Weiss proved that Devaney chaos does not imply topological chaos and Oprocha pointed out that Devaney chaos does not imply distributional chaos. In this paper, by constructing a simple example which is Devaney chaotic...Weiss proved that Devaney chaos does not imply topological chaos and Oprocha pointed out that Devaney chaos does not imply distributional chaos. In this paper, by constructing a simple example which is Devaney chaotic but neither distributively nor topologically chaotic, we give a unified proof for the results of Weiss and Oprocha.展开更多
The relation among transitivity, indecomposability and Z-transitivity is discussed. It is shown that for a non-wandering system (each point is non-wandering), indecomposability is equivalent to transitivity, and for...The relation among transitivity, indecomposability and Z-transitivity is discussed. It is shown that for a non-wandering system (each point is non-wandering), indecomposability is equivalent to transitivity, and for the dynamical systems without isolated points, Z-transitivity and transitivity are equivalent. Besides, a new transitive level as weak transitivity is introduced and some equivalent conditions of Devaney's chaos are given by weak transitivity. Moreover, it is proved that both d- shadowing property and d-shadowing property imply weak transitivity.展开更多
基金2013 Jilin's universities science and technology project during the 12th five-year planthe financial special funds for projects of higher education of Jilin province
文摘Weiss proved that Devaney chaos does not imply topological chaos and Oprocha pointed out that Devaney chaos does not imply distributional chaos. In this paper, by constructing a simple example which is Devaney chaotic but neither distributively nor topologically chaotic, we give a unified proof for the results of Weiss and Oprocha.
基金Supported by National Natural Science Foundation of China(Grant No.11261039)National Natural Science Foundation of Jiangxi Province(Grant No.20132BAB201009)
文摘The relation among transitivity, indecomposability and Z-transitivity is discussed. It is shown that for a non-wandering system (each point is non-wandering), indecomposability is equivalent to transitivity, and for the dynamical systems without isolated points, Z-transitivity and transitivity are equivalent. Besides, a new transitive level as weak transitivity is introduced and some equivalent conditions of Devaney's chaos are given by weak transitivity. Moreover, it is proved that both d- shadowing property and d-shadowing property imply weak transitivity.