期刊文献+
共找到10,924篇文章
< 1 2 250 >
每页显示 20 50 100
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
1
作者 范勤勤 颜学峰 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期197-200,共4页
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti... To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 展开更多
关键词 differential evolution algorithm particle swann optimization SELF-ADAPTIVE CO-evolution
在线阅读 下载PDF
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
2
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
3
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(PSO)
在线阅读 下载PDF
Hybrid particle swarm optimization with differential evolution and chaotic local search to solve reliability-redundancy allocation problems 被引量:6
4
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2013年第6期1572-1581,共10页
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti... In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems. 展开更多
关键词 particle swarm optimization differential evolution chaotic local search reliability-redundancy allocation
在线阅读 下载PDF
Hybrid Particle Swarm Optimization with Differential Evolution for Numerical and Engineering Optimization 被引量:3
5
作者 Guo-Han Lin Jing Zhang Zhao-Hua Liu 《International Journal of Automation and computing》 EI CSCD 2018年第1期103-114,共12页
In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC... In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm. A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti- mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically, the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time systems with time delays. 展开更多
关键词 particle swarm optimization (PSO) active disturbance rejection control (ADRC) differential evolution algorithm chaoticmap parameter tuning.
原文传递
PID Neural Net work Decoupling Control Based on Hybrid Particle Swarm Optimization and Differential Evolution 被引量:2
6
作者 Hong-Tao Ye Zhen-Qiang Li 《International Journal of Automation and computing》 EI CSCD 2020年第6期867-872,共6页
For complex systems with high nonlinearity and strong coupling,the decoupling control technology based on proportion integration differentiation(PID)neural network(PIDNN)is used to eliminate the coupling between loops... For complex systems with high nonlinearity and strong coupling,the decoupling control technology based on proportion integration differentiation(PID)neural network(PIDNN)is used to eliminate the coupling between loops.The connection weights of the PIDNN are easy to fall into local optimum due to the use of the gradient descent learning method.In order to solve this problem,a hybrid particle swarm optimization(PSO)and differential evolution(DE)algorithm(PSO-DE)is proposed for optimizing the connection weights of the PIDNN.The DE algorithm is employed as an acceleration operation to help the swarm to get out of local optima traps in case that the optimal result has not been improved after several iterations.Two multivariable controlled plants with strong coupling between input and output pairs are employed to demonstrate the effectiveness of the proposed method.Simulation results show t hat the proposed met hod has better decoupling capabilities and control quality than the previous approaches. 展开更多
关键词 particle swarm optimization differential evolution proportion integration differentiation(PID)neural network hybrid approach decoupling control.
原文传递
A new particle swarm optimization algorithm with random inertia weight and evolution strategy 被引量:1
7
作者 LEI Chong-min GAO Yue-lin DUAN Yu-hong 《通讯和计算机(中英文版)》 2008年第11期42-47,共6页
关键词 通信技术 计算机技术 粒子群优化算法 收敛速度 计算方法
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
8
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
Optimal Static State Estimation Using hybrid Particle Swarm-Differential Evolution Based Optimization
9
作者 Sourav Mallick S. P. Ghoshal +1 位作者 P. Acharjee S. S. Thakur 《Energy and Power Engineering》 2013年第4期670-676,共7页
In this paper, swarm optimization hybridized with differential evolution (PSO-DE) technique is proposed to solve static state estimation (SE) problem as a minimization problem. The proposed hybrid method is tested on ... In this paper, swarm optimization hybridized with differential evolution (PSO-DE) technique is proposed to solve static state estimation (SE) problem as a minimization problem. The proposed hybrid method is tested on IEEE 5-bus, 14-bus, 30-bus, 57-bus and 118-bus standard test systems along with 11-bus and 13-bus ill-conditioned test systems under different simulated conditions and the results are compared with the same, obtained using standard weighted least square state estimation (WLS-SE) technique and general particle swarm optimization (GPSO) based technique. The performance of the proposed optimization technique for SE, in terms of minimum value of the objective function and standard deviations of minimum values obtained in 100 runs, is found better as compared to the GPSO based technique. The statistical error analysis also shows the superiority of the proposed PSO-DE based technique over the other two techniques. 展开更多
关键词 differential evolution ILL-CONDITIONED System particle swarm optimization State ESTIMATION
在线阅读 下载PDF
Hybrid Hierarchical Particle Swarm Optimization with Evolutionary Artificial Bee Colony Algorithm for Task Scheduling in Cloud Computing
10
作者 Shasha Zhao Huanwen Yan +3 位作者 Qifeng Lin Xiangnan Feng He Chen Dengyin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1135-1156,共22页
Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the chall... Task scheduling plays a key role in effectively managing and allocating computing resources to meet various computing tasks in a cloud computing environment.Short execution time and low load imbalance may be the challenges for some algorithms in resource scheduling scenarios.In this work,the Hierarchical Particle Swarm Optimization-Evolutionary Artificial Bee Colony Algorithm(HPSO-EABC)has been proposed,which hybrids our presented Evolutionary Artificial Bee Colony(EABC),and Hierarchical Particle Swarm Optimization(HPSO)algorithm.The HPSO-EABC algorithm incorporates both the advantages of the HPSO and the EABC algorithm.Comprehensive testing including evaluations of algorithm convergence speed,resource execution time,load balancing,and operational costs has been done.The results indicate that the EABC algorithm exhibits greater parallelism compared to the Artificial Bee Colony algorithm.Compared with the Particle Swarm Optimization algorithm,the HPSO algorithmnot only improves the global search capability but also effectively mitigates getting stuck in local optima.As a result,the hybrid HPSO-EABC algorithm demonstrates significant improvements in terms of stability and convergence speed.Moreover,it exhibits enhanced resource scheduling performance in both homogeneous and heterogeneous environments,effectively reducing execution time and cost,which also is verified by the ablation experimental. 展开更多
关键词 Cloud computing distributed processing evolutionary artificial bee colony algorithm hierarchical particle swarm optimization load balancing
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights 被引量:1
11
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 particle swarm optimization(PSO) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types
12
作者 Erping Song Zipin Yao 《Energy Engineering》 2025年第12期5129-5147,共19页
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco... Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm. 展开更多
关键词 Bi-level optimization genetic algorithm differential evolution hybrid evolutionary algorithm wind farm layout
在线阅读 下载PDF
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:14
13
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
在线阅读 下载PDF
Blending Scheduling under Uncertainty Based on Particle Swarm Optimization Algorithm 被引量:16
14
作者 ZHAO Xiaoqiang(赵小强) +1 位作者 RONG Gang(荣冈) 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第4期535-541,共7页
Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. ... Blending is an important unit operation in process industry. Blending scheduling is nonlinear optimiza- tion problem with constraints. It is difficult to obtain optimum solution by other general optimization methods. Particle swarm optimization (PSO) algorithm is developed for nonlinear optimization problems with both contin- uous and discrete variables. In order to obtain a global optimum solution quickly, PSO algorithm is applied to solve the problem of blending scheduling under uncertainty. The calculation results based on an example of gasoline blending agree satisfactory with the ideal values, which illustrates that the PSO algorithm is valid and effective in solving the blending scheduling problem. 展开更多
关键词 blending scheduling UNCERTAINTY gasoline blending particle swarm optimization algorithm nonlinear optimization
在线阅读 下载PDF
An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes 被引量:12
15
作者 李亮 褚雪松 《China Ocean Engineering》 SCIE EI 2011年第2期357-364,共8页
The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy ... The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters. 展开更多
关键词 slope stability analysis limit equilibrium method particle swarm optimization algorithm harmony strategy
在线阅读 下载PDF
Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm 被引量:8
16
作者 Yan Xiang Shu-yan Fu +2 位作者 Kai Zhu Hui Yuan Zhi-yuan Fang 《Water Science and Engineering》 EI CAS CSCD 2017年第1期70-77,共8页
Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam,... Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO) algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly. 展开更多
关键词 Monitoring model particle swarm optimization algorithm Earth rock dam Lagging effect TYPHOON Seepage pressure Mutation factor Piezometric level
在线阅读 下载PDF
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
17
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC DYNAMICS MULTIBODY system SYMPLECTIC method particle swarm optimization(PSO)algorithm instantaneous optimal control
在线阅读 下载PDF
Hypersonic reentry trajectory planning by using hybrid fractional-order particle swarm optimization and gravitational search algorithm 被引量:10
18
作者 Khurram SHAHZAD SANA Weiduo HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期50-67,共18页
This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry fligh... This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency. 展开更多
关键词 FRACTIONAL-ORDER Gravitational search algorithm particle swarm optimization Reentry gliding vehicle Trajectory optimization
原文传递
Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material 被引量:24
19
作者 CHANG Qing-liang ZHOU Hua-qiang HOU Chao-jiong 《Journal of China University of Mining and Technology》 EI 2008年第4期551-555,共5页
In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by appl... In order to forecast the strength of filling material exactly, the main factors affecting the strength of filling material are analyzed. The model of predicting the strength of filling material was established by applying the theory of artificial neural net- works. Based on cases related to our test data of filling material, the predicted results of the model and measured values are com- pared and analyzed. The results show that the model is feasible and scientifically justified to predict the strength of filling material, which provides a new method for forecasting the strength of filling material for paste filling in coal mines. 展开更多
关键词 mining engineering paste filling material neural network particle swarm optimized algorithm prediction
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
20
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部