期刊文献+
共找到5,170篇文章
< 1 2 250 >
每页显示 20 50 100
Wearable Ultrasound Devices for Therapeutic Applications
1
作者 Sicheng Chen Qunle Ouyang +5 位作者 Xuanbo Miao Feng Zhang Zehua Chen Xiaoyan Qian Jinwei Xie Zheng Yan 《Nano-Micro Letters》 2026年第2期260-287,共28页
Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,pie... Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care. 展开更多
关键词 Wearable ultrasound devices Drug delivery Tissue regeneration Closed-loop therapy NEUROREHABILITATION
暂未订购
Electrochromic Devices with High Stability from Colorless to Green Conversion Based on Viologen Derivatives
2
作者 PENG Yuyi QIAN Chao +3 位作者 WANG Peng GUO Xu JIANG Chuanyu LIU Ping 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期258-267,共10页
Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)... Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]di-hexafluorophosphate(Bn-FPV),were synthesized.These viologen derivatives as active materials were used to assemble both flexible and rigid electrochromic devices(ECDs).ECDs based on DFPV exhibited reversible color change from colorless to deep green and ECDs based on Bn-FPV exhibited reversible color change from colorless to blue-green within applied voltage.It was found that the devices based on DFPV showed cycle stability,which could still maintain more than 90% after 1000 cycles.In addition,the modulation rate of the device to the solar irradiance is also calculated to characterize its application potential in smart windows.Among them,the rigid device(R-DFPV)based on the DFPV has a large solar irradiance modulation rate of 54.66%,which has the potential to be used as smart windows. 展开更多
关键词 viologen derivatives electrochromic material flexible electrochromic devices rigid electrochromic device smart windows
原文传递
Cement-Based Thermoelectric Materials, Devices and Applications
3
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials Device structure Smart building
在线阅读 下载PDF
Changshu Textile Machinery:Focusing on the shedding devices R&D for more than 60 years
4
《China Textile》 2025年第5期47-47,共1页
Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devic... Changshu Textile Machinery Works Co.,Ltd.was founded in 1958 and is a professional R&D and manufacturing enterprise of looms shedding device in China.The company's products cover three series of shedding devices for looms(Dobby,Jacquard,Cam Motion),forming a series of products with electronic shedding devices as the main products,and mechanical shedding devices as the auxiliary products.D2876pro electronic dobby The D2876pro electronic dobby is a high-performance equipment designed for a maximum operating speed of 800rpm.It has 16 cams,and 12mm of pitch,with a high installation type.The shedding type is double lift and full clear open.Its maximum wefts is 12,800 and 100,000.It has a two-stage filtration lubrication with a gerotor pump oil recycle system,and it is suitable for water-jet looms. 展开更多
关键词 dobby loom d pro electronic dobby high performance equipment electronic shedding devices shedding device electronic dobby shedding devices
在线阅读 下载PDF
Bio-inspired spectral adaptive visual devices:A new paradigm for structure-defined functionality
5
作者 Youyou Bao Yuhan Zhao +1 位作者 Daixuan Wu He Tian 《Journal of Semiconductors》 2025年第9期1-4,共4页
In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.Ho... In recent years,the rapid development of artificial intelligence has driven the widespread deployment of visual systems in complex environments such as autonomous driving,security surveillance,and medical diagnosis.However,existing image sensors—such as CMOS and CCD devices—intrinsically suffer from the limitation of fixed spectral response.Especially in environments with strong glare,haze,or dust,external spectral conditions often severely mismatch the device's design range,leading to significant degradation in image quality and a sharp drop in target recognition accuracy.While algorithmic post-processing(such as color bias correction or background suppression)can mitigate these issues,algorithm approaches typically introduce computational latency and increased energy consumption,making them unsuitable for edge computing or high-speed scenarios. 展开更多
关键词 visual systems visual devices image sensors such ccd devices intrinsically complex environments spectral adaptive autonomous drivingsecurity artificial intelligence
在线阅读 下载PDF
Preface to the Special Issue:Thermoelectric Materials and Devices
6
作者 Gangjian Tan 《Acta Metallurgica Sinica(English Letters)》 2025年第5期705-706,共2页
We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promisin... We are delighted to introduce this Special Issue of Acta Metallurgica Sinica(English Letters)dedicated to"Thermoelectric Materials and Devices."Thermoelectric materials and devices have emerged as a promising technology for sustainable energy solutions,enabling efficient conversion between heat and electricity.This special collection highlights the latest advancements in the field,showcasing cutting-edge research and fostering interdisciplinary collaboration among researchers worldwide. 展开更多
