Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-...Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-processed thermodynamic or kinetic growth of high-quality narrow bandgap kesterite CZTSSe thin film is developed.A self-powered CZTSSe/CdS thin-film PD is then successfully fabricated.Under optimization of light absorber and heterojunction interface,especially tailoring the defect and carrier kinetics,it can achieve broadband response from300 to 1300 nm,accompaniedwith a high responsivity of 1.37A/W,specific detectivity(D*)up to 4.0×10^(14)Jones under 5 nW/cm^(2),a linear dynamic range(LDR)of 126 dB,and a maximum Ilight/Idark ratio of 1.3×10^(8)within the LDR,and ultrafast response speed(rise/decay time of 16 ns/85 ns),representing the leading-level performance to date,which is superior to those of commercial andwell-researched photodiodes.Additionally,an imaging system with a 905nm laser is built for weak light response evaluation,and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm2.It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist,presenting obvious arterial blood volume changes,demonstrating great application potential in broadband and weak light photodetection scenarios.展开更多
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can...Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.展开更多
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng...Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.展开更多
The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risk...The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risks,including floods and droughts.Recent research associated with the implementation of the Global Monsoons Model Intercomparison Project under the umbrella of CMIP6 has advanced our understanding of its historical variability and driving mechanisms.Observational data reveal a 20th-century shift:increased rainfall pre-1950s,followed by aridification and partial recovery post-1980s,driven by both internal variability(e.g.,Atlantic Multidecadal Oscillation)and external forcings(greenhouse gases,aerosols),while ENSO drives interannual variability through ocean-atmosphere interactions.Future projections under greenhouse forcing suggest long-term monsoon intensification,though regional disparities and model uncertainties persist.Models indicate robust trends but struggle to quantify extremes,where thermodynamic effects(warming-induced moisture rise)uniformly boost heavy rainfall,while dynamical shifts(circulation changes)create spatial heterogeneity.Volcanic eruptions and proposed solar radiation modification(SRM)further complicate predictions:tropical eruptions suppress monsoons,whereas high-latitude events alter cross-equatorial flows,highlighting unresolved feedbacks.The emergent constraint approach is booming in terms of correcting future projections and reducing uncertainty with respect to the global monsoons.Critical challenges remain.Model biases and sparse 20th-century observational data hinder accurate attribution.The interplay between natural variability and anthropogenic forcings,along with nonlinear extreme precipitation risks under warming,demands deeper mechanistic insights.Additionally,SRM’s regional impacts and hemispheric monsoon interactions require systematic evaluation.Addressing these gaps necessitates enhanced observational networks,refined climate models,and interdisciplinary efforts to disentangle multiscale drivers,ultimately improving resilience strategies for monsoon-dependent regions.展开更多
The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests suc...The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions.展开更多
InAs is a direct, narrow band gap (0.354 eV) material with ultrahigh electron mobility, and is potentially a good optoelectronic device candidate in the wide UV-visible-near-infrared region. In this work we report t...InAs is a direct, narrow band gap (0.354 eV) material with ultrahigh electron mobility, and is potentially a good optoelectronic device candidate in the wide UV-visible-near-infrared region. In this work we report the fabrication of InAs nanowire-based photodetectors, which showed a very high photoresponse over a broad spectral range from 300 to 1,100 nm. The responsivity, external quantum efficiency and detectivity of the device were respectively measured to be 4.4 × 103 AW , 1.03 × 106%, and 2.6 × 1011 Jones to visible incident light. Time dependent measurements at different wavelengths and under different light intensities also demonstrated the fast, reversible, and stable photoresponse of our device. Theoretical calculations of the optical absorption and the electric field component distribution were also performed to elucidate the mechanism of the enhanced photoresponse. Our results demonstrate that the single-crystalline InAs NWs are very promising candidates for the design of high sensitivity and high stability nanoscale photodetectors with a broad band photoresponse.展开更多
Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by hig...Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current.展开更多
Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report...Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors.We synthesized six benzo[1,2-d:4,5-d’]bis(oxazole)(BBO)-based CPs by modifying the alkyl side chains of the CPs.Several relationships between the molecular structure and the OPD performance were revealed,and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve Jph and reduce Jd in the OPDs.The optimized CP demonstrated promising OPD performance with a responsivity(R)of 0.22 A/W,specific detectivity(D^(*))of 1.05×10^(13)Jones at a bias of-1 V,rising/falling response time of 2.9/6.9μs,and cut-off frequency(f_(-3dB))of 134 kHz under collimated 530 nm LED irradiation.Finally,a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors(318 ppi).The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a s...In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods.展开更多
