Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_...Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.展开更多
AIM: To study the presence of sustained low diffusing capacity (DLco) after liver transplantation (LT) in patients with hepatopulmonary syndrome (HPS). METHODS: Six patients with mild-to-severe HPS and 24 with...AIM: To study the presence of sustained low diffusing capacity (DLco) after liver transplantation (LT) in patients with hepatopulmonary syndrome (HPS). METHODS: Six patients with mild-to-severe HPS and 24 without HPS who underwent LT were prospectively followed before and after LT at mid-term (median, 15 mo). HPS patients were also assessed at Iong-tem (median, 86 mo). RESULTS: Before LT, HPS patients showed lower PaO2 (71 ± 8 mmHg), higher AaPO2 (43 ± 10 mmHg) and lower DLco (54% ± 9% predicted), due to a combination of moderate-to-severe ventilation-perfusion (VA/Q) imbalance, mild shunt and diffusion limitation, than non- HPS patients (94 ± 4 mmHg and 19 ± 3 mmHg, and 85% ± 3% predicted, respectively) (P 〈 0.05 each). Seven non-HPS patients had also reduced DLco (70% ± 4% predicted). At mid- and long-term after LT, compared to pre- LT, HPS patients normalized PaO2 (91 ± 3 mmHg and 87 ± 5 mmHg), AaPO2 (14 ± 3 mmHg and 23 ± 5 mmHg) and all VA/Q descriptors (P 〈 0.05 each) without changes in DLco (53% ± 8% and 56% ± 7% predicted, respectively). Post-LT DLco in non-HPS patients with pre- LT low DLco was unchanged (75% ± 6% predicted). CONCLUSION: While complete VA/Q resolution in HPS indicates a reversible functional disturbance, sustained low DLco after LT also present in some non-HPS patients, points to persistence of sub-clinical liver-induced pulmonary vascular changes.展开更多
Rejuvenator diffusing into aged bitumen was evaluated by determining penetration and chemical components of aged bitumen with rejuvenator coat before and after diffusing experiment. Effects of temperature, time and vi...Rejuvenator diffusing into aged bitumen was evaluated by determining penetration and chemical components of aged bitumen with rejuvenator coat before and after diffusing experiment. Effects of temperature, time and viscosity of rejuvenator on the diffusing ability of rejuvenator into aged bitumen were investigated. Results indicated that the diffusing ability of rejuvenator into aged bitumen could be enhanced with the increasing of temperature and time, however, the diffusing of rejuvenator into aged bitumen would be restricted due to the volatilization of light component and aging of rejuvenator under high temperature (over 170 ℃). Rejuvenator with low viscosity diffused into aged bitumen more easily.展开更多
The temperature and flow rate control of diffusing chamber is one of the key technologies in the production of poly-crystal silicon thin film. As there exist some modeling uncertainties and errors in the actual system...The temperature and flow rate control of diffusing chamber is one of the key technologies in the production of poly-crystal silicon thin film. As there exist some modeling uncertainties and errors in the actual system, it is difficult to guarantee the chamber variable temperature conditions and the flow rate of diffusion gas being controlled within its targeted range in the rapid thermal processing (RTP). In this paper, the control applies the programmable logic controller (PLC) to configure control hardware system, proposes expert proportional integral derivative (PID) control method to regulate the gas flow rate and H∞ control strategy to attenuate chamber modeling uncertainties and disturbances, respectively, to steer the chamber rapid variable temperature very close to the expected product temperatures. Furthermore, it designs human-machine integrated user control interface (HMI) and achieves rapid and accurately control performances for user operating production. The designed control system are simulated and tested in the application, which demonstrates that the control method has strong robustness when the modeling uncertainties, errors, parameters perturbation and disturbances, the temperature and flow rate meet the requirements of precisely trajectory following.展开更多
A coarse-grained model is proposed to study the dynamics of a nano-chain diffusing in porous media. The simulation utilizes a hybrid method which combines stochastic rotation dynamics with molecular dynamics. Solvent ...A coarse-grained model is proposed to study the dynamics of a nano-chain diffusing in porous media. The simulation utilizes a hybrid method which combines stochastic rotation dynamics with molecular dynamics. Solvent molecules are explicitly taken into account to represent the hydrodynamic interactions and random fluctuations. The conformation, relaxation, and diffusion properties of a polymer chain are investigated by changing the density degree of the obstacle matrix. It is found that the average size of the chain is a non- monotonic function of the obstacle volume faction Ф. A dense environment may contribute to extending a linear chain, which can be characterized by larger exponents in the corresponding power law. The relaxation behavior of a stretched chain to a steady state shows dramatic crossover from exponent to power-law relaxation when the values of φ are increased. The dependence of the diffusion coefficient on the chain size is also studied. Various kinds of scaling properties are presented and discussed. The results can give additional insight into the density effect of porous media on polymer structure and dynamics.展开更多
