Confinement effect is an effective method to enhance carbon dioxide(CO_(2))solubility.In this study,a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([Hmim][NTf_2])/mesoporous titanium ...Confinement effect is an effective method to enhance carbon dioxide(CO_(2))solubility.In this study,a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([Hmim][NTf_2])/mesoporous titanium dioxide(M-TiO_(2))/water(H_2O)was developed,and its confinement effect was regulated by changing the pore structure of M-TiO_(2).CO_(2) solubility in the hybrid sorbent was measured experimentally,and the thermodynamic properties including Henry's constant and desorption enthalpy were calculated.Furthermore,the confinement effect in the hybrid sorbent was quantified.Additionally,the hybrid sorbent was recycled with a multi-cycle experiment.The results showed that M-TiO_(2) calcined at 773.2 K(MT500)could lead to an efficient confinement effect.CO_(2) solubility in the hybrid sorbent increased by 49.8%compared to that of H_2O when the mass fraction of[Hmim][NTf_2]/MT500 was 5.0%(mass),where the contribution of confinement effect on Gibbs free energy occupied 5.2%.展开更多
The photocatalytic reduction of CO_(2)is a crucial area of research aimed at addressing the dual challenges of mitigating rising CO_(2)emissions and producing sustainable chemical feedstocks.While multielectron reduct...The photocatalytic reduction of CO_(2)is a crucial area of research aimed at addressing the dual challenges of mitigating rising CO_(2)emissions and producing sustainable chemical feedstocks.While multielectron reduction pathways for CO_(2)are well explored,the single electron reduction to produce the highly reactive carbon dioxide radical anion(CO_(2)^(·-))remains challenging yet promising for green organic transformations.This review contributes to the field by providing a comprehensive analysis of the mechanisms,materials,and reaction pathways involved in CO_(2)^(·-)generation,focusing on the use of visible-lightdriven photocatalytic materials to circumvent the need for high-energy ultraviolet irradiation.Through a systematic examination of CO_(2)^(·-)production,detection methods,and chemical utilization in photocatalytic carboxylation reactions,this review advances understanding of the chemistry of CO_(2)^(·-)and its applications in sustainable chemical synthesis.In addition,it highlights existing key challenges,such as redox potential limitations,and proposes strategies for scaling up photocatalytic systems to enable practical application.By illuminating the pathway to effectively photocatalyze CO_(2)^(·-)generation and its transformative potential in sustainable chemical synthesis,this review equips scientists with critical insights and strategic approaches for overcoming current limitations,driving innovation in photocatalytic materials for solar-to-chemical energy conversion.展开更多
Mineral exploration under exotic overburden has been a great challenge in exploration geochemistry.Gas geochemical measurement is a potential method for mineral exploration due to the characteristics of strong penetra...Mineral exploration under exotic overburden has been a great challenge in exploration geochemistry.Gas geochemical measurement is a potential method for mineral exploration due to the characteristics of strong penetrability and vertical migration.The previous rapid gas analyzer cannot determine low concentrations of soil gases because of inadequate sensitivity,therefore,it is necessary to develop a more sensitive analytical technique.In this paper,the pilot studies on CO_(2) and SO_(2) geochemical measurements were performed at the Zhuxi W-(Cu)deposit,Jiapigou gold ore-concentrated area,and Tukuzbay gold deposit.This study employed rapid gas analyzer based on Infrared Absorption Spectroscopy and Electrochemical Analysis,which can detect low concentrations of CO_(2) and SO_(2) and greatly improve the reliability of test data.The results show that CO_(2) and SO_(2) show clear anomalies over deeply concealed ore bodies and faults,demonstrating that CO_(2) and SO_(2) anomalies can reveal indicative information about concealed mineralization and faults.Moreover,CO_(2) and SO_(2) anomalies can identify mineralization information exceeding 1,000 m in depth,suggesting that this method has large detection depth.Therefore,CO_(2) and SO_(2) geochemical measurement method is a feasible tool to discern deeply concealed mineralization and faults,and can provide a new idea in prospecting for concealed ore deposits in covered areas.展开更多
Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the inte...Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.展开更多
A strategy for copper-catalyzed and biphosphine ligand controlled boracarboxylation of 1,3-dienes and CO_(2) with 3,4-selectivity was developed.The Cu Cl coupled with DPPF(1,1-bis(diphenylphosphino)ferrocene)was assig...A strategy for copper-catalyzed and biphosphine ligand controlled boracarboxylation of 1,3-dienes and CO_(2) with 3,4-selectivity was developed.The Cu Cl coupled with DPPF(1,1-bis(diphenylphosphino)ferrocene)was assigned to be the best catalyst,with 84%yield and exclusive3,4-selectivity.The ligand effect on both catalytic activity and regioselectivity of boracarboxylation was disclosed,which is rarely reported in any copper catalyzed boracarboxylation.The borocupration process is revealed to be a vital step for the biphosphine participated boracarboxylation of 1,3-dienes with CO_(2).The minimal substrate distortion occurring in 3,4-borocupration favors the 3,4-regioselectivity of boracarboxylation.The“pocket”confinement and suitableβ_(n)(92°–106°)of bisphosphine ligands are demonstrated to be in favour of the interaction between LCu-Bpin complex(the catalytic precursor)and1,3-diene substrate to decrease their interaction energyΔE_(int)(ζ)in 3,4-borocupration,thus promoting the 3,4-boracarboxylation.展开更多
Carbon dioxide photocatalytic reduction (CO_(2)-PR) is an efficient method for controlling CO_(2)emissions and generating cleaner energy while mitigating global warming.Tungsten oxides (WxOy) have attracted considerab...Carbon dioxide photocatalytic reduction (CO_(2)-PR) is an efficient method for controlling CO_(2)emissions and generating cleaner energy while mitigating global warming.Tungsten oxides (WxOy) have attracted considerable attention for CO_(2)-PR due to their excellent spectral absorbance.However,comprehensive reviews are lacking on the use of WxOyfor CO_(2)-PR.Therefore,this review provides a detailed summary of t research progress made with WxOy-based catalysts in CO_(2)-PR.It also explains the fundamental principles of CO_(2)-PR and evaluates key performance indicators that affect the activity of WxOy-based photocatalysts,including yield,selectivity,stability,and apparent quantum yield.Additionally,this review explores opportunities for synthesizing high-performance WxOy-based photocatalysts and highlights their potential for the green preparation of C1/C2 products through CO_(2)-PR.These innovative strategies aim to address the challenges and pressures associated with energy and environmental issues,particularly by enhancing artificial photosynthesis efficiency.展开更多
