Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz ba...Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.展开更多
In this study,we mainly discuss some spectral properties of the Dirac operator with eigenparameter-dependent boundary condition.Initially,we reformulate the spectral problem into linear operator eigenparameter problem...In this study,we mainly discuss some spectral properties of the Dirac operator with eigenparameter-dependent boundary condition.Initially,we reformulate the spectral problem into linear operator eigenparameter problem in a suitable Hilbert space,and obtain some pivotal properties of self-adjoint operator.Subsequently,by establishing the boundary condition space and constructing the embedded mapping,we show that the simple eigenvalue branch of this system is not only continuous,but also smooth.We then obtain the differential expressions of the eigenvalue branch in the sense of Frechet derivative.展开更多
In this work,we investigate disordered Dirac fermions from the perspective of quantum entanglement,which provides a different angle compared to the ordinary perturbative renormalization group(RG)analysis.We consider D...In this work,we investigate disordered Dirac fermions from the perspective of quantum entanglement,which provides a different angle compared to the ordinary perturbative renormalization group(RG)analysis.We consider Dirac fermions subjected to random hopping and random flux,which respectively fall into the chiral Gaussian orthogonal ensemble(cGOE)and chiral Gaussian unitary ensemble(cGUE)universality classes.Existing studies based on perturbative calculations suggest that both types of randomness are marginal.Here,through numerical simulations of the corresponding lattice models,we find that these two different types of randomness exhibit distinct entanglement features,signaling completely different properties in contrast to the perturbative RG analysis.In particular,although the entropy area-law is generally held for both types of randomness,we identify that the subleading term of the entanglement entropy is enhanced by random flux but not by random hopping.This subleading term is known as the entropic F-function in the clean limit without disorder.Our observations indicate that disordered theories in cGOE and cGUE are essentially different,which recalls careful analysis on the RG calculations.展开更多
The isospin splitting of the Dirac mass obtained using the relativistic Brueckner-Hartree-Fock(RBHF)theory was thor-oughly investigated.From the perspective in the full Dirac space,the long-standing controversy betwee...The isospin splitting of the Dirac mass obtained using the relativistic Brueckner-Hartree-Fock(RBHF)theory was thor-oughly investigated.From the perspective in the full Dirac space,the long-standing controversy between the momentum-independent approximation(MIA)method and the projection method on the isospin splitting of the Dirac mass in asymmetric nuclear matter was analyzed in detail.We found that the assumption procedure of the MIA method,which assumes that single-particle potentials are momentum independent,is not a sufficient condition that directly leads to the opposite sign of the isospin splitting of the Dirac mass,whereas the extraction procedure of the MIA method,which extracts single-particle potentials from single-particle potential energy,changes the sign.A formal expression of the Dirac mass was obtained by approximately solving a set of equations involved in the extraction procedure.The opposite isospin splitting of the Dirac mass was mainly caused by the extraction procedure,which forcibly assumed that the momentum dependence of the single-particle potential energy was in a quadratic form,in which the strength was solely determined by a constant scalar potential.Improved understanding of the isospin splitting of the Dirac mass from ab initio calculations could enhance our knowledge of neutron-rich systems,such as exotic nuclei and neutron stars.展开更多
In this paper,a tunable metamaterial absorber based on a Dirac semimetal is proposed.It consists of three different structures,from top to bottom,namely a double semicircular Dirac semimetal resonator,a silicon dioxid...In this paper,a tunable metamaterial absorber based on a Dirac semimetal is proposed.It consists of three different structures,from top to bottom,namely a double semicircular Dirac semimetal resonator,a silicon dioxide substrate and a continuous vanadium dioxide(VO_(2))reflector layer.When the Fermi energy level of the Dirac semimetal is 10 meV,the absorber absorbs more than 90%in the 39.06-84.76 THz range.Firstly,taking advantage of the tunability of the conductivity of the Dirac semimetal,dynamic tuning of the absorption frequency can be achieved by changing the Fermi energy level of the Dirac semimetal without the need to optimise the geometry and remanufacture the structure.Secondly,the structure has been improved by the addition of the phase change material VO_(2),resulting in a much higher absorption performance of the absorber.Since VO_(2)is a temperature-sensitive metal oxide with an insulating phase below the phase transition temperature(about 68℃)and a metallic phase above the phase transition temperature,this paper also analyses the effect of VO_(2)on the absorptive performance at different temperatures,with the aim of further improving absorber performance.展开更多
