Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimizatio...Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape optimization problem.展开更多
A new algorithm is presented that generates developable Bézier surfaces through a Bézier curve called a directrix. The algorithm is based on differential geometry theory on necessary and sufficient condition...A new algorithm is presented that generates developable Bézier surfaces through a Bézier curve called a directrix. The algorithm is based on differential geometry theory on necessary and sufficient conditions for a surface which is developable, and on degree evaluation formula for parameter curves and linear independence for Bernstein basis. No nonlinear characteristic equations have to be solved. Moreover the vertex for a cone and the edge of regression for a tangent surface can be obtained easily. Aumann’s algorithm for developable surfaces is a special case of this paper.展开更多
The paper deals with the principle of envelope of a one-parameter plane family to design developable surfaces. Three methods of designing developable surfaces are presented. They are designing a developable surface ba...The paper deals with the principle of envelope of a one-parameter plane family to design developable surfaces. Three methods of designing developable surfaces are presented. They are designing a developable surface based on one curve on it and its normal line, designing a developable surface based on two curves on it and designing a developable surface based on one curve and one surface. They meet the requirements of engineering fields.展开更多
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li...Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.展开更多
The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and contin...The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.展开更多
The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which...The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which is commonly used in algebraic geometry. Not all algebraic developable surfaces have rational parametrizations. In this paper, the authors focus on the rational developable surfaces. For a given algebraic surface, the authors first determine whether it is developable by geometric inspection, and then give a rational proper parametrization in the affrmative case. For a rational parametric surface, the authors also determine the developability and give a proper reparametrization for the developable surface.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehens...Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.展开更多
The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established b...The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.展开更多
In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a ...In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches.展开更多
In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizin...In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizing one of the boundary curves.The reparameterization function is the solution of an algebraic equation.For the relevant case of cubic or cubic spline curves,this equation is quartic at most,quadratic if the curves are B´ezier or splines and lie on parallel planes,and hence it may be solved either by standard analytical or numerical methods.展开更多
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan...This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.展开更多
In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of th...In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of the Chinese nation,carries thousands of years of wisdom and practical experience.However,in the context of the rapid advancements in modern medicine and technology,TCM faces dual challenges:preserving its heritage while innovating.DeepSeek,a major achievement in the field of AI,offers a new opportunity for the development of TCM with its powerful technological capabilities.Exploring the integration of DeepSeek with TCM not only helps modernize the practice but also promises unique contributions to global health.展开更多
The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:tho...The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.展开更多
Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and...Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and leading catalytic materials in both electro and photocatalytic water splitting(WSR);two sustainable methods of green hydrogen production.WBGs guarantee long life time of photo charge carriers and thereby surface availability of electrons and holes.Therefore,WBG(with appropriate VB-CB potential)along with small band gap materials or sensitizers can yield extraordinary photocatalytic system for hydrogen production under solar light.The factors such as,free energy of hydrogen adsorption(ΔGH^(*))close to zero,high electron mobility,great thermal as well as electro chemical stability and high tunability make WBG an interesting and excellent catalyst in electrolysis too.Taking into account the current relevance and future scope,the present review article comprehends different dimensions of WBG materials as an electro/photo catalyst for hydrogen evolution reaction.Herein WBG semiconductors are presented under various classes;viz.II-VI,III-V,III-VI,lanthanide oxides,transition metal based systems,carbonaceous materials and other systems such as SiC and MXenes.Catalytic properties of WBGs favorable for hydrogen production are then reviewed.A detailed analysis on relationship between band structure and activity(electro,photo and photo-electrochemical WSR)is performed.The challenges involved in these reactions as well as the direction of advancement in WBG based catalysis are also debated.By virtue of this article authors aims to guideline and promote the development of new WBG based electro/photocatalyst for HER and other applications.展开更多
Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether...Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.展开更多
Energy poverty in developing countries is a critical issue characterized by the lack of access to modern energy services,such as electricity and clean cooking facilities,as marked in SDG 7.This study explores the corr...Energy poverty in developing countries is a critical issue characterized by the lack of access to modern energy services,such as electricity and clean cooking facilities,as marked in SDG 7.This study explores the correlations between energy poverty,energy intensity,resource abundance,and income inequality,as these factors have been theorized to play important roles in influencing energy poverty in developing countries.By observing that the dataset is heterogeneous across the countries and over the time frame,we use the Method of Moments Quantile Regression(MMQR)to analyze our developing countries’data from 2000 to 2019.Our findings indicate that energy intensity is a significant factor influencing energy poverty,suggesting that higher energy consumption relative to the sample countries can exacerbate this issue.Additionally,we observe that income inequality within the sample countries is a critical determinant of energy poverty levels,highlighting the dynamics between economic disparity and access to energy resources.Interestingly,our study reveals that resource abundance acts as a blessing rather than a curse in terms of energy poverty,implying that countries rich in natural resources may have better opportunities to combat energy deprivation.Finally,we emphasize the vital role of financial markets in addressing energy poverty on a global scale,suggesting that robust financial systems can facilitate investments and innovations aimed at improving energy access for vulnerable populations.The results from the robustness analysis support the empirical results obtained from the main estimation.The empirical findings of the present study advance important comprehensions for policymakers to adopt energy policies that address the complex challenges of energy poverty and promote inclusive energy access.展开更多
Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this...Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this paper is to explore the potential applications of blockchain in supporting the achievement of these sustainability goals.Starting from a review of the relevant literature on this topic,the main fields in which blockchain can contribute to sustainable development will be identified.The main blockchain applications will then be analyzed and categorized according to these SDGs.This research will then critically present the main blockchain-based projects that emerged in the first stage of the study and were implemented by the United Nations.The main objectives and benefits of each project will be analyzed.This is where the originality of this paper lies.To the best of the author’s knowledge,this is one of the first attempts to present a comprehensive overview of the United Nations’projects related to SDGs 1,2,5,7,9,13,and 16.This paper,which bridges the gap between innovation management and the sustainability field,will contribute to the increasingly current debate on sustainability issues and be beneficial to scholars,practitioners,and policymakers alike.展开更多
Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugatio...Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugation across diverse metro lines remains pivotal for elucidating its underlying mechanisms.The present study conducted extensive field surveys and tracking tests across 14 Chinese metro lines.By employing t-distributed stochastic neighbor embedding(t-SNE)for dimensional reduction and employing the unsupervised clustering algorithm DBSCAN,the research redefines the classification of metro rail corrugation based on characteristic information.The analysis encompassed spatial distribution and temporal evolution of this phenomenon.Findings revealed that floating slab tracks exhibited the highest proportion of rail corrugation at 47%.Notably,ordinary monolithic bed tracks employing damping fasteners were more prone to inducing rail corrugation.Corrugation primarily manifested in curve sections with radii between 300 and 500 m,featuring ordinary monolithic bed track and steel-spring floating slab track structures,with wavelengths typically between 30 and 120 mm.Stick–slip vibrations of the wheel–rail system maybe led to short-wavelength corrugations(40–60 mm),while longer wavelengths(200–300 mm)exhibited distinct fatigue damage characteristics,mainly observed in steel-spring floating slab tracks and small-radius curve sections of ordinary monolithic bed tracks and ladder sleeper tracks.A classification system comprising 57 correlated features categorized metro rail corrugation into four distinct types.These research outcomes serve as critical benchmarks for validating various theories pertaining to rail corrugation formation.展开更多
Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This s...Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52375264).