Power consumption increases annually,wherefore the air emissions during its production occasionally increase.One of the most promising trends of environmentally safe generation of electricity is the transition to oxyg...Power consumption increases annually,wherefore the air emissions during its production occasionally increase.One of the most promising trends of environmentally safe generation of electricity is the transition to oxygen-fuel power complexes operating on a carbon dioxide working medium,with a share of its capture up to 99%.It is worth noting that the breadth of application of power technologies is determined not only on the basis of criteria of thermal efficiency and environmental safety.The most important criterion is the indicator of economic accessibility,the failure of which does not yet allow for a large-scale transition to the use of electric power technologies with the capture and disposal of greenhouse gases.In this study,a set of multifactorial models for estimating the cost of the main generating equipment operating on supercritical carbon dioxide has been developed.it is found that an increase in the initial temperature and pressure will increase the cost of the main generating equipment operating on supercritical carbon dioxide.展开更多
Dimensionality has great influence on the photo/electro-catalysts properties of covalent organic frameworks(COFs) because of the different electronic and porous structures.However,very rare attention has been paid on ...Dimensionality has great influence on the photo/electro-catalysts properties of covalent organic frameworks(COFs) because of the different electronic and porous structures.However,very rare attention has been paid on the dimensionality and function correlations of COF materials.In the present work,one new two-dimensional phthalocyanine COF,namely 2D-NiPc-COF,and one new three-dimensional phthalocyanine COF,namely 3D-NiPc-COF,were fabricated according to the imide reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(Ⅱ) with [2,2-bipyridine]-5,5-diamine and tetrakis(4-aminophenyl) methane,respectively.The crystalline structures of both COFs are verified by the powder X-ray diffraction analysis,computational simulation,and high resolution transmission electron microscopy measurement.Notably,3D-NiPc-COF with dispersed conjugated modules has high utilization efficiency of NiPc electroactive sites of 26.8%,almost two times higher than the in-plane stacking2D-NiPc-COF measured by electrochemical measurement,in turn resulting in its superior electrocatalytic performance with high CO_(2)-to-CO Faradaic efficiency over 90% in a wide potential window,a large partial CO current density of-13.97 mA/cm^(2) at-0.9 V(vs.reversible hydrogen electrode) to 2D-NiPc-COF.Moreover,3D-NiPc-COF has higher turnover number and turnover frequency of 5741.6 and 0.18 s^(-1) at-0.8 V during 8 h lasting measurement.The present work provides an example for the investigation on the correlation between dimensionality and electrochemical properties of 2D and 3D phthalocyanine COFs.展开更多
In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidati...In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.展开更多
The calcium-containing rare earth solution is generated during the recovery processes of NdFeB waste,which is treated as wastewater by enterprises.In this paper,the carbon dioxide carbonization method was applied to t...The calcium-containing rare earth solution is generated during the recovery processes of NdFeB waste,which is treated as wastewater by enterprises.In this paper,the carbon dioxide carbonization method was applied to the separation of rare earths and calcium in the solution,as well as the preparation of rare earth oxides with a large specific surface.It is shown that the process of CO_(2)carbonization of solution includes reactions such as the dissolution,diffusion and ionization of CO_(2),the carbonate precipitation of rare earth ions,and the neutralization of hydrogen ions.At a pH of 4.5,the carbonization precipitation rate is effectively controlled,enabling homogeneous precipitation and ensuring both high precipitation yield and rare earth oxides purity.In this way,the crystallization of carbonization products is a process dominated by the oriented attachment theory and coexisting with the Ostwald ripening theory,resulting in abundant pores formed by multiple layers of stacking in the products.With the optimal carbonization conditions,the rare earth precipitation yield solution reaches 99.32%.The obtained carbonization products are crystalline(LaCe)(CO_(3))_(3)·8H_(2)O,and the purity of the rare earth oxides is as high as 99.22 wt%.The specific surface area of the rare earth oxides reaches 94.7 m^(2)/g,and its adsorption efficiency for tetracycline hydrochloride in solution can reach 92.6%in a short time.The rare earth oxides are expected to be used as an adsorption material for wastewater treatment and other adsorption environments.展开更多
Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide(ScCO_(2))significantly affect the performance of shale gas exploration and CO_(2) geo-seques...Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide(ScCO_(2))significantly affect the performance of shale gas exploration and CO_(2) geo-sequestration.In this study,a hydrothermal(HT)reaction system was set up to treat Longmaxi shale samples of varying mineralogies(carbonate-,clay-,and quartz-rich)with different fluids,i.e.deionized(DI)water,2%potassium chloride(KCl)solution,and ScCO_(2) under HT conditions expected in shale formation.Statistical micro-indentation was conducted to characterize the mechanical property alterations caused by the shale-fluid interactions.An in situ morphological and mineralogical identification technique that combines scanning electron microscopy(SEM)and backscattered electron(BSE)imaging with energy-dispersive X-ray spectroscopy(EDS)was used to analyze the microstructural and mineralogical changes of the treated shale samples.Results show no apparent changes in the Young's modulus,E,and hardness,H,after treatment with DI water under room temperature(20℃)and atmospheric pressure for 7 d.In contrast,E and H were decreased by 31.2%and 37.5%at elevated temperature(80℃)and pressure(8 MPa),respectively.The addition of 2%KCl into DI water mitigated degradation of the mechanical properties.Quartz-rich shale specimens are the least sensitive to the water-based fracturing fluids,followed by the clay-rich and carbonate-rich shale formations.Based on in situ morphological and mineralogical identification,the primary factors for the mechanical degradation induced by water-based fluids include carbonate dissolution,clay swelling,and pyrite oxidation.Slight increases in the measured E and H and compression of porous clay aggregates were observed after treatment with ScCO_(2).The major factor contributing to the mechanical changes resulting from the exposure to scCO_(2) appears to be the competition between swelling caused by adsorption and compression of shale matrix.展开更多