In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non...In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically.展开更多
In nuclear structural materials, the nuclear irradiations induce the precipitations of soluble elements or produce the insoluble elements such as He atoms that may form clusters, heavily shortening the service life-ti...In nuclear structural materials, the nuclear irradiations induce the precipitations of soluble elements or produce the insoluble elements such as He atoms that may form clusters, heavily shortening the service life-times of the materials. In the present work, a diffusion model is developed to predict where and how fast the solute atoms (either soluble or insoluble) aggregate, and this model is applied to the study of the formation and growth of He bubbles in metal tritides (PdT0.6, ErT2, NbT0.0225, VT0.5, TaT0.097, TiT1.5, ZrT1.6) within one thousand days. The results are in good agreement with the available experimental observations and suggest that searching for metals with a barrier of more than 1.1 eV for a single He atom diffusion and making more defects in metal tritides can significantly reduce the growth of He bubbles and extend the service time of the metals.展开更多
We study the problem of a diffusing particle confined in a large sphere in the n-dimensional space being absorbed into a small sphere at the center. We first non-dimensionalize the problem using the radius of large co...We study the problem of a diffusing particle confined in a large sphere in the n-dimensional space being absorbed into a small sphere at the center. We first non-dimensionalize the problem using the radius of large confining sphere as the spatial scale and the square of the spatial scale divided by the diffusion coefficient as the time scale. The non-dimensional normalized absorption rate is the product of the physical absorption rate and the time scale. We derive asymptotic expansions for the normalized absorption rate using the inverse iteration method. The small parameter in the asymptotic expansions is the ratio of the small sphere radius to the large sphere radius. In particular, we observe that, to the leading order, the normalized absorption rate is proportional to the (n - 2)-th power of the small parameter for .展开更多
The spot-diffusing technique provides better performance compared to conventional diffuse system for indoor optical-wireless communication (OWC) system. In this paper, the performance of an OW spot-diffusing communica...The spot-diffusing technique provides better performance compared to conventional diffuse system for indoor optical-wireless communication (OWC) system. In this paper, the performance of an OW spot-diffusing communication system using Neuro-Fuzzy (NF) adaptive multi-beam transmitter configuration has been proposed. The multi-beam transmitter generates multiple spots pointed in different directions, hence, forming a matrix of diffusing spots based on position of the receiver and receiver mobility. Regardless of the position of the transmitter and receiver, NF controller target the spots adaptively at the best locations and allocates optimal power to the spots and beam angle are adapted in order to achieve better signal-to-noise plus interference ratio (SNIR). Maximum ratio combining (MRC) is used in the imaging receiver. The proposed OW spot-diffusing communication system is compared with other spot-beam diffusion methods proposed in literature. Performance evaluation revels that the proposed NF based OW spot-diffusing communication system outperforms other spot-beam diffusion methods.展开更多
In this paper the four-dimensional dynamic diffusing mechanism and the enhancement in Long-Term Potentiation (LTP) of intrinsic nitric oxide (NO) in nervous system are studied computationally. A novel unsupervised Dif...In this paper the four-dimensional dynamic diffusing mechanism and the enhancement in Long-Term Potentiation (LTP) of intrinsic nitric oxide (NO) in nervous system are studied computationally. A novel unsupervised Diffusing Self-Organizing Maps (DSOM) model is presented on the union of SOM with NO diffusing mechanism. Based on the spatial prototype mapping, temporal enhancement is introduced in DSOM and the fine-tuning manner is improved by the simplified NO diffusing mechanism. Furthermore, the quantization error of optimal weights is valuated and the detailed noise analysis of DSOM is presented. Finally some typical stimulation experiments are presented to illustrate how DSOM gracefully handles time warping and multiple patterns with overlapping reference vectors.展开更多
Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological me...Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.展开更多
In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocal...In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
The diffusion of an ammonia molecule (NH3) in water was investigated by molecular dynamic simulations. It is found that the diffusion shows negative correlation with its dipole orientation.
基金Project supported by the National Key R&D Program of China(2022YFB3505003,2021YFB3502802)the Natural Science Foundation of Zhejiang Province(LQ23E010001)+3 种基金"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.