文摘Curvature lines are special and important curves on surfaces.It is of great significance to construct developable surface interpolated on curvature lines in engineering applications.In this paper,the shape optimization of generalized cubic ball developable surface interpolated on the curvature line is studied by using the improved reptile search algorithm.Firstly,based on the curvature line of generalized cubic ball curve with shape adjustable,this paper gives the construction method of SGC-Ball developable surface interpolated on the curve.Secondly,the feedback mechanism,adaptive parameters and mutation strategy are introduced into the reptile search algorithm,and the Feedback mechanism-driven improved reptile search algorithm effectively improves the solving precision.On IEEE congress on evolutionary computation 2014,2017,2019 and four engineering design problems,the feedback mechanism-driven improved reptile search algorithm is compared with other representative methods,and the result indicates that the solution performance of the feedback mechanism-driven improved reptile search algorithm is competitive.At last,taking the minimum energy as the evaluation index,the shape optimization model of SGC-Ball interpolation developable surface is established.The developable surface with the minimum energy is achieved with the help of the feedback mechanism-driven improved reptile search algorithm,and the comparison experiment verifies the superiority of the feedback mechanism-driven improved reptile search algorithm for the shape optimization problem.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719400), the National Natural Science Founda-tion of China (Nos. 60373033 and 60333010) and the National Natural Science Foundation for Innovative Research Groups (No. 60021201), China
文摘A new algorithm is presented that generates developable Bézier surfaces through a Bézier curve called a directrix. The algorithm is based on differential geometry theory on necessary and sufficient conditions for a surface which is developable, and on degree evaluation formula for parameter curves and linear independence for Bernstein basis. No nonlinear characteristic equations have to be solved. Moreover the vertex for a cone and the edge of regression for a tangent surface can be obtained easily. Aumann’s algorithm for developable surfaces is a special case of this paper.
文摘The paper deals with the principle of envelope of a one-parameter plane family to design developable surfaces. Three methods of designing developable surfaces are presented. They are designing a developable surface based on one curve on it and its normal line, designing a developable surface based on two curves on it and designing a developable surface based on one curve and one surface. They meet the requirements of engineering fields.
基金supported by the National Key R&D Program of China,No.2019YFA0110300(to ZG)the National Natural Science Foundation of China,Nos.81773302(to YF),32070862(to ZG).
文摘Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies.
基金supported by the National Natural Science Foundation of China,Nos.81901156(to ZZ),82271200(to ZZ),82171308(to XC)the Fundamental Research Funds for the Central Universities,No.xzy012022035(to ZZ)+1 种基金the Natural Science Foundation of Shaanxi Province,Nos.2021JM-261(to QK),2023-YBSF-303(to ZZ)Traditional Chinese Medicine Project of Shaanxi Province,No.2019-ZZ-JC047(to QK)。
文摘The organotypic retinal explant culture has been established for more than a decade and offers a range of unique advantages compared with in vivo experiments and cell cultures.However,the lack of systematic and continuous comparison between in vivo retinal development and the organotypic retinal explant culture makes this model controversial in postnatal retinal development studies.Thus,we aimed to verify the feasibility of using this model for postnatal retinal development studies by comparing it with the in vivo retina.In this study,we showed that postnatal retinal explants undergo normal development,and exhibit a consistent structure and timeline with retinas in vivo.Initially,we used SOX2 and PAX6 immunostaining to identify retinal progenitor cells.We then examined cell proliferation and migration by immunostaining with Ki-67 and doublecortin,respectively.Ki-67-and doublecortin-positive cells decreased in both in vivo and explants during postnatal retinogenesis,and exhibited a high degree of similarity in abundance and distribution between groups.Additionally,we used Ceh-10 homeodomain-containing homolog,glutamate-ammonia ligase(glutamine synthetase),neuronal nuclei,and ionized calcium-binding adapter molecule 1 immunostaining to examine the emergence of bipolar cells,Müller glia,mature neurons,and microglia,respectively.The timing and spatial patterns of the emergence of these cell types were remarkably consistent between in vivo and explant retinas.Our study showed that the organotypic retinal explant culture model had a high degree of consistency with the progression of in vivo early postnatal retina development.The findings confirm the accuracy and credibility of this model and support its use for long-term,systematic,and continuous observation.
基金supported by Beijing Nova Program under Grant No.Z121104002512065The author PerezDíaz S is a member of the Research Group ASYNACS(Ref.CCEE2011/R34)
文摘The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which is commonly used in algebraic geometry. Not all algebraic developable surfaces have rational parametrizations. In this paper, the authors focus on the rational developable surfaces. For a given algebraic surface, the authors first determine whether it is developable by geometric inspection, and then give a rational proper parametrization in the affrmative case. For a rational parametric surface, the authors also determine the developability and give a proper reparametrization for the developable surface.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
基金supported by the National Natural Science Foundation of China(52074045,52274074)the Science Fund for Distinguished Young Scholars of Chongqing(CSTB2022NSCQ-JQX0028).