The increasing level of atmospheric carbon dioxide(CO_(2))caused by intensified human activities has exacerbated the greenhouse effect,calling for the technology of CO_(2)fixation.Among the proposed technologies,elect...The increasing level of atmospheric carbon dioxide(CO_(2))caused by intensified human activities has exacerbated the greenhouse effect,calling for the technology of CO_(2)fixation.Among the proposed technologies,electrocatalytic CO_(2)reduction in acidic electrolytes has garnered significant attention for its potential in sustainable carbon utilization and renewable energy storage.This review provides a summary of recent advancements in acidic CO_(2)reduction,with a focus on catalyst design strategies,the optimization of the local reaction environment,and the effect of cations.We first evaluated the performance and discussed the challenges for acidic CO_(2)reduction in H-type cells,flow cells,and membrane electrode assembly.Afterward,we highlight the innovative strategies for promoting CO_(2)reduction through optimizing the intrinsic activity and regulating the local environment of catalysts.The critical role of cations in enhancing CO_(2)reduction selectivity is also discussed.The review concludes with an outlook on future research directions,especially the need for the design of catalysts and systems that are stable,scalable,and highly efficient.展开更多
Concrete is among the most utilized and essential construction materials in terms of strengthening the structure.The use of natural aggregates can be reduced by using crumb rubber aggregates(RA)as a substitute.The use...Concrete is among the most utilized and essential construction materials in terms of strengthening the structure.The use of natural aggregates can be reduced by using crumb rubber aggregates(RA)as a substitute.The use of RA will reduce the expense on aggregate and help in creating a sustainable environment.Nanoparticles improve the microscopic structure of concrete by filling pores present in cement paste thus reducing the cement usage in the mix.Employing nano titanium dioxide(NT)in rubber concrete(RC)helps to improve its properties.The findings showed that RA significantly alters the characteristics of the concrete;at a 15%level of fine aggregate(FA)replacement,the workability and density of the concrete mixes dropped by up to 26.53%and 5%,respectively.Concrete's compressive,tensile,and flexural strengths decreased by 16.1%,5.52%,and 3.1%,respectively,as a result of adding RA.However,these negative effects were successfully offset by the addition of NT.Even while workability declined,density grew.The research shows that the use of NT in RC composites enhances corrosion resistance and durability,reduces porosity,and improves permeability.The research also suggests that NT helps to smoothen pores and microcracks in concrete,resulting in enhanced resistance to elements such as water and air.This study employs analysis of variance to evaluate the mechanical and durability characteristics of rubberized concrete composites.Microstructural investigation employing field emission scanning electron microscopy examines the interfacial transition zone,hydration products,and pore structure,offering insights into the influence of NT on concrete matrix.This study offers thorough,significant information on the application of NT nanoparticles as a green and efficient additive to enhance concrete performance,and it also presents potential for additional studies in this area of study.展开更多
Sepsis management has significantly improved over the past decades,with intensivists playing a pivotal role in its identification and treatment.[1,2]However,resource constraints in large tertiary hospitals in China li...Sepsis management has significantly improved over the past decades,with intensivists playing a pivotal role in its identification and treatment.[1,2]However,resource constraints in large tertiary hospitals in China limit patient admissions,leading to overcrowding in the emergency departments(EDs)with critically ill patients.[3]This highlights the urgent need for enhanced risk stratification and optimized sepsis management in emergency settings.展开更多
Strong Coulombic repulsion in small doubly charged molecular ions usually leads to fragmentation.Some of these ions,such as CO_(2)^(++),could survive and be detected if they are stable or metastable in energetics,but ...Strong Coulombic repulsion in small doubly charged molecular ions usually leads to fragmentation.Some of these ions,such as CO_(2)^(++),could survive and be detected if they are stable or metastable in energetics,but how to produce these observable doubly charged ions is a puzzling issue.Here we investigate CO_(2)^(++)production by electron-impact ionization with a supersonic molecular beam of CO_(2)under different nozzle pressures,using time-of-flight mass spectrometry measurements and ab initio calculations.The mass spectral profile of CO_(2)^(++)varies slightly with the nozzle pressure,implying different mechanisms of the ion production.The calculations indicate that the ground state of CO_(2)^(++)is 3Aʺwith a nonlinear conformation,while the linear conformer is in the first excited state 1Δ_(g).We further suggest that,besides CO_(2)^(++)(1Δ_(g))produced from CO_(2),CO_(2)^(++)(3Aʺ)could be produced by the dissociation of doubly charged dimer(C2O4^(++))in a repulsive triplet state.展开更多
Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conve...Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction.展开更多
This study investigates the application of carbon dioxide (CO2) sequestration to address challenges in water-drive gas reservoirs, specifically focusing on improving gas recovery and mitigating water invasion. Traditi...This study investigates the application of carbon dioxide (CO2) sequestration to address challenges in water-drive gas reservoirs, specifically focusing on improving gas recovery and mitigating water invasion. Traditional methods like blow-down and co-production have limitations, including sand production, water coning, and inefficiency in strong aquifers. To overcome these issues, this research explores CO2 injection near the edge aquifer, aiming to reduce water influx and enhance gas recovery through the propagation of a CO2 plume in the gas-water contact zone. Both synthetic and real compositional reservoir models were studied, with CO2 injection performed while maintaining reservoir pressure below 90% of the initial level. Results show that CO2 sequestration significantly improved recovery, particularly in higher permeability reservoirs, where it reduced aquifer influx and increased gas production by 26% under challenging conditions. While CO2 dissolution in water decreased aquifer influx by 39%, its adverse effect on sweep efficiency led to a reduction in gas and water production by 4.2% and 10%, respectively. The method's effectiveness was not significantly impacted by aquifer permeability, but it was sensitive to vertical-to-horizontal permeability ratios. When applied to a real gas reservoir, the proposed method increased gas production by 14% compared to conventional techniques, with minimal CO2 production over a 112-year period. This study demonstrates the potential of CO2 sequestration as a comprehensive solution for enhancing gas recovery, reducing water production, and mitigating environmental impacts in water-drive gas reservoirs.展开更多
Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the tem...Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the temperature range of 700℃-900℃.Likewise,the mixture of potassium hydroxide(KOH)and AC was heated at 800℃,followed by heat treatment underNH3 gas at 800℃(hereafter referred to asKOH-N-AC800).Scanning electron microscopy(SEM),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS)and Brunauer-Emmett-Teller(BET)method were utilized to analyze morphology,crystallinity,chemical bonding,chemical composition and surface area.The surface area and porosity of N-AC increased with increasing NH3 heat treatment.Similarly,the nitrogen content in the N-AC increased from 3.23%to 4.84 at%when the NH3 heat treatment was raised from 700℃ to 800℃.However,the nitrogen content of N-AC decreased to 3.40 at% after using NH3 heat treatment at 900℃.The nitrogen content of KOH-N-AC800 is 5.43 at%.KOH-N-AC800 and N-AC800 exhibited improvements of 33.66% and 26.24%,respectively,in CO_(2) adsorption compared with AC.The enhancement of CO_(2) adsorption of KOH-N-AC800 is attributed to the synergic effect of the nitrogen doping,high surface area,and porosity.The results exhibited that nitrogen sites on the surface play a more significant role in CO_(2) adsorption than surface area and porosity.This work proposes the potential synergistic effect of KOH-activation and nitrogen doping for enhancing the CO_(2) adsorption capacity of activated carbon.展开更多
High-rise buildings form deep urban street canyons and restrict the dispersion of vehicle emissions,posing severe health risks to the public by aggravating roadside air quality.Field measurements are important for und...High-rise buildings form deep urban street canyons and restrict the dispersion of vehicle emissions,posing severe health risks to the public by aggravating roadside air quality.Field measurements are important for understanding the dispersion process of tailpipe emissions in street canyons,while a major challenge is the lack of a suitable tracer gas.Carbon dioxide(CO_(2)),which is safe to the public and inexpensive to obtain,can be reliably measured by existing gas analysers.This study investigated the suitability of using CO_(2)as a tracer gas for characterising vehicle emission dispersion in a real-world street canyon.The tracer gas was released via a line or point source,whose dispersion was characterised by a sensors network comprising low-cost air quality sensors.The results showed that the CO_(2)contained in the exhaust gas of a test vehicle itself had unmeasurable effect at roadsides.Both the line and point sources produced obvious CO_(2)level elevations at approximately 30 s after the test vehicle passed by.In addition,for both line and point sources,the CO_(2)elevations were much more distinct at the roadside next to tailpipe exit than the opposite side,and were higher at 0.8 m than 1.6 m above the ground.The present study demonstrated that using CO_(2)as a tracer gas is feasible for investigating vehicle emission dispersion in real-world street canyons.Future studies are needed to improve the gas release rate of the developed tracer gas systems for more reliable measurements and larger street canyons.展开更多
基金the National Natural Science Foundation of China(22108115,22478415,and 21978134)Natural Science Foundation of Jiangsu Province(BK20241744)。
文摘Confinement effect is an effective method to enhance carbon dioxide(CO_(2))solubility.In this study,a hybrid sorbent of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([Hmim][NTf_2])/mesoporous titanium dioxide(M-TiO_(2))/water(H_2O)was developed,and its confinement effect was regulated by changing the pore structure of M-TiO_(2).CO_(2) solubility in the hybrid sorbent was measured experimentally,and the thermodynamic properties including Henry's constant and desorption enthalpy were calculated.Furthermore,the confinement effect in the hybrid sorbent was quantified.Additionally,the hybrid sorbent was recycled with a multi-cycle experiment.The results showed that M-TiO_(2) calcined at 773.2 K(MT500)could lead to an efficient confinement effect.CO_(2) solubility in the hybrid sorbent increased by 49.8%compared to that of H_2O when the mass fraction of[Hmim][NTf_2]/MT500 was 5.0%(mass),where the contribution of confinement effect on Gibbs free energy occupied 5.2%.
基金funding programs,the Walter Benjamin Programme(DFG,German Research Foundation,project number:530742479)the ProChancecareer Programme for the Promotion of Equal Opportunities in Academia for providing the financial support+1 种基金financial support by the Deutsche Forschungsgemeinschaft via the TRR 234 Cata Light(DFG,German Research Foundation)-Projektnummer 364549901-TRR 234[B6]the financial support taken from the CSIR and UGC,Delhi,India。
文摘The photocatalytic reduction of CO_(2)is a crucial area of research aimed at addressing the dual challenges of mitigating rising CO_(2)emissions and producing sustainable chemical feedstocks.While multielectron reduction pathways for CO_(2)are well explored,the single electron reduction to produce the highly reactive carbon dioxide radical anion(CO_(2)^(·-))remains challenging yet promising for green organic transformations.This review contributes to the field by providing a comprehensive analysis of the mechanisms,materials,and reaction pathways involved in CO_(2)^(·-)generation,focusing on the use of visible-lightdriven photocatalytic materials to circumvent the need for high-energy ultraviolet irradiation.Through a systematic examination of CO_(2)^(·-)production,detection methods,and chemical utilization in photocatalytic carboxylation reactions,this review advances understanding of the chemistry of CO_(2)^(·-)and its applications in sustainable chemical synthesis.In addition,it highlights existing key challenges,such as redox potential limitations,and proposes strategies for scaling up photocatalytic systems to enable practical application.By illuminating the pathway to effectively photocatalyze CO_(2)^(·-)generation and its transformative potential in sustainable chemical synthesis,this review equips scientists with critical insights and strategic approaches for overcoming current limitations,driving innovation in photocatalytic materials for solar-to-chemical energy conversion.