关键词 thermoelectric materials sustainable energy sustainable energy solutionsenabling acta metallurgica sinica english heat electricity conversion interdisciplinary collaboration thermoelectric devices materials devicesthermoelectric materials devices
原文传递
Reconfigurable devices based on two-dimensional materials for logic and analog applications
7
作者 Liutianyi Zhang Ping-Heng Tan Jiangbin Wu 《Journal of Semiconductors》 2025年第7期48-64,共17页
In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditio... In recent years,as the dimensions of the conventional semiconductor technology is approaching the physical limits,while the multifunction circuits are restricted by the relatively fixed characteristics of the traditional metal−oxide−semiconductor field-effect transistors,reconfigurable devices that can realize reconfigurable characteristics and multiple functions at device level have been seen as a promising method to improve integration density and reduce power consumption.Owing to the ultrathin structure,effective control of the electronic characteristics and ability to modulate structural defects,two-dimensional(2D)materials have been widely used to fabricate reconfigurable devices.In this review,we summarize the working principles and related logic applications of reconfigurable devices based on 2D materials,including generating tunable anti-ambipolar responses and demonstrating nonvolatile operations.Furthermore,we discuss the analog signal processing applications of anti-ambipolar transistors and the artificial intelligence hardware implementations based on reconfigurable transistors and memristors,respectively,therefore highlighting the outstanding advantages of reconfigurable devices in footprint,energy consumption and performance.Finally,we discuss the challenges of the 2D materials-based reconfigurable devices. 展开更多
关键词 two-dimensional materials reconfigurable devices anti-ambipolar characteristics nonvolatile devices artificial intelligence hardware
在线阅读 下载PDF
Synaptic devices based on silicon carbide for neuromorphic computing 被引量:1
8
作者 Boyu Ye Xiao Liu +2 位作者 Chao Wu Wensheng Yan Xiaodong Pi 《Journal of Semiconductors》 2025年第2期38-51,共14页
To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the vario... To address the increasing demand for massive data storage and processing,brain-inspired neuromorphic comput-ing systems based on artificial synaptic devices have been actively developed in recent years.Among the various materials inves-tigated for the fabrication of synaptic devices,silicon carbide(SiC)has emerged as a preferred choices due to its high electron mobility,superior thermal conductivity,and excellent thermal stability,which exhibits promising potential for neuromorphic applications in harsh environments.In this review,the recent progress in SiC-based synaptic devices is summarized.Firstly,an in-depth discussion is conducted regarding the categories,working mechanisms,and structural designs of these devices.Subse-quently,several application scenarios for SiC-based synaptic devices are presented.Finally,a few perspectives and directions for their future development are outlined. 展开更多
关键词 silicon carbide wide bandgap semiconductors synaptic devices neuromorphic computing high temperature
在线阅读 下载PDF
Physics of 2D Materials for Developing Smart Devices 被引量:1
9
作者 Neeraj Goel Rahul Kumar 《Nano-Micro Letters》 2025年第8期449-490,共42页
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing com... Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations.To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks.Two-dimensional(2D)materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices.Despite their ground-breaking progress over the last two decades,systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking.Therefore,in this review,we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics.Moreover,the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices.Hence,we discuss the physics of various 2D materials enabling them to fabricate smart devices.We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed. 展开更多
关键词 2D materials HETEROSTRUCTURES Smart devices Van der Waals Flexible electronics
在线阅读 下载PDF
Research Progress on Microfluidic Paper-based Analytical Devices for Point-of-care Testing 被引量:1
10
作者 ZHANG Yuji XU Ruicheng SHAN Dan 《激光生物学报》 2025年第1期1-11,共11页
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by... Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided. 展开更多
关键词 point-of-care testing microfluidic paper-based analytical devices SENSOR personalized medical treatment portable diagnostic equipment
在线阅读 下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
11
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 Artificial intelligence Emerging devices Artificial sensory neurons Spiking neural networks Neuromorphic sensing
在线阅读 下载PDF
Themed issue on“safety and durability of energy materials and devices”
12
作者 Jun Xu Bingqing Wei 《Energy Materials and Devices》 2025年第3期1-2,共2页