基金Supported by Red Respira-ISCIII-RTIC-03/11 and Generalitat de Catalunya, No. 2005SGR-00822
文摘AIM: To study the presence of sustained low diffusing capacity (DLco) after liver transplantation (LT) in patients with hepatopulmonary syndrome (HPS). METHODS: Six patients with mild-to-severe HPS and 24 without HPS who underwent LT were prospectively followed before and after LT at mid-term (median, 15 mo). HPS patients were also assessed at Iong-tem (median, 86 mo). RESULTS: Before LT, HPS patients showed lower PaO2 (71 ± 8 mmHg), higher AaPO2 (43 ± 10 mmHg) and lower DLco (54% ± 9% predicted), due to a combination of moderate-to-severe ventilation-perfusion (VA/Q) imbalance, mild shunt and diffusion limitation, than non- HPS patients (94 ± 4 mmHg and 19 ± 3 mmHg, and 85% ± 3% predicted, respectively) (P 〈 0.05 each). Seven non-HPS patients had also reduced DLco (70% ± 4% predicted). At mid- and long-term after LT, compared to pre- LT, HPS patients normalized PaO2 (91 ± 3 mmHg and 87 ± 5 mmHg), AaPO2 (14 ± 3 mmHg and 23 ± 5 mmHg) and all VA/Q descriptors (P 〈 0.05 each) without changes in DLco (53% ± 8% and 56% ± 7% predicted, respectively). Post-LT DLco in non-HPS patients with pre- LT low DLco was unchanged (75% ± 6% predicted). CONCLUSION: While complete VA/Q resolution in HPS indicates a reversible functional disturbance, sustained low DLco after LT also present in some non-HPS patients, points to persistence of sub-clinical liver-induced pulmonary vascular changes.
基金Funded by the Ministry of Science and Technology of China(No.2010DFA82490)Hubei Provincial Science and Technology Department(No.2009CDA053)Hubei Provincial Highway Administration Bureau
文摘Rejuvenator diffusing into aged bitumen was evaluated by determining penetration and chemical components of aged bitumen with rejuvenator coat before and after diffusing experiment. Effects of temperature, time and viscosity of rejuvenator on the diffusing ability of rejuvenator into aged bitumen were investigated. Results indicated that the diffusing ability of rejuvenator into aged bitumen could be enhanced with the increasing of temperature and time, however, the diffusing of rejuvenator into aged bitumen would be restricted due to the volatilization of light component and aging of rejuvenator under high temperature (over 170 ℃). Rejuvenator with low viscosity diffused into aged bitumen more easily.
文摘The temperature and flow rate control of diffusing chamber is one of the key technologies in the production of poly-crystal silicon thin film. As there exist some modeling uncertainties and errors in the actual system, it is difficult to guarantee the chamber variable temperature conditions and the flow rate of diffusion gas being controlled within its targeted range in the rapid thermal processing (RTP). In this paper, the control applies the programmable logic controller (PLC) to configure control hardware system, proposes expert proportional integral derivative (PID) control method to regulate the gas flow rate and H∞ control strategy to attenuate chamber modeling uncertainties and disturbances, respectively, to steer the chamber rapid variable temperature very close to the expected product temperatures. Furthermore, it designs human-machine integrated user control interface (HMI) and achieves rapid and accurately control performances for user operating production. The designed control system are simulated and tested in the application, which demonstrates that the control method has strong robustness when the modeling uncertainties, errors, parameters perturbation and disturbances, the temperature and flow rate meet the requirements of precisely trajectory following.
基金Supported by the National Natural Science Foundation of China under Grant No 51176044the Natural Science Foundation of Zhejiang Province under Grant No LY13A040007the China Postdoctoral Science Foundation under Grant Nos 2013M541634and 2014T70498
文摘A coarse-grained model is proposed to study the dynamics of a nano-chain diffusing in porous media. The simulation utilizes a hybrid method which combines stochastic rotation dynamics with molecular dynamics. Solvent molecules are explicitly taken into account to represent the hydrodynamic interactions and random fluctuations. The conformation, relaxation, and diffusion properties of a polymer chain are investigated by changing the density degree of the obstacle matrix. It is found that the average size of the chain is a non- monotonic function of the obstacle volume faction Ф. A dense environment may contribute to extending a linear chain, which can be characterized by larger exponents in the corresponding power law. The relaxation behavior of a stretched chain to a steady state shows dramatic crossover from exponent to power-law relaxation when the values of φ are increased. The dependence of the diffusion coefficient on the chain size is also studied. Various kinds of scaling properties are presented and discussed. The results can give additional insight into the density effect of porous media on polymer structure and dynamics.