基金the Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, China Geological Survey, and Ministry of Natural Resources of the People’s Republic of China for funding this researchsupported by National Nonprofit Institute Research Grant of Institute of Geophysical and Geochemical Exploration (AS2022P03)Key Laboratory of Ionic Rare Earth Resources and Environment, Ministry of Natural Resources of the People’s Republic of China (No. 2022IRERE101 and No. 2023IRERE102)
文摘Mineral exploration under exotic overburden has been a great challenge in exploration geochemistry.Gas geochemical measurement is a potential method for mineral exploration due to the characteristics of strong penetrability and vertical migration.The previous rapid gas analyzer cannot determine low concentrations of soil gases because of inadequate sensitivity,therefore,it is necessary to develop a more sensitive analytical technique.In this paper,the pilot studies on CO_(2) and SO_(2) geochemical measurements were performed at the Zhuxi W-(Cu)deposit,Jiapigou gold ore-concentrated area,and Tukuzbay gold deposit.This study employed rapid gas analyzer based on Infrared Absorption Spectroscopy and Electrochemical Analysis,which can detect low concentrations of CO_(2) and SO_(2) and greatly improve the reliability of test data.The results show that CO_(2) and SO_(2) show clear anomalies over deeply concealed ore bodies and faults,demonstrating that CO_(2) and SO_(2) anomalies can reveal indicative information about concealed mineralization and faults.Moreover,CO_(2) and SO_(2) anomalies can identify mineralization information exceeding 1,000 m in depth,suggesting that this method has large detection depth.Therefore,CO_(2) and SO_(2) geochemical measurement method is a feasible tool to discern deeply concealed mineralization and faults,and can provide a new idea in prospecting for concealed ore deposits in covered areas.
基金supported by the Russian Science Foundation(23-29-00830).
文摘Morphology and growth rate of carbon dioxide hydrate on the interface between liquid carbon dioxide and humic acid solutions were studied in this work.It was found that after the growth of the hydrate film at the interface,further growth of hydrate due to the suction of water in the capillary system formed between the wall of the cuvette and the end boundary of the hydrate layer occurs.Most probably,substantial effects on the formation of this capillary system may be caused by variations in reactor wall properties,for example,hydrophobic-hydrophilic balance,roughness,etc.We found,that the rate of CO_(2) hydrate film growth on the surface of the humic acid aqueous solution is 4-fold to lower in comparison with the growth rate on the surface of pure water.We suppose that this is caused by the adsorption of humic acid associates on the surface of hydrate particles and,as a consequence,by the deceleration of the diffusion of dissolved carbon dioxide to the growing hydrate particle.
基金the National Key R&D Program of China(No.2022YFB4101900)National Natural Science Foundation of China(Nos.22278305,U21B2096)Natural Science Foundation of Tianjin City(No.23JCZDJC00040)。
文摘A strategy for copper-catalyzed and biphosphine ligand controlled boracarboxylation of 1,3-dienes and CO_(2) with 3,4-selectivity was developed.The Cu Cl coupled with DPPF(1,1-bis(diphenylphosphino)ferrocene)was assigned to be the best catalyst,with 84%yield and exclusive3,4-selectivity.The ligand effect on both catalytic activity and regioselectivity of boracarboxylation was disclosed,which is rarely reported in any copper catalyzed boracarboxylation.The borocupration process is revealed to be a vital step for the biphosphine participated boracarboxylation of 1,3-dienes with CO_(2).The minimal substrate distortion occurring in 3,4-borocupration favors the 3,4-regioselectivity of boracarboxylation.The“pocket”confinement and suitableβ_(n)(92°–106°)of bisphosphine ligands are demonstrated to be in favour of the interaction between LCu-Bpin complex(the catalytic precursor)and1,3-diene substrate to decrease their interaction energyΔE_(int)(ζ)in 3,4-borocupration,thus promoting the 3,4-boracarboxylation.
基金supported by the National Natural Science Foundation of China(No.22376065)the Science and Technology Commission of Shanghai Municipality(No.22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400)。
文摘Carbon dioxide photocatalytic reduction (CO_(2)-PR) is an efficient method for controlling CO_(2)emissions and generating cleaner energy while mitigating global warming.Tungsten oxides (WxOy) have attracted considerable attention for CO_(2)-PR due to their excellent spectral absorbance.However,comprehensive reviews are lacking on the use of WxOyfor CO_(2)-PR.Therefore,this review provides a detailed summary of t research progress made with WxOy-based catalysts in CO_(2)-PR.It also explains the fundamental principles of CO_(2)-PR and evaluates key performance indicators that affect the activity of WxOy-based photocatalysts,including yield,selectivity,stability,and apparent quantum yield.Additionally,this review explores opportunities for synthesizing high-performance WxOy-based photocatalysts and highlights their potential for the green preparation of C1/C2 products through CO_(2)-PR.These innovative strategies aim to address the challenges and pressures associated with energy and environmental issues,particularly by enhancing artificial photosynthesis efficiency.
基金This study conducted by Moscow Power Engineering Institute was financially supported by the Ministry of Science and Higher Education of the Russian Federation(project No.FSWF-2023-0014,contract No.075-03-2023-383,2023/18/01).