文摘Developing deep fragmented soft coalbed methane(CBM)can significantly enhance domestic natural gas supplies,reduce reliance on imported energy,and bolster national energy security.This manuscript provides a comprehensive review of commonly employed coalbed methane extraction technologies.It then delves into several critical issues in the current stage of CBM exploration and development in China,including the compatibility of existing technologies with CBM reservoirs,the characteristics and occurrence states of CBM reservoirs,critical desorption pressure,and gas generation mechanisms.Our research indicates that current CBM exploration and development technologies in China have reached an internationally advanced level,yet the industry is facing unprecedented challenges.Despite progress in low-permeability,high-value coal seams,significant breakthroughs have not been achieved in exploring other types of coal seams.For different coal reservoirs,integrated extraction technologies have been developed,such as surface pre-depressurisation and segmented hydraulic fracturing of coal seam roof strata.Additionally,techniques like large-scale volume fracturing in horizontal wells have been established,significantly enhancing reservoir stimulation effects and coalbed methane recovery rates.However,all of these technologies are fundamentally based on permeation.These technologies lack direct methods aimed at enhancing the diffusion rate of CBM,thereby failing to fully reflect the unique characteristics of CBM.Current CBM exploration and development theories and technologies are not universally applicable to all coal seams.They do not adequately account for the predominantly adsorbed state of CBM,and the complex and variable gas generation mechanisms further constrain CBM development in China.Finally,continuous exploration of new deep CBM exploration technologies is necessary.Integrating more effective reservoir stimulation technologies is essential to enhance technical adaptability concerning CBM reservoir characteristics,gas occurrence states,and gas generation mechanisms,ultimately achieving efficient CBM development.We conclude that while China possesses a substantial foundation of deep fractured CBM resources,industry development is constrained and requires continuous exploration of new CBM exploration and development technologies to utilize these resources effectively.
文摘The reform stems from honesty and determination. Since 2005, organ donation and transplantation in China has undergone thorough reform, which complies with legislation requirements and ethical principles established by the World Health Organization(WHO). Reform in China has demonstrated the unwavering confidence and utmost determination of the Chinese government and the Chinese transplantation community. The year 2015 marked a historic turning point when voluntary donations from Chinese citizens became the sole legitimate source for organ transplantation. Since 2015, China has gradually established and refined the “Chinese Mode” and “China System” for organ donation and transplantation, fulfilling its political pledge of reform, and has garnered international recognition, and fostered a social culture which promotes organ donation. This article reviewed the history of reform on organ donation and transplantation in China, presented a new pattern of establishment of organ donation system in the new era of the country, and the direction of advances in the future.
基金partially supported by the Spanish Ministerio de Economía y Competividad(No.TRA2014-56792-P)
文摘In this paper we address the problem of interpolating a spline developable patch bounded by a given spline curve and the first and the last rulings of the developable surface. To complete the boundary of the patch, a second spline curve is to be given. Up to now this interpolation problem could be solved, but without the possibility of choosing both endpoints for the rulings. We circumvent such difficulty by resorting to degree elevation of the developable surface. This is useful for solving not only this problem, but also other problems dealing with triangular developable patches.
基金This work is partially supported by the Spanish Ministerio de Economiay Competitividad through research grant TRA2015-67788-P.
文摘In this paper we construct developable surface patches which are bounded by two rational or NURBS curves,though the resulting patch is not a rational or NURBS surface in general.This is accomplished by reparameterizing one of the boundary curves.The reparameterization function is the solution of an algebraic equation.For the relevant case of cubic or cubic spline curves,this equation is quartic at most,quadratic if the curves are B´ezier or splines and lie on parallel planes,and hence it may be solved either by standard analytical or numerical methods.
基金support from Guangdong Science and Technology(20230505)Guangdong Provincial Philosophy and Social Science Planning Project(GD20SQ25)Guangdong Provincial Special Fund for Science and Technology Innovation Strategy in 2024(Cultivation of College Students’Science and Technology Innovation)(pdjh2024a391)during preparation of this manuscript.
文摘This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.