Batteries,as one of the most important classes of electrochemical energy storage systems,play a critical role in enabling energy sustainability and mobility.In recent years,we have witnessed a prosperous boom of resea... Batteries,as one of the most important classes of electrochemical energy storage systems,play a critical role in enabling energy sustainability and mobility.In recent years,we have witnessed a prosperous boom of research on battery chemistries and materials aimed at enhancing energy density,reducing costs,and enabling faster charging.While these advancements promote the applications of batteries in various engineering scenarios,they also raise significant safety concerns,particularly as higher energy densities increase the risk of catastrophic failures.Unfortunately,real-world incidents involving electric vehicles,consumer electronics,and largescale energy storage systems have demonstrated the devastating consequences of battery failures,where severe property damage and even loss of life are frequently observed. 展开更多
关键词 energy sustainability mobilityin devices COSTS SAFETY energy materials BATTERIES electrochemical energy storage DURABILITY
在线阅读 下载PDF
Biomaterial-based Flexible Stretchable Sensor Devices:Classification,Composition and Their Multifunctional Integrated Applications
13
作者 Lu Wang Langyuan Cao +3 位作者 Jianhua Fan Junqiu Zhang Cheng Ma Zhiwu Han 《Journal of Bionic Engineering》 2025年第1期12-46,共35页
Flexible sensors,a class of devices that can convert external mechanical or physical signals into changes in resistance,capacitance,or current,have developed rapidly since the concept was first proposed.Due to the spe... Flexible sensors,a class of devices that can convert external mechanical or physical signals into changes in resistance,capacitance,or current,have developed rapidly since the concept was first proposed.Due to the special properties and naturally occurring excellent microstructures of biomaterials,it can provide more desirable properties to flexible devices.This paper systematically discusses the commonly used biomaterials for bio-based flexible devices in current research applications and their deployment in preparing flexible sensors with different mechanisms.According to the characteristics of other properties and application requirements of biomaterials,the mechanisms of their functional group properties,special microstructures,and bonding interactions in the context of various sensing applications are presented in detail.The practical application scenarios of biomaterial-based flexible devices are highlighted,including human-computer interactions,energy harvesting,wound healing,and related biomedical applications.Finally,this paper also reviews in detail the limitations of biobased materials in the construction of flexible devices and presents challenges and trends in the development of biobased flexible sensors,as well as to better explore the properties of biomaterials to ensure functional synergy within the composite materials. 展开更多
关键词 BIOMATERIALS Flexible devices Sensing properties Bonding of groups Electromechanical properties Structural properties
在线阅读 下载PDF
Neuromorphic devices assisted by machine learning algorithms
14
作者 Ziwei Huo Qijun Sun +4 位作者 Jinran Yu Yichen Wei Yifei Wang Jeong Ho Cho Zhong Lin Wang 《International Journal of Extreme Manufacturing》 2025年第4期178-215,共38页
Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decisio... Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decision making.It features parallel interconnected neural networks,high fault tolerance,robustness,autonomous learning capability,and ultralow energy dissipation.The algorithms of artificial neural network(ANN)have also been widely used because of their facile self-organization and self-learning capabilities,which mimic those of the human brain.To some extent,ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations.This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms.First,the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed.Second,the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures.Furthermore,the fabrication of neuromorphic devices,including stand-alone neuromorphic devices,neuromorphic device arrays,and integrated neuromorphic systems,is discussed and demonstrated with reference to some respective studies.The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated.Finally,perspectives,suggestions,and potential solutions to the current challenges of neuromorphic devices are provided. 展开更多
关键词 neuromorphic devices machine learning algorithms artificial synapses MEMRISTORS field-effect transistors
在线阅读 下载PDF
A density functional theory study of tyrosine-proton mediated transport in Ag-filamentary nanodevices
15
作者 Dan Berco 《Smart Molecules》 2025年第3期117-127,共11页