文摘Power consumption increases annually,wherefore the air emissions during its production occasionally increase.One of the most promising trends of environmentally safe generation of electricity is the transition to oxygen-fuel power complexes operating on a carbon dioxide working medium,with a share of its capture up to 99%.It is worth noting that the breadth of application of power technologies is determined not only on the basis of criteria of thermal efficiency and environmental safety.The most important criterion is the indicator of economic accessibility,the failure of which does not yet allow for a large-scale transition to the use of electric power technologies with the capture and disposal of greenhouse gases.In this study,a set of multifactorial models for estimating the cost of the main generating equipment operating on supercritical carbon dioxide has been developed.it is found that an increase in the initial temperature and pressure will increase the cost of the main generating equipment operating on supercritical carbon dioxide.
基金Financial support from the Natural Science Foundation(NSF) of China(Nos.22205015,22175020,and 22235001)the National Postdoctoral Program for Innovative Talents(No.BX20220032)+1 种基金the China Postdoctoral Science Foundation Funded Project(No.2022BG013)the Fundamental Research Funds for the Central Universities(Nos.00007709 and 00007770)。
文摘Dimensionality has great influence on the photo/electro-catalysts properties of covalent organic frameworks(COFs) because of the different electronic and porous structures.However,very rare attention has been paid on the dimensionality and function correlations of COF materials.In the present work,one new two-dimensional phthalocyanine COF,namely 2D-NiPc-COF,and one new three-dimensional phthalocyanine COF,namely 3D-NiPc-COF,were fabricated according to the imide reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(Ⅱ) with [2,2-bipyridine]-5,5-diamine and tetrakis(4-aminophenyl) methane,respectively.The crystalline structures of both COFs are verified by the powder X-ray diffraction analysis,computational simulation,and high resolution transmission electron microscopy measurement.Notably,3D-NiPc-COF with dispersed conjugated modules has high utilization efficiency of NiPc electroactive sites of 26.8%,almost two times higher than the in-plane stacking2D-NiPc-COF measured by electrochemical measurement,in turn resulting in its superior electrocatalytic performance with high CO_(2)-to-CO Faradaic efficiency over 90% in a wide potential window,a large partial CO current density of-13.97 mA/cm^(2) at-0.9 V(vs.reversible hydrogen electrode) to 2D-NiPc-COF.Moreover,3D-NiPc-COF has higher turnover number and turnover frequency of 5741.6 and 0.18 s^(-1) at-0.8 V during 8 h lasting measurement.The present work provides an example for the investigation on the correlation between dimensionality and electrochemical properties of 2D and 3D phthalocyanine COFs.
基金Project(2022M710619)supported by the Postdoctoral Science Foundation of ChinaProjects(2020YFH0213,2020YFG0039)supported by the Sichuan Science and Technology Program,China+1 种基金Projects(XJ2024001501,KCXTD2023-4)supported by the Basic Scientific Foundation and Innovation Team Funds of China West Normal UniversityProject(CSPC202403)supported by the Open Project Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,China。
文摘In response to the fact that the presence of manganese dithionate(MnS_(2)O_(6))leads to a series of adverse impacts,especially lower purity of manganese sulfate(MnSO_(4))and disruption of its recovery,advanced oxidation methods such as ozonation system are used to manage MnS_(2)O_(6)in the leaching solution,replacing conventional methods.To ascertain the conversion rate and kinetics of MnS_(2)O_(6)during the ozonation process,we explored the factors influencing its removal rate,including ozone dosage,manganese dithionate concentration,sulfuric acid concentration,and reaction temperature.Batch experiments were conducted to determine the reaction rate constant of ozone(k)and activation energy(Ea)obtained from intermittent experimental data fitting,revealing a least-squares exponential conversion relationship between k and the MnS_(2)O_(6)removal amount,wherein an increase in the aforementioned factors led to an enhanced MnS_(2)O_(6)conversion rate,exceeding 99.3%.The formation mechanism of the ozone products proposed during the experiment was summarized and proposed as follows:1)Mn^(2+)was directly oxidized to MnO_(2),and 2)SO_(4)2−was obtained by the catalytic oxidation of S_(2)O_(6)^(2−)with HO•from O3 decomposition.According to the kinetics analysis,the pre-exponential factor and total activation energy of the ozonation kinetics equation were 1.0×10^(23) s^(−1) and 177.28 kJ/mol,respectively.Overall,the present study demonstrates that O_(3) as an oxidizing agent can effectively facilitate MnS_(2)O_(6)disproportionation while preventing the release of the secondary pollutant,SO_(2)gas.
基金Project supported by the National Key Research and Development Project of China(2022YFC2905202)Natural Science Foundation of Jiangxi Province(20232ACB204014)Youth Jinggang Scholars Program in Jiangxi Province(QNJG2019056)。
文摘The calcium-containing rare earth solution is generated during the recovery processes of NdFeB waste,which is treated as wastewater by enterprises.In this paper,the carbon dioxide carbonization method was applied to the separation of rare earths and calcium in the solution,as well as the preparation of rare earth oxides with a large specific surface.It is shown that the process of CO_(2)carbonization of solution includes reactions such as the dissolution,diffusion and ionization of CO_(2),the carbonate precipitation of rare earth ions,and the neutralization of hydrogen ions.At a pH of 4.5,the carbonization precipitation rate is effectively controlled,enabling homogeneous precipitation and ensuring both high precipitation yield and rare earth oxides purity.In this way,the crystallization of carbonization products is a process dominated by the oriented attachment theory and coexisting with the Ostwald ripening theory,resulting in abundant pores formed by multiple layers of stacking in the products.With the optimal carbonization conditions,the rare earth precipitation yield solution reaches 99.32%.The obtained carbonization products are crystalline(LaCe)(CO_(3))_(3)·8H_(2)O,and the purity of the rare earth oxides is as high as 99.22 wt%.The specific surface area of the rare earth oxides reaches 94.7 m^(2)/g,and its adsorption efficiency for tetracycline hydrochloride in solution can reach 92.6%in a short time.The rare earth oxides are expected to be used as an adsorption material for wastewater treatment and other adsorption environments.