文摘In this paper, we compute the non-detection probability of a randomly moving target by a stationary or moving searcher in a square search region. We find that when the searcher is stationary, the decay rate of the non-detection probability achieves the maximum value when the searcher is fixed at the center of the square search region;when both the searcher and the target diffuse with significant diffusion coefficients, the decay rate of the non-detection probability only depends on the sum of the diffusion coefficients of the target and searcher. When the searcher moves along prescribed deterministic tracks, our study shows that the fastest decay of the non-detection probability is achieved when the searcher scans horizontally and vertically.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130071110018)the National Natural Science Foundation of China(Grant No.11274073)
文摘In nuclear structural materials, the nuclear irradiations induce the precipitations of soluble elements or produce the insoluble elements such as He atoms that may form clusters, heavily shortening the service life-times of the materials. In the present work, a diffusion model is developed to predict where and how fast the solute atoms (either soluble or insoluble) aggregate, and this model is applied to the study of the formation and growth of He bubbles in metal tritides (PdT0.6, ErT2, NbT0.0225, VT0.5, TaT0.097, TiT1.5, ZrT1.6) within one thousand days. The results are in good agreement with the available experimental observations and suggest that searching for metals with a barrier of more than 1.1 eV for a single He atom diffusion and making more defects in metal tritides can significantly reduce the growth of He bubbles and extend the service time of the metals.
文摘We study the problem of a diffusing particle confined in a large sphere in the n-dimensional space being absorbed into a small sphere at the center. We first non-dimensionalize the problem using the radius of large confining sphere as the spatial scale and the square of the spatial scale divided by the diffusion coefficient as the time scale. The non-dimensional normalized absorption rate is the product of the physical absorption rate and the time scale. We derive asymptotic expansions for the normalized absorption rate using the inverse iteration method. The small parameter in the asymptotic expansions is the ratio of the small sphere radius to the large sphere radius. In particular, we observe that, to the leading order, the normalized absorption rate is proportional to the (n - 2)-th power of the small parameter for .
文摘The spot-diffusing technique provides better performance compared to conventional diffuse system for indoor optical-wireless communication (OWC) system. In this paper, the performance of an OW spot-diffusing communication system using Neuro-Fuzzy (NF) adaptive multi-beam transmitter configuration has been proposed. The multi-beam transmitter generates multiple spots pointed in different directions, hence, forming a matrix of diffusing spots based on position of the receiver and receiver mobility. Regardless of the position of the transmitter and receiver, NF controller target the spots adaptively at the best locations and allocates optimal power to the spots and beam angle are adapted in order to achieve better signal-to-noise plus interference ratio (SNIR). Maximum ratio combining (MRC) is used in the imaging receiver. The proposed OW spot-diffusing communication system is compared with other spot-beam diffusion methods proposed in literature. Performance evaluation revels that the proposed NF based OW spot-diffusing communication system outperforms other spot-beam diffusion methods.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.60171003.30370416)the National Distinguished Young Scholars Fund of China(Grant No,60225015)+1 种基金the Ministry of Science and Technology of China(Grant No.2001CCA04100)the Ministry of Education of China(TRAPOYT Project).
文摘In this paper the four-dimensional dynamic diffusing mechanism and the enhancement in Long-Term Potentiation (LTP) of intrinsic nitric oxide (NO) in nervous system are studied computationally. A novel unsupervised Diffusing Self-Organizing Maps (DSOM) model is presented on the union of SOM with NO diffusing mechanism. Based on the spatial prototype mapping, temporal enhancement is introduced in DSOM and the fine-tuning manner is improved by the simplified NO diffusing mechanism. Furthermore, the quantization error of optimal weights is valuated and the detailed noise analysis of DSOM is presented. Finally some typical stimulation experiments are presented to illustrate how DSOM gracefully handles time warping and multiple patterns with overlapping reference vectors.
基金supported by the National Natural Science Foundation of China,No.82274304(to YH)the Major Clinical Study Projects of Shanghai Shenkang Hospital Development Center,No.SHDC2020CR2046B(to YH)Shanghai Municipal Health Commission Talent Plan,No.2022LJ010(to YH).
文摘Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.
基金Supported by the National Natural Science Foundation of China(Grant No.12261081).
文摘In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10825520,11175230)
文摘The diffusion of an ammonia molecule (NH3) in water was investigated by molecular dynamic simulations. It is found that the diffusion shows negative correlation with its dipole orientation.