The development of electronic circuits designed to emulate the functionality of biological neural networks has increased significantly in recent years.Specifically,memristor-based neuromorphic operation has been demon... The development of electronic circuits designed to emulate the functionality of biological neural networks has increased significantly in recent years.Specifically,memristor-based neuromorphic operation has been demonstrated using various material combinations.One class of devices replicates the ion-concentrationgradient buildup that precedes neurotransmitter release in biological synapses.Some of these devices incorporate amino-acid-rich solutions as an active layer.This work presents a density functional theory study of such a device.The interaction between an Ag-filamentary memristor and different Hydrogen concentrations in a tyrosine-rich environment was evaluated.Two mutually exclusive structures were studied,and the resulting source-to-drain currents were compared with experimental observations.One structure was based on Tyrosine-H blocks linked to Ag atoms as a charge conduction path,while the other placed these blocks in parallel with Ag partial filaments between the source and drain.The results indicate that the second aligns with experiments and supports the hypothesis that tyrosine can act as an enabler for proton-mediated charge transport.Furthermore,the insights into the electronic transport properties of specific molecules can provide a theoretical background for designing advanced Hydrogen sensors and amino acid detectors. 展开更多
关键词 Ag-filamentary memristors amino-acid devices Hydrogen sensors neuromorphic computing protonmediated charge transport tyrosine-based nanostructures
在线阅读 下载PDF
Artificial intelligence-integrated wearable biomedical devices for cancer management
16
作者 Penghua Zhai Weixin Xu +4 位作者 Guifang Duan Yukun Wu Mingxin Qi Lingqian Chang Wei Mu 《Journal of the National Cancer Center》 2025年第6期561-576,共16页
Cancer remains the leading cause of death globally.Early diagnosis and intervention play deterministic roles in improving clinical prognosis.Traditional cancer management heavily depends on central hospital-based imag... Cancer remains the leading cause of death globally.Early diagnosis and intervention play deterministic roles in improving clinical prognosis.Traditional cancer management heavily depends on central hospital-based imaging and invasive diagnostics,which are intermittent and costly.Moreover,these strategies show limitations to patient compliance and real-time diagnosis.The emergence of wearable biomedical devices(WBDs)has offered a compelling alternative,enabling continuous,non-invasive in situ monitoring of bio-signals and real-time tissue imaging in daily settings.In particular,these devices have recently been integrated with therapeutic modules and artificial intelligence(AI)and have been adapted to closed-loop interventions,allowing for precise,on-demand drug delivery and localized therapy.In this review,we provide an overview of AI-integrated WBDs with their applications in cancer screening,diagnosis,and therapy.To solve the remaining issues of inaccurate screening,delayed intervention and severe side effects,the innovation of WBDs mainly includes conformable wearing structures,adhesive materials and integrated sensors/drug delivery modules.The integration of AI into WBDs has demonstrated high performance in improving signal-to-noise ratio(SNR)and real-time data processing,which significantly enhance the capabilities in long-term monitoring,and patient-specific bio-signal variations.The last session provides future directions for AI-integrated WBDs,focusing on improving SNR,reducing false positives caused by high sensitivity,and addressing patient data privacy concerns during AI training. 展开更多
关键词 Cancer management Wearable biomedical devices Artificial intelligence Early diagnosis Drug delivery
在线阅读 下载PDF
Dynamic hybrid visual-thermal multimodal perception neuromorphic devices based on defect modulation of electrospun nanofibers
17
作者 Shengkai Wen Yanan Liu +3 位作者 Yi Li Liang Xie Jun Li Jianhua Zhang 《International Journal of Extreme Manufacturing》 2025年第2期749-761,共13页
Neuromorphic devices,inspired by the intricate architecture of the human brain,have garnered recognition for their prodigious computational speed and sophisticated parallel computing capabilities.Vision,the primary mo... Neuromorphic devices,inspired by the intricate architecture of the human brain,have garnered recognition for their prodigious computational speed and sophisticated parallel computing capabilities.Vision,the primary mode of external information acquisition in living organisms,has garnered substantial scholarly interest.Notwithstanding numerous studies simulating the retina through optical synapses,their applications remain circumscribed to single-mode perception.Moreover,the pivotal role of temperature,a fundamental regulator of biological activities,has regrettably been relegated to the periphery.To address these limitations,we proffer a neuromorphic device endowed with multimodal perception,grounded in the principles of light-modulated semiconductors.This device seamlessly accomplishes dynamic hybrid visual and thermal multimodal perception,featuring temperature-dependent paired pulse facilitation properties and adaptive storage.Crucially,our meticulous examination of transfer curves,capacitance–voltage(C–V)tests,and noise measurements provides insights into interface and bulk defects,elucidating the physical mechanisms underlying adaptive storage and other functionalities.Additionally,the device demonstrates a variety of synaptic functionalities,including filtering properties,Ebbinghaus curves,and memory applications in image recognition.Surprisingly,the digital recognition rate achieves a remarkable value of 98.8%. 展开更多