基金funded by the Open Research Fund Programof State Key Laboratory of Hydroscience and Engineering(Project Number:sklhse-2023-D-04)the National Natural Science Foundation of China(Grant Nos.51979144,51661165015,and 51323014).
文摘Mechanical alterations in shale formations due to exposure to water-based fracturing fluids and supercritical carbon dioxide(ScCO_(2))significantly affect the performance of shale gas exploration and CO_(2) geo-sequestration.In this study,a hydrothermal(HT)reaction system was set up to treat Longmaxi shale samples of varying mineralogies(carbonate-,clay-,and quartz-rich)with different fluids,i.e.deionized(DI)water,2%potassium chloride(KCl)solution,and ScCO_(2) under HT conditions expected in shale formation.Statistical micro-indentation was conducted to characterize the mechanical property alterations caused by the shale-fluid interactions.An in situ morphological and mineralogical identification technique that combines scanning electron microscopy(SEM)and backscattered electron(BSE)imaging with energy-dispersive X-ray spectroscopy(EDS)was used to analyze the microstructural and mineralogical changes of the treated shale samples.Results show no apparent changes in the Young's modulus,E,and hardness,H,after treatment with DI water under room temperature(20℃)and atmospheric pressure for 7 d.In contrast,E and H were decreased by 31.2%and 37.5%at elevated temperature(80℃)and pressure(8 MPa),respectively.The addition of 2%KCl into DI water mitigated degradation of the mechanical properties.Quartz-rich shale specimens are the least sensitive to the water-based fracturing fluids,followed by the clay-rich and carbonate-rich shale formations.Based on in situ morphological and mineralogical identification,the primary factors for the mechanical degradation induced by water-based fluids include carbonate dissolution,clay swelling,and pyrite oxidation.Slight increases in the measured E and H and compression of porous clay aggregates were observed after treatment with ScCO_(2).The major factor contributing to the mechanical changes resulting from the exposure to scCO_(2) appears to be the competition between swelling caused by adsorption and compression of shale matrix.
基金supported by the Young Scientist Funding(22409158,D.R.)from the National Natural Science Foundation of China。
文摘The increasing level of atmospheric carbon dioxide(CO_(2))caused by intensified human activities has exacerbated the greenhouse effect,calling for the technology of CO_(2)fixation.Among the proposed technologies,electrocatalytic CO_(2)reduction in acidic electrolytes has garnered significant attention for its potential in sustainable carbon utilization and renewable energy storage.This review provides a summary of recent advancements in acidic CO_(2)reduction,with a focus on catalyst design strategies,the optimization of the local reaction environment,and the effect of cations.We first evaluated the performance and discussed the challenges for acidic CO_(2)reduction in H-type cells,flow cells,and membrane electrode assembly.Afterward,we highlight the innovative strategies for promoting CO_(2)reduction through optimizing the intrinsic activity and regulating the local environment of catalysts.The critical role of cations in enhancing CO_(2)reduction selectivity is also discussed.The review concludes with an outlook on future research directions,especially the need for the design of catalysts and systems that are stable,scalable,and highly efficient.
文摘Concrete is among the most utilized and essential construction materials in terms of strengthening the structure.The use of natural aggregates can be reduced by using crumb rubber aggregates(RA)as a substitute.The use of RA will reduce the expense on aggregate and help in creating a sustainable environment.Nanoparticles improve the microscopic structure of concrete by filling pores present in cement paste thus reducing the cement usage in the mix.Employing nano titanium dioxide(NT)in rubber concrete(RC)helps to improve its properties.The findings showed that RA significantly alters the characteristics of the concrete;at a 15%level of fine aggregate(FA)replacement,the workability and density of the concrete mixes dropped by up to 26.53%and 5%,respectively.Concrete's compressive,tensile,and flexural strengths decreased by 16.1%,5.52%,and 3.1%,respectively,as a result of adding RA.However,these negative effects were successfully offset by the addition of NT.Even while workability declined,density grew.The research shows that the use of NT in RC composites enhances corrosion resistance and durability,reduces porosity,and improves permeability.The research also suggests that NT helps to smoothen pores and microcracks in concrete,resulting in enhanced resistance to elements such as water and air.This study employs analysis of variance to evaluate the mechanical and durability characteristics of rubberized concrete composites.Microstructural investigation employing field emission scanning electron microscopy examines the interfacial transition zone,hydration products,and pore structure,offering insights into the influence of NT on concrete matrix.This study offers thorough,significant information on the application of NT nanoparticles as a green and efficient additive to enhance concrete performance,and it also presents potential for additional studies in this area of study.
基金supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2M-1-062,to BD).
文摘Sepsis management has significantly improved over the past decades,with intensivists playing a pivotal role in its identification and treatment.[1,2]However,resource constraints in large tertiary hospitals in China limit patient admissions,leading to overcrowding in the emergency departments(EDs)with critically ill patients.[3]This highlights the urgent need for enhanced risk stratification and optimized sepsis management in emergency settings.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB0450202)。
文摘Strong Coulombic repulsion in small doubly charged molecular ions usually leads to fragmentation.Some of these ions,such as CO_(2)^(++),could survive and be detected if they are stable or metastable in energetics,but how to produce these observable doubly charged ions is a puzzling issue.Here we investigate CO_(2)^(++)production by electron-impact ionization with a supersonic molecular beam of CO_(2)under different nozzle pressures,using time-of-flight mass spectrometry measurements and ab initio calculations.The mass spectral profile of CO_(2)^(++)varies slightly with the nozzle pressure,implying different mechanisms of the ion production.The calculations indicate that the ground state of CO_(2)^(++)is 3Aʺwith a nonlinear conformation,while the linear conformer is in the first excited state 1Δ_(g).We further suggest that,besides CO_(2)^(++)(1Δ_(g))produced from CO_(2),CO_(2)^(++)(3Aʺ)could be produced by the dissociation of doubly charged dimer(C2O4^(++))in a repulsive triplet state.