文摘In the wave of digital and intelligent applications,artificial intelligence(AI)is transforming the development trajectories of industries across the globe.Traditional Chinese medicine(TCM),as a cultural treasure of the Chinese nation,carries thousands of years of wisdom and practical experience.However,in the context of the rapid advancements in modern medicine and technology,TCM faces dual challenges:preserving its heritage while innovating.DeepSeek,a major achievement in the field of AI,offers a new opportunity for the development of TCM with its powerful technological capabilities.Exploring the integration of DeepSeek with TCM not only helps modernize the practice but also promises unique contributions to global health.
基金supported by the National Natural Science Foundation of China(Grant Nos.32072048 and U2004204)National Key Research and Development Program of China(Grant No.2023YFF1001200)+2 种基金China Rice Research Institute Basal Research Fund(Grant No.CPSIBRF-CNRRI-202404)Academician Workstation of National Nanfan Research Institute(Sanya),Chinese Agricultural Academic Science(CAAS),(Grant Nos.YBXM2422 and YBXM2423)Agricultural Science and Technology Innovation Program of CAAS,China.
文摘The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.
文摘Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and leading catalytic materials in both electro and photocatalytic water splitting(WSR);two sustainable methods of green hydrogen production.WBGs guarantee long life time of photo charge carriers and thereby surface availability of electrons and holes.Therefore,WBG(with appropriate VB-CB potential)along with small band gap materials or sensitizers can yield extraordinary photocatalytic system for hydrogen production under solar light.The factors such as,free energy of hydrogen adsorption(ΔGH^(*))close to zero,high electron mobility,great thermal as well as electro chemical stability and high tunability make WBG an interesting and excellent catalyst in electrolysis too.Taking into account the current relevance and future scope,the present review article comprehends different dimensions of WBG materials as an electro/photo catalyst for hydrogen evolution reaction.Herein WBG semiconductors are presented under various classes;viz.II-VI,III-V,III-VI,lanthanide oxides,transition metal based systems,carbonaceous materials and other systems such as SiC and MXenes.Catalytic properties of WBGs favorable for hydrogen production are then reviewed.A detailed analysis on relationship between band structure and activity(electro,photo and photo-electrochemical WSR)is performed.The challenges involved in these reactions as well as the direction of advancement in WBG based catalysis are also debated.By virtue of this article authors aims to guideline and promote the development of new WBG based electro/photocatalyst for HER and other applications.
基金supported by the National Natural Science Foundation of China(Nos.22276117 and 22076108)the Science and Technology Innovation Talent Team Project of Shanxi Province(No.202204051002024).
文摘Phenanthrene(Phe)is one of the common polycyclic aromatic hydrocarbons in the environment,and recent studies show that it can cause cardiac developmental toxicity and immunotoxicity.However,it is still unknown whether it can affect the hematopoietic development in aquatic organisms.To address this question,zebrafish(Danio rerio)were chronically exposed to Phe at different concentrations.We found that Phe caused structural damage to the renal tubules in the kidney,induced malformed erythrocytes in peripheral blood,and decreased the proportion of myeloid cells in adult zebrafish,suggesting possible negative impacts that Phe posed to hematopoietic development.Then,using in situ hybridization technology,we found that Phe decreased the expression of primitive hematopoietic marker genes,specifically gata1 and pu.1,accompanied by an obstruction of primitive erythrocyte circulation.Furthermore,Phe impaired definitive hematopoiesis,increased aberrations of the transient hematopoietic site(PBI),and reduced the generation of hematopoietic stem cells,ultimately influencing the number of erythrocytes and myeloid cells.The findings suggested that Phe could induce hematopoietic toxicity in zebrafish embryos and pose unknown ecological risks.