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num...Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.展开更多
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable...Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.展开更多
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c...With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.展开更多
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac...The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.展开更多
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp...The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks.展开更多
The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more e...The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.展开更多
In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,par...In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks.展开更多
In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence ...In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.展开更多
OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulati...OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:62074102,62104156,21961160720Open Research Fund of Songshan Lake Materials Laboratory,Grant/Award Number:2021SLABFK02+1 种基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2022A1515010979,2023A1515011256Science and Technology Plan Project of Shenzhen,Grant/Award。
文摘Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)is a promising candidate for photodetector(PD)applications thanks to its excellent optoelectronic properties.In this work,a green solution-processed spin coating and selenization-processed thermodynamic or kinetic growth of high-quality narrow bandgap kesterite CZTSSe thin film is developed.A self-powered CZTSSe/CdS thin-film PD is then successfully fabricated.Under optimization of light absorber and heterojunction interface,especially tailoring the defect and carrier kinetics,it can achieve broadband response from300 to 1300 nm,accompaniedwith a high responsivity of 1.37A/W,specific detectivity(D*)up to 4.0×10^(14)Jones under 5 nW/cm^(2),a linear dynamic range(LDR)of 126 dB,and a maximum Ilight/Idark ratio of 1.3×10^(8)within the LDR,and ultrafast response speed(rise/decay time of 16 ns/85 ns),representing the leading-level performance to date,which is superior to those of commercial andwell-researched photodiodes.Additionally,an imaging system with a 905nm laser is built for weak light response evaluation,and can respond to 718 pW weak light and infrared imaging at a wavelength as low as 5 nW/cm2.It has also been employed for photoplethysmography detection of pulsating signals at both the finger and wrist,presenting obvious arterial blood volume changes,demonstrating great application potential in broadband and weak light photodetection scenarios.
文摘Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.
文摘Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608904)the International Partnership Program of the Chinese Academy of Sciences(Grant Nos.060GJHZ2023079GC and 134111KYSB20160031)+1 种基金supported by the Office of Science,U.S.Department of Energy(DOE)Biological and Environmental Research as part of the Regional and Global Model Analysis program area through the Water Cycle and Climate Extremes Modeling(WACCEM)scientific focus areaoperated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830。
文摘The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risks,including floods and droughts.Recent research associated with the implementation of the Global Monsoons Model Intercomparison Project under the umbrella of CMIP6 has advanced our understanding of its historical variability and driving mechanisms.Observational data reveal a 20th-century shift:increased rainfall pre-1950s,followed by aridification and partial recovery post-1980s,driven by both internal variability(e.g.,Atlantic Multidecadal Oscillation)and external forcings(greenhouse gases,aerosols),while ENSO drives interannual variability through ocean-atmosphere interactions.Future projections under greenhouse forcing suggest long-term monsoon intensification,though regional disparities and model uncertainties persist.Models indicate robust trends but struggle to quantify extremes,where thermodynamic effects(warming-induced moisture rise)uniformly boost heavy rainfall,while dynamical shifts(circulation changes)create spatial heterogeneity.Volcanic eruptions and proposed solar radiation modification(SRM)further complicate predictions:tropical eruptions suppress monsoons,whereas high-latitude events alter cross-equatorial flows,highlighting unresolved feedbacks.The emergent constraint approach is booming in terms of correcting future projections and reducing uncertainty with respect to the global monsoons.Critical challenges remain.Model biases and sparse 20th-century observational data hinder accurate attribution.The interplay between natural variability and anthropogenic forcings,along with nonlinear extreme precipitation risks under warming,demands deeper mechanistic insights.Additionally,SRM’s regional impacts and hemispheric monsoon interactions require systematic evaluation.Addressing these gaps necessitates enhanced observational networks,refined climate models,and interdisciplinary efforts to disentangle multiscale drivers,ultimately improving resilience strategies for monsoon-dependent regions.