基金National Natural Science Foundation of China(No.22005154)for financial support。
文摘Photocatalytic CO_(2)reduction reaction(CO_(2)RR)is one of the promising strategies for sustainably producing solar fuels.The precise identification of catalytic sites and the enhancement of photocatalytic CO_(2)conversion is imperative yet quite challenging.This critical review summarizes recent advances in porous photo-responsive polymers,including covalent organic frameworks(COFs),covalent triazine frameworks(CTFs),and conjugated microporous polymers(CMPs),those can be rationally designed from the molecular level for visible-light-driven photocatalytic CO_(2)reduction.Additionally,special emphasis is placed on how the well-defined active sites on these polymers can influence their properties and photocatalytic performance.The precise regulation and control of microenvironments and electronic properties of metal active centers are crucial for boosting catalytic efficiency and selectivity,as well as for the design of better photocatalysts for CO_(2)reduction.
文摘This study investigates the application of carbon dioxide (CO2) sequestration to address challenges in water-drive gas reservoirs, specifically focusing on improving gas recovery and mitigating water invasion. Traditional methods like blow-down and co-production have limitations, including sand production, water coning, and inefficiency in strong aquifers. To overcome these issues, this research explores CO2 injection near the edge aquifer, aiming to reduce water influx and enhance gas recovery through the propagation of a CO2 plume in the gas-water contact zone. Both synthetic and real compositional reservoir models were studied, with CO2 injection performed while maintaining reservoir pressure below 90% of the initial level. Results show that CO2 sequestration significantly improved recovery, particularly in higher permeability reservoirs, where it reduced aquifer influx and increased gas production by 26% under challenging conditions. While CO2 dissolution in water decreased aquifer influx by 39%, its adverse effect on sweep efficiency led to a reduction in gas and water production by 4.2% and 10%, respectively. The method's effectiveness was not significantly impacted by aquifer permeability, but it was sensitive to vertical-to-horizontal permeability ratios. When applied to a real gas reservoir, the proposed method increased gas production by 14% compared to conventional techniques, with minimal CO2 production over a 112-year period. This study demonstrates the potential of CO2 sequestration as a comprehensive solution for enhancing gas recovery, reducing water production, and mitigating environmental impacts in water-drive gas reservoirs.
文摘Correction to:Rare Met.https://doi.org/10.1007/s12598-021-01815-z In the original publication,Fig.5 was published with few mistakes.The correct version of Fig.5 is given in this correction.
基金funded by Burapha University,grant number SDG 4/2568.
文摘Nitrogen-doped activated carbon(N-AC)was successfully prepared by KOH-activation and nitrogen doping using ammonia(NH3)heat treatment.Coconut shell-derived activated carbon(AC)was heat-treated under NH3 gas in the temperature range of 700℃-900℃.Likewise,the mixture of potassium hydroxide(KOH)and AC was heated at 800℃,followed by heat treatment underNH3 gas at 800℃(hereafter referred to asKOH-N-AC800).Scanning electron microscopy(SEM),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS)and Brunauer-Emmett-Teller(BET)method were utilized to analyze morphology,crystallinity,chemical bonding,chemical composition and surface area.The surface area and porosity of N-AC increased with increasing NH3 heat treatment.Similarly,the nitrogen content in the N-AC increased from 3.23%to 4.84 at%when the NH3 heat treatment was raised from 700℃ to 800℃.However,the nitrogen content of N-AC decreased to 3.40 at% after using NH3 heat treatment at 900℃.The nitrogen content of KOH-N-AC800 is 5.43 at%.KOH-N-AC800 and N-AC800 exhibited improvements of 33.66% and 26.24%,respectively,in CO_(2) adsorption compared with AC.The enhancement of CO_(2) adsorption of KOH-N-AC800 is attributed to the synergic effect of the nitrogen doping,high surface area,and porosity.The results exhibited that nitrogen sites on the surface play a more significant role in CO_(2) adsorption than surface area and porosity.This work proposes the potential synergistic effect of KOH-activation and nitrogen doping for enhancing the CO_(2) adsorption capacity of activated carbon.
基金supported by the Environment and Conservation Fund(No.ECF 14/2018)of the Hong Kong SAR Government,China.
文摘High-rise buildings form deep urban street canyons and restrict the dispersion of vehicle emissions,posing severe health risks to the public by aggravating roadside air quality.Field measurements are important for understanding the dispersion process of tailpipe emissions in street canyons,while a major challenge is the lack of a suitable tracer gas.Carbon dioxide(CO_(2)),which is safe to the public and inexpensive to obtain,can be reliably measured by existing gas analysers.This study investigated the suitability of using CO_(2)as a tracer gas for characterising vehicle emission dispersion in a real-world street canyon.The tracer gas was released via a line or point source,whose dispersion was characterised by a sensors network comprising low-cost air quality sensors.The results showed that the CO_(2)contained in the exhaust gas of a test vehicle itself had unmeasurable effect at roadsides.Both the line and point sources produced obvious CO_(2)level elevations at approximately 30 s after the test vehicle passed by.In addition,for both line and point sources,the CO_(2)elevations were much more distinct at the roadside next to tailpipe exit than the opposite side,and were higher at 0.8 m than 1.6 m above the ground.The present study demonstrated that using CO_(2)as a tracer gas is feasible for investigating vehicle emission dispersion in real-world street canyons.Future studies are needed to improve the gas release rate of the developed tracer gas systems for more reliable measurements and larger street canyons.