文摘Energy poverty in developing countries is a critical issue characterized by the lack of access to modern energy services,such as electricity and clean cooking facilities,as marked in SDG 7.This study explores the correlations between energy poverty,energy intensity,resource abundance,and income inequality,as these factors have been theorized to play important roles in influencing energy poverty in developing countries.By observing that the dataset is heterogeneous across the countries and over the time frame,we use the Method of Moments Quantile Regression(MMQR)to analyze our developing countries’data from 2000 to 2019.Our findings indicate that energy intensity is a significant factor influencing energy poverty,suggesting that higher energy consumption relative to the sample countries can exacerbate this issue.Additionally,we observe that income inequality within the sample countries is a critical determinant of energy poverty levels,highlighting the dynamics between economic disparity and access to energy resources.Interestingly,our study reveals that resource abundance acts as a blessing rather than a curse in terms of energy poverty,implying that countries rich in natural resources may have better opportunities to combat energy deprivation.Finally,we emphasize the vital role of financial markets in addressing energy poverty on a global scale,suggesting that robust financial systems can facilitate investments and innovations aimed at improving energy access for vulnerable populations.The results from the robustness analysis support the empirical results obtained from the main estimation.The empirical findings of the present study advance important comprehensions for policymakers to adopt energy policies that address the complex challenges of energy poverty and promote inclusive energy access.
文摘Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this paper is to explore the potential applications of blockchain in supporting the achievement of these sustainability goals.Starting from a review of the relevant literature on this topic,the main fields in which blockchain can contribute to sustainable development will be identified.The main blockchain applications will then be analyzed and categorized according to these SDGs.This research will then critically present the main blockchain-based projects that emerged in the first stage of the study and were implemented by the United Nations.The main objectives and benefits of each project will be analyzed.This is where the originality of this paper lies.To the best of the author’s knowledge,this is one of the first attempts to present a comprehensive overview of the United Nations’projects related to SDGs 1,2,5,7,9,13,and 16.This paper,which bridges the gap between innovation management and the sustainability field,will contribute to the increasingly current debate on sustainability issues and be beneficial to scholars,practitioners,and policymakers alike.
基金support extended by the Joint Funds of Beijing Municipal Natural Science Foundation and Fengtai Rail Transit Frontier Research(Grant No.L211006)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project,Grant No.2022JBXT010)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2023YJS052)the National Natural Science Foundation of China(Grant No.52308426)。
文摘Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugation across diverse metro lines remains pivotal for elucidating its underlying mechanisms.The present study conducted extensive field surveys and tracking tests across 14 Chinese metro lines.By employing t-distributed stochastic neighbor embedding(t-SNE)for dimensional reduction and employing the unsupervised clustering algorithm DBSCAN,the research redefines the classification of metro rail corrugation based on characteristic information.The analysis encompassed spatial distribution and temporal evolution of this phenomenon.Findings revealed that floating slab tracks exhibited the highest proportion of rail corrugation at 47%.Notably,ordinary monolithic bed tracks employing damping fasteners were more prone to inducing rail corrugation.Corrugation primarily manifested in curve sections with radii between 300 and 500 m,featuring ordinary monolithic bed track and steel-spring floating slab track structures,with wavelengths typically between 30 and 120 mm.Stick–slip vibrations of the wheel–rail system maybe led to short-wavelength corrugations(40–60 mm),while longer wavelengths(200–300 mm)exhibited distinct fatigue damage characteristics,mainly observed in steel-spring floating slab tracks and small-radius curve sections of ordinary monolithic bed tracks and ladder sleeper tracks.A classification system comprising 57 correlated features categorized metro rail corrugation into four distinct types.These research outcomes serve as critical benchmarks for validating various theories pertaining to rail corrugation formation.
基金support from the National Natural Science Foundation of China(No.52308316)the Scientific Research Foundation of Weifang University(Grant No.2024BS42)+2 种基金China Postdoctoral Science Foundation(No.2022M721885)the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2022-01)supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(NO.SKLGME023017).
文摘Investigating the combined effects of mining damage and creep damage on slope stability is crucial,as it can comprehensively reveal the non-linear deformation characteristics of rock under their joint influence.This study develops a fractional-order nonlinear creep constitutive model that incorporates the double damage effect and implements a non-linear creep subroutine for soft rock using the threedimensional finite difference method on the FLAC3D platform.Comparative analysis of the theoretical,numerical,and experimental results reveals that the fractional-order constitutive model,which incorporates the double damage effect,accurately reflects the distinct deformation stages of green mudstone during creep failure and effectively captures the non-linear deformation in the accelerated creep phase.The numerical results show a fitting accuracy exceeding 97%with the creep test curves,significantly outperforming the 61%accuracy of traditional creep models.