The system consisting of(2+1)-dimensional quasirelativistic birefringent Dirac fermions with Coulomb interactions and retarded current–current interactions is described by a quantum field theory similar to reduced qu...The system consisting of(2+1)-dimensional quasirelativistic birefringent Dirac fermions with Coulomb interactions and retarded current–current interactions is described by a quantum field theory similar to reduced quantum electrodynamics.We used the perturbative renormalization group method to study the low-energy behavior of the system and found that it flows to a fixed point of the non-Fermi liquid composed of relativistic pseudospin-1/2 Dirac fermions in the deep infrared limit.At the fixed point,the fermion Green function exhibits a finite anomalous dimension,and the residue of the quasiparticle pole vanishes in a power-law fashion.Our research provides new theoretical perspectives for understanding the origin of spin-1/2 fermions in the standard model.展开更多
We investigate the behavior of non-Hermitian birefringent Dirac fermions by examining their interaction with electromagnetic fields through renormalization group analysis. Our research reveals that the interplay betwe...We investigate the behavior of non-Hermitian birefringent Dirac fermions by examining their interaction with electromagnetic fields through renormalization group analysis. Our research reveals that the interplay between non-Hermiticity and birefringence leads to distinct behaviors in two and three dimensions, where the system exhibits different fixed points and scaling properties due to dimension-dependent charge renormalization effects. In two dimensions, where the electronic charge remains unrenormalized, the system flows in the deep infrared limit from non-Hermitian birefringent spin-3/2fermions to two copies of non-Hermitian spin-1/2 Dirac fermions, demonstrating a crossover of relativistic liquid and nonrelativistic liquid. In three dimensions, dynamic screening of electromagnetic interactions modifies the logarithmic growth of Fermi velocity, leading to richer quantum corrections while maintaining similar suppression of birefringence in the infrared limit. Our findings provide theoretical insights into the emergence of Lorentz symmetry in non-Hermitian systems,laying theoretical foundations for studying low-energy behavior in other non-Hermitian models.展开更多
We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the densit...We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.展开更多
文摘Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers.This study proposes a 2-bit tunable spin-decoupled coded metasurface designed for the terahertz band,which utilizes the tunable properties of Dirac semimetals(DSM)to create a novel multilayer structure.By incorporating both geometric and propagating phases into the metasurface design,we can effectively control the electromagnetic wave.When the Fermi level(EF)of the DSM is set at 6 meV,the electromagnetic wave is manipulated by the gold patch embedded in the DSM film,operating at a frequency of 1.3 THz.When the EF of the DSM is set at 80 meV,the electromagnetic wave is manipulated by the DSM patch,operating at a frequency of 1.4 THz.Both modes enable independent control of beam splitting under left-rotating circularly polarized(LCP)and rightrotating circularly polarized(RCP)wave excitation,resulting in the generation of vortex beams with distinct orbital angular momentum(OAM)modes.The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.
基金Supported by the National Natural Science Foundation of China(12461039)Excellent Graduate Innovation Star Scientific Research Project of Gansu Province of China(2025CXZX-273)。
文摘In this study,we mainly discuss some spectral properties of the Dirac operator with eigenparameter-dependent boundary condition.Initially,we reformulate the spectral problem into linear operator eigenparameter problem in a suitable Hilbert space,and obtain some pivotal properties of self-adjoint operator.Subsequently,by establishing the boundary condition space and constructing the embedded mapping,we show that the simple eigenvalue branch of this system is not only continuous,but also smooth.We then obtain the differential expressions of the eigenvalue branch in the sense of Frechet derivative.
基金supported by the National Key Research and Development Program(Grant No.2022YFA1402204)the National Natural Science Foundation[Grant Nos.22373095(QL),52471020(WC),and 12474144(WZ)]+2 种基金the Innovation Program for Quantum Science and Technology[Grant No.2021ZD0303306(QL)]the Fundamental Research Funds for the Central Universities[Grant No.JZ2025HGQA0310(WC)]the Science Research Foundation for High-Level Talents of Anhui University of Science and Technology[Grant No.YJ20240002(WL)].
文摘In this work,we investigate disordered Dirac fermions from the perspective of quantum entanglement,which provides a different angle compared to the ordinary perturbative renormalization group(RG)analysis.We consider Dirac fermions subjected to random hopping and random flux,which respectively fall into the chiral Gaussian orthogonal ensemble(cGOE)and chiral Gaussian unitary ensemble(cGUE)universality classes.Existing studies based on perturbative calculations suggest that both types of randomness are marginal.Here,through numerical simulations of the corresponding lattice models,we find that these two different types of randomness exhibit distinct entanglement features,signaling completely different properties in contrast to the perturbative RG analysis.In particular,although the entropy area-law is generally held for both types of randomness,we identify that the subleading term of the entanglement entropy is enhanced by random flux but not by random hopping.This subleading term is known as the entropic F-function in the clean limit without disorder.Our observations indicate that disordered theories in cGOE and cGUE are essentially different,which recalls careful analysis on the RG calculations.
基金supported in part by the China Postdoctoral Science Foundation under grant No.2021M700610the National Natural Science Foundation of China(NSFC)(No.12205030)+1 种基金the Fundamental Research Funds for the Central Universities(No.2024CDJXY022)the Institute for Basic Science(No.IBS-R031-D1).