关键词 neuromorphic devices electrospinning defect modulation dynamic hybrid multimodal perception adaptive storage
在线阅读 下载PDF
Hand-printed paper-based devices:Toward green flexible electronics and sensing applications
18
作者 Parth Shah Sanjay A.Bhakhar +1 位作者 Pratik M.Pataniya C.K.Sumesh 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2341-2365,共25页
The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic... The rapid advancement of modern electronics has led to a surge in solid electronic waste,which poses significant environmental and health challenges.This review focuses on recent developments in paper-based electronic devices fabricated through low-cost,hand-printing techniques,with particular emphasis on their applications in energy harvesting,storage,and sensing.Unlike conventional plastic-based substrates,cellulose paper offers several advantages,including biodegradability,recyclability,and low fabrication cost.By integrating functional nanomaterials such as two-dimensional chalcogenides,metal oxides,conductive polymers,and carbon-based structures onto paper,researchers have achieved high-performance devices such as broadband photodetectors(responsivity up to 52 mA/W),supercapacitors(energy density~15.1 mWh/cm^(2)),and pressure sensors(sensitivity~18.42 kPa^(-1)).The hand-printing approach,which eliminates the need for sophisticated equipment and toxic solvents,offers a promising route for scalable,sustainable,and disposable electronics.This review outlines fabrication methods and key performance metrics,and discusses the current challenges and future directions for realizing robust,flexible devices aligned with green technology and the United Nation’s Sustainable Development Goals. 展开更多
关键词 flexible electronics hand-print method opto-electronics electronic devices
在线阅读 下载PDF
K-B2S+:A one-dimensional CNN model for AF detection with short single-lead ECG waves from wearable devices
19
作者 Bo Fang Zhaocheng Yu +2 位作者 Li-bo Zhang Yue Teng Junxin Chen 《Digital Communications and Networks》 2025年第3期613-621,共9页
Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,... Wearable signal analysis is an important technology for monitoring physiological signals without interfering with an individual’s daily behavior.As detecting cardiovascular diseases can dramatically reduce mortality,arrhythmia recognition using ECG signals has attracted much attention.In this paper,we propose a singlechannel convolutional neural network to detect Atrial Fibrillation(AF)based on ECG signals collected by wearable devices.It contains 3 primary modules.All recordings are firstly uniformly sized,normalized,and Butterworth low-pass filtered for noise removal.Then the preprocessed ECG signals are fed into convolutional layers for feature extraction.In the classification module,the preprocessed signals are fed into convolutional layers containing large kernels for feature extraction,and the fully connected layer provides probabilities.During the training process,the output of the previous pooling layer is concatenated with the vectors of the convolutional layer as a new feature map to reduce feature loss.Numerous comparison and ablation experiments are performed on the 2017 PhysioNet/CinC Challenge dataset,demonstrating the superiority of the proposed method. 展开更多
关键词 Single-lead ECG Wearable devices Feature concatenating Atrial fibrillation
在线阅读 下载PDF
Contemporary evaluation of triboelectric nanogenerators as self-powereddevices:A bibliometric analysis from 2012 to 2023
20
作者 Natalia Vargas Perdomo Minsoo P.Kim +1 位作者 Xia Li Louis A.Cuccia 《DeCarbon》 2025年第1期13-22,共10页
TriboElectric NanoGenerators(TENGs),introduced in 2012 by Wang et al.,have revolutionized the way we harvest energy,converting mechanical energy into electrical power with remarkable efficiency.Since their inception,T... TriboElectric NanoGenerators(TENGs),introduced in 2012 by Wang et al.,have revolutionized the way we harvest energy,converting mechanical energy into electrical power with remarkable efficiency.Since their inception,TENGs have unlocked innumerable applications,driving a surge in innovative research and development.This study utilizes the Scopus database to conduct a bibliographic analysis,highlighting the diverse applications,influential authors,and citation patterns that define the TENG landscape.Through the use of MATLAB and VOSviewer,we provide a visually compelling analysis that not only shows the integration of artificial intelligence in scientific literature but also explores the challenges and future potential of TENG technology.The document concludes by discussing TENGs challenges and the promising paths for their future applications. 展开更多
关键词 TriboElectric NanoGenerators(TENGs) Self-powered devices Bibliometric analysis Energy harvesting Nanotechnology applications
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部