing System Project(No.CQYC202203091156).
文摘Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range.
基金Project(52476095)supported by the National Natural Science Foundation of ChinaProject(kq2506013)supported by Changsha Outstanding Innovative Youth Training Program,China。
文摘The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.
基金supported by the National Natural Science Foundation of China (Grant No. 52106099)the Taishan Scholars Program。
文摘Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the surface structure of the nanoparticles can broaden their absorption spectrum, thereby significantly improving the solar thermal conversion efficiency. This paper utilizes the finite element method to investigate the influence of surface pits on the photothermal properties of plasmonic nanoparticles, considering both material composition and surface micro-nano structures. Based on the findings, a novel Ti N nanoparticle is proposed to enhance photothermal performance. This nanoparticle exhibits the lowest average reflectance(0.0145) in the 300–1100 nm wavelength range and the highest light absorption intensity across the solar spectrum, enabling highly efficient solar energy conversion. It not only reduces material costs but also effectively broadens the light absorption spectrum of spherical plasmonic nanoparticles. The distributions of the electric field, magnetic field, and energy field of the nanoparticles indicate that the combination of the “lightning rod” effect and surface plasmon resonance(SPR) significantly enhances both the electric and magnetic fields, thereby increasing the localized heating effect and improving the photothermal performance. Additionally, the number and size of the pits have a significant impact on the absorption efficiency(η_(abs)) of TiN nanoparticles. When the surface of the nanoparticles has 38 pits, η_(abs) can reach90%, with the minimum optical penetration depth(h) of the nanofluid being 7 mm and the minimum volume fraction(f_(v))being 6.95×10^(-6). This study demonstrates that nanoparticles with micro-nano structures have immense potential in solar thermal applications, particularly in the field of direct absorption solar collectors.
基金supported by the National Natural Science Foundation of China(Grant No.11272338)the Science and Technology on Scramjet Key Laboratory Funding,China(Grant No.STSKFKT 2013004)the China Scholarship Council
文摘An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence(LIF)methods is developed to quantitatively measure the concentrations of hydroxyl in CH;/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor.
文摘A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.
文摘A direct analysis method combining an iminodiacetate extraction disk (IED) with graphite furnace atomic absorption spectrometry was developed for the determination of Co, Ni, Cu, Cd, Sn, Pb, and Bi at sub-ppb levels in water. A 100 mL water sample was adjusted to pH 5.6 with nitric acid and a 1 mol?L–1 ammonium acetate solution, and then passed through an IED (diameter, 47 mm;effective filtering diameter, 35 mm) at a flow rate of 80 - 100 mL?min–1 to preconcentrate seven analytes. The IED was dried at 100?C for 20 min in an electric oven, and 110 - 145 small disks, each 2 mm in diameter, were punched out from the IED. A small disk was introduced into the graphite furnace and atomized according to a heating program. For Cd, Sn, Pb, and Bi measurements, Pd was used as a chemical modifier to enhance the absorbances. Calibration was performed using aqueous standard solutions. The detection limits, corresponding to three times the standard deviation (n = 5) of the blank values, were 0.092 μg·L–1 for Co, 0.12 μg·L–1 for Ni, 0.40 μg·L–1 for Cu, 0.077 μg·L–1 for Cd, 0.92 μg·L–1 for Sn, 0.61 μg·L–1 for Pb, and 0.80 μg·L–1 for Bi with an enrichment factor of 140 using a 100-mL water sample. A spike test for the seven analytes in tap water, rainwater, river water, and mineral drinking water showed quantitative recoveries (93% - 108%).
文摘The nonlinear absorption properties of direct (GaN) and indirect (CdI2) band gap crystals have been studied by using an open aperture Z-scan technique under fundamental (1064 nm) and frequency doubled (532 nm) wavelength respectively with 10 ns or 60 ps pulse durations. Direct band gap crystal exhibits two and three photon absorption at all input irradiances. On the other hand, at low input irradiance the indirect band gap crystal exhibits saturable absorption (SA). At higher input irradiances two and three photon absorption becomes dominant. A monotonic increase of the nonlinear absorption coefficients with increasing laser pulse duration from 60 ps to 10 ns is observed for GaN and CdI2 crystals.
基金supported by National Natural Science Foundation of China(51590901&51876112&51906132&51906123)Shanghai Municipal Natural Science Foundation(Grant No.17ZR1411000)+1 种基金the Key Subject of Shanghai Polytechnic University(Material Science and engineeringGrant Nos.XXKZD1601 and EGD18YJ0042)。
文摘Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticles obstructs their large-scale application. In this work, a new method of using magnetic nanofluids in DASCs is proposed. By this method, not only high-quality energy is got as well as the problems of blockage and corrosion in heat exchanger are well avoided. The result shows that the maximum temperature can reach 98℃ under 3 solar irradiations and the photothermal conversion efficiency can be further increased by 12.8% when the concentration is 500 ppm after adding an external rotating magnetic field. The highest viscosity of working fluid reduced by 21% when the concentration is 500 ppm at 95℃ after separating the Fe_(3)O_(4)@C nanoparticles from the nanofluids via magnetic separation technology. Meanwhile, the obtained pure base liquids with high temperature flow to heat exchanger, which also reduces the flow resistance in pipeline and avoids the problems such as blockage and corrosion in heat exchanger. This research promotes a new way for the efficient utilization of solar energy.
基金Project supported by the National Natural Science Foundation of China(Grant No.61764012).
文摘The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61875107,61905136,61905134,62175139)+1 种基金Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2019L0062)Opening Foundation of Key Laboratory of Laser&Infrared System(Shandong University)。
文摘The laser frequency could be linked to an radio frequency through an external cavity by the combination of Pound-Drever-Hall and Devoe-Brewer locking techniques.A stable and tunable optical frequency at wavelength of 1.5μm obtained by a cavity with high finesse of 96000 and a fiber laser has been demonstrated,calibrated by a commercial optical frequency comb.The locking performances have been analyzed by in-loop and out-loop noises,indicating that the absolute frequency instability could be down to 50 kHz over 1 s and keep to less than 110 kHz over 2.5 h.Then,the application of this stabilized laser to the direct absorption spectroscopy has been performed.With the help of balanced detection,the detection sensitivity,in terms of optical density,can reach to 9.4×10^(-6).
文摘The γ-ray radiation will speed up the discharge of the storedcharge in nonvolatile MNOS structure. The radiation absorptionmechanism to enhance the discharge is discussed. A direct radiationemission model from the interface traps distributing both in energylevel and in space is given. The theoretical results based on thismodel are in good agreement with experimental measurements.