文摘The isospin splitting of the Dirac mass obtained using the relativistic Brueckner-Hartree-Fock(RBHF)theory was thor-oughly investigated.From the perspective in the full Dirac space,the long-standing controversy between the momentum-independent approximation(MIA)method and the projection method on the isospin splitting of the Dirac mass in asymmetric nuclear matter was analyzed in detail.We found that the assumption procedure of the MIA method,which assumes that single-particle potentials are momentum independent,is not a sufficient condition that directly leads to the opposite sign of the isospin splitting of the Dirac mass,whereas the extraction procedure of the MIA method,which extracts single-particle potentials from single-particle potential energy,changes the sign.A formal expression of the Dirac mass was obtained by approximately solving a set of equations involved in the extraction procedure.The opposite isospin splitting of the Dirac mass was mainly caused by the extraction procedure,which forcibly assumed that the momentum dependence of the single-particle potential energy was in a quadratic form,in which the strength was solely determined by a constant scalar potential.Improved understanding of the isospin splitting of the Dirac mass from ab initio calculations could enhance our knowledge of neutron-rich systems,such as exotic nuclei and neutron stars.
文摘In this paper,a tunable metamaterial absorber based on a Dirac semimetal is proposed.It consists of three different structures,from top to bottom,namely a double semicircular Dirac semimetal resonator,a silicon dioxide substrate and a continuous vanadium dioxide(VO_(2))reflector layer.When the Fermi energy level of the Dirac semimetal is 10 meV,the absorber absorbs more than 90%in the 39.06-84.76 THz range.Firstly,taking advantage of the tunability of the conductivity of the Dirac semimetal,dynamic tuning of the absorption frequency can be achieved by changing the Fermi energy level of the Dirac semimetal without the need to optimise the geometry and remanufacture the structure.Secondly,the structure has been improved by the addition of the phase change material VO_(2),resulting in a much higher absorption performance of the absorber.Since VO_(2)is a temperature-sensitive metal oxide with an insulating phase below the phase transition temperature(about 68℃)and a metallic phase above the phase transition temperature,this paper also analyses the effect of VO_(2)on the absorptive performance at different temperatures,with the aim of further improving absorber performance.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFA1400900,2021YFA0718300,and 2021YFA1400243)the National Natural Science Foundation of China(Grant Nos.61835013,12174461,and 12234012)Space Application System of China Manned Space Program.
文摘The system consisting of(2+1)-dimensional quasirelativistic birefringent Dirac fermions with Coulomb interactions and retarded current–current interactions is described by a quantum field theory similar to reduced quantum electrodynamics.We used the perturbative renormalization group method to study the low-energy behavior of the system and found that it flows to a fixed point of the non-Fermi liquid composed of relativistic pseudospin-1/2 Dirac fermions in the deep infrared limit.At the fixed point,the fermion Green function exhibits a finite anomalous dimension,and the residue of the quasiparticle pole vanishes in a power-law fashion.Our research provides new theoretical perspectives for understanding the origin of spin-1/2 fermions in the standard model.
基金Project supported by the National Key Research and Development Program of China (Grants Nos. 2021YFA1400900,2021YFA0718300, and 2021YFA1400243)the National Natural Science Foundation of China (Grant Nos. 61835013,12174461, and 12234012)the Fund from the Space Application System of China Manned Space Program。
文摘We investigate the behavior of non-Hermitian birefringent Dirac fermions by examining their interaction with electromagnetic fields through renormalization group analysis. Our research reveals that the interplay between non-Hermiticity and birefringence leads to distinct behaviors in two and three dimensions, where the system exhibits different fixed points and scaling properties due to dimension-dependent charge renormalization effects. In two dimensions, where the electronic charge remains unrenormalized, the system flows in the deep infrared limit from non-Hermitian birefringent spin-3/2fermions to two copies of non-Hermitian spin-1/2 Dirac fermions, demonstrating a crossover of relativistic liquid and nonrelativistic liquid. In three dimensions, dynamic screening of electromagnetic interactions modifies the logarithmic growth of Fermi velocity, leading to richer quantum corrections while maintaining similar suppression of birefringence in the infrared limit. Our findings provide theoretical insights into the emergence of Lorentz symmetry in non-Hermitian systems,laying theoretical foundations for studying low-energy behavior in other non-Hermitian models.
基金supported by the National Natural Science Foundation of China (Grant Nos.12375005,12022513,and12235007)the National Safety Academic Fund(Grant No.U2330401)。
文摘We uncover the virtual monopoles underlying the nontrivial phases of the one-dimensional nonlinear excitations of rogue waves by extending the Dirac magnetic monopole theory to a complex plane. We find that the density zeros of the nonlinear waves on the extended complex plane constitute the virtual monopole fields with a quantized flux of elementary π. We then explain the exotic properties of rogue waves by means of a virtual monopole collision mechanism and find that the maximum amplitude amplification ratio and multiple phase steps of the high-order rogue waves are closely related to the number of their contained monopoles. These results open a new avenue for studying topological properties of nonlinear waves and provide an alternative way to understand their dynamics.