文摘The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions.
基金Acknowledgements This work was supported by the National Natural Science Foundation (Nos. 91123008, 51002059, 21001046), the 973 Program of China (No. 2011CB933300), and the Program for New Century Excellent Talents of the Universities in China (grant No. NCET-11-0179). We thank the Analytical and Testing Center of Huazhong University of Science and Technology for measurements.
文摘InAs is a direct, narrow band gap (0.354 eV) material with ultrahigh electron mobility, and is potentially a good optoelectronic device candidate in the wide UV-visible-near-infrared region. In this work we report the fabrication of InAs nanowire-based photodetectors, which showed a very high photoresponse over a broad spectral range from 300 to 1,100 nm. The responsivity, external quantum efficiency and detectivity of the device were respectively measured to be 4.4 × 103 AW , 1.03 × 106%, and 2.6 × 1011 Jones to visible incident light. Time dependent measurements at different wavelengths and under different light intensities also demonstrated the fast, reversible, and stable photoresponse of our device. Theoretical calculations of the optical absorption and the electric field component distribution were also performed to elucidate the mechanism of the enhanced photoresponse. Our results demonstrate that the single-crystalline InAs NWs are very promising candidates for the design of high sensitivity and high stability nanoscale photodetectors with a broad band photoresponse.
基金supported by the National Natural Science Foundation of China(No.52472225)the Science and Technology Plan Project of Shenzhen(No.20220808165025003),China。
文摘Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current.
基金funded by the National Research Foundation(NRF)of Korea(2020M3H4A3081816,RS-2023-00304936,and RS-2024-00398065).
文摘Various novel conjugated polymers(CPs)have been developed for organic photodetectors(OPDs),but their application to practical image sensors such as X-ray,R/G/B,and fingerprint sensors is rare.In this article,we report the entire process from the synthesis and molecular engineering of novel CPs to the development of OPDs and fingerprint image sensors.We synthesized six benzo[1,2-d:4,5-d’]bis(oxazole)(BBO)-based CPs by modifying the alkyl side chains of the CPs.Several relationships between the molecular structure and the OPD performance were revealed,and increasing the number of linear octyl side chains on the conjugated backbone was the best way to improve Jph and reduce Jd in the OPDs.The optimized CP demonstrated promising OPD performance with a responsivity(R)of 0.22 A/W,specific detectivity(D^(*))of 1.05×10^(13)Jones at a bias of-1 V,rising/falling response time of 2.9/6.9μs,and cut-off frequency(f_(-3dB))of 134 kHz under collimated 530 nm LED irradiation.Finally,a fingerprint image sensor was fabricated by stacking the POTB1-based OPD layer on the organic thin-film transistors(318 ppi).The image contrast caused by the valleys and ridges in the fingerprints was obtained as a digital signal.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
基金funded by the Undergraduate Higher Education Teaching and Research Project(No.FBJY20230216)Research Projects of Putian University(No.2023043)the Education Department of the Fujian Province Project(No.JAT220300).
文摘In recent years,the number of patientswith colon disease has increased significantly.Colon polyps are the precursor lesions of colon cancer.If not diagnosed in time,they can easily develop into colon cancer,posing a serious threat to patients’lives and health.A colonoscopy is an important means of detecting colon polyps.However,in polyp imaging,due to the large differences and diverse types of polyps in size,shape,color,etc.,traditional detection methods face the problem of high false positive rates,which creates problems for doctors during the diagnosis process.In order to improve the accuracy and efficiency of colon polyp detection,this question proposes a network model suitable for colon polyp detection(PD-YOLO).This method introduces the self-attention mechanism CBAM(Convolutional Block Attention Module)in the backbone layer based on YOLOv7,allowing themodel to adaptively focus on key information and ignore the unimportant parts.To help themodel do a better job of polyp localization and bounding box regression,add the SPD-Conv(Symmetric Positive Definite Convolution)module to the neck layer and use deconvolution instead of upsampling.Theexperimental results indicate that the PD-YOLO algorithm demonstrates strong robustness in colon polyp detection.Compared to the original YOLOv7,on the Kvasir-SEG dataset,PD-YOLO has shown an increase of 5.44 percentage points in AP@0.5,showcasing significant advantages over other mainstream methods.
文摘Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact.
文摘Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195)。
文摘With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants.
基金supported by the National Natural Science Foundation of China(No.U21A20290)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011656)+2 种基金the Projects of Talents Recruitment of GDUPT(No.2023rcyj1003)the 2022“Sail Plan”Project of Maoming Green Chemical Industry Research Institute(No.MMGCIRI2022YFJH-Y-024)Maoming Science and Technology Project(No.2023382).
文摘The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health.
文摘The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks.
文摘The rapid rise of cyberattacks and the gradual failure of traditional defense systems and approaches led to using artificial intelligence(AI)techniques(such as machine learning(ML)and deep learning(DL))to build more efficient and reliable intrusion detection systems(IDSs).However,the advent of larger IDS datasets has negatively impacted the performance and computational complexity of AI-based IDSs.Many researchers used data preprocessing techniques such as feature selection and normalization to overcome such issues.While most of these researchers reported the success of these preprocessing techniques on a shallow level,very few studies have been performed on their effects on a wider scale.Furthermore,the performance of an IDS model is subject to not only the utilized preprocessing techniques but also the dataset and the ML/DL algorithm used,which most of the existing studies give little emphasis on.Thus,this study provides an in-depth analysis of feature selection and normalization effects on IDS models built using three IDS datasets:NSL-KDD,UNSW-NB15,and CSE–CIC–IDS2018,and various AI algorithms.A wrapper-based approach,which tends to give superior performance,and min-max normalization methods were used for feature selection and normalization,respectively.Numerous IDS models were implemented using the full and feature-selected copies of the datasets with and without normalization.The models were evaluated using popular evaluation metrics in IDS modeling,intra-and inter-model comparisons were performed between models and with state-of-the-art works.Random forest(RF)models performed better on NSL-KDD and UNSW-NB15 datasets with accuracies of 99.86%and 96.01%,respectively,whereas artificial neural network(ANN)achieved the best accuracy of 95.43%on the CSE–CIC–IDS2018 dataset.The RF models also achieved an excellent performance compared to recent works.The results show that normalization and feature selection positively affect IDS modeling.Furthermore,while feature selection benefits simpler algorithms(such as RF),normalization is more useful for complex algorithms like ANNs and deep neural networks(DNNs),and algorithms such as Naive Bayes are unsuitable for IDS modeling.The study also found that the UNSW-NB15 and CSE–CIC–IDS2018 datasets are more complex and more suitable for building and evaluating modern-day IDS than the NSL-KDD dataset.Our findings suggest that prioritizing robust algorithms like RF,alongside complex models such as ANN and DNN,can significantly enhance IDS performance.These insights provide valuable guidance for managers to develop more effective security measures by focusing on high detection rates and low false alert rates.
文摘In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks.
文摘In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.
基金Modernization of Traditional Chinese Medicine Project of National Key R&D Program of China:The construction of the theoretical system of Traditional Chinese Medicine nonpharmacological therapy based on body surface stimulation(2023YFC3502704)Sichuan Provincial Science and Technology Program Project:Research and Development of Chinese Medicine Intelligent Tongue Diagnosis Equipment for Digestive System Chinese Medicine Advantageous Diseases(2023YFS0327)+2 种基金Research and Development of Chinese Medicine Intelligent Detection System for Intestinal Functions(2024YFFK0044)Research and Application of Chinese Medicine Diagnosis and Treatment Program for Herpes Zoster Treated by Shu Pai Fire Acupuncture(2024YFFK0089)Major Research and Development Project of The China Academy of Chinese Medical Sciences Innovation:Construction and application of the theoretical research mode of Traditional Chinese Medicine diagnosis and treatment of modern diseases(CI2021A00104)。
文摘OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.