Non-hydrostatic stress plays a significant role in shaping the properties of materials under compression.High-pressure effects such as yielding deformation,phase transitions,and volume contraction can alter the pressu...Non-hydrostatic stress plays a significant role in shaping the properties of materials under compression.High-pressure effects such as yielding deformation,phase transitions,and volume contraction can alter the pressure distribution within the pressure chamber.However,due to the inherent size limitation of the diamond anvil cell(DAC),in situ high-pressure studies usually assume a hydrostatic environment,equaling the pressure of samples to a pressure calibrator inside the chamber.Accurately imaging pressure distribution within the DAC chamber remains challenging,particularly as the material undergoes phase transitions.Here,we present a method for mapping pressure distribution with high spatial resolution using wide-field optically detected magnetic resonance(ODMR)of nanodiamonds.The pressure gradients during the highpressure transition of zinc oxide(ZnO)were compared using both the multiple rubies technique and wide-field ODMR.The latter technique demonstrated superior spatial resolution,easier operation,and more detailed information.These results highlight the potential of wide-field ODMR as a powerful tool for precise pressure sensing,particularly in studies involving non-hydrostatic pressure conditions.展开更多
We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total...We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.展开更多
In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps betwe...We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.展开更多
A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby...A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby the hillside are taken for analysing the weather situation. The meteorological parameters air temperature, wind intensity and wind speed, relative humidity, precipitation and snow depth are investigated for similarities short before and during an avalanche. The avalanches are grouped into three categories and meteorological characteristics are found for each category. Thereby the avalanche hazard for the observed hillside is better assessed and an infrastructure safety by avalanche control due to concerted avalanche blasts is more effective. The result of the analysis shows three kinds of hazard weather conditions, which increase the avalanche hazard: warm air temperatures cause a settlement of the snow pack, but in the beginning of the process a weakening in the snow pack happens. Rapidly decreasing of the air temperature cause cracks in the snow pack and the combination of fresh snow and strong wind speed leads to accumulation of snow on sheltered slopes.展开更多
Studies were performed to determine the extent of nuclear DNA degradation induced by iron, iron-ascorbate, or iron-bleomycin under aerobic conditions in a model system using isolated rat liver nuclei. The effects of f...Studies were performed to determine the extent of nuclear DNA degradation induced by iron, iron-ascorbate, or iron-bleomycin under aerobic conditions in a model system using isolated rat liver nuclei. The effects of five antioxidants (catalase, superoxide dismutase, dimethyl sulfoxide, glutathione and diallyl sulfide) on this oxidative nuclear damage were also investigated. At the 0.05 level for statistical significance, iron induced concentration-dependent DNA degradation, and this effect was enhanced by ascorbate and bleomycin. The antioxidants catalase, dimethyl sulfoxide, and diallyl sulfide significantly reduced the iron-ascorbate-induced DNA damage, whereas superoxide dismutase and dimethyl sulfoxide significantly reduced iron-bleomycin-induced damage. Glutathione significantly increased the iron-bleomycin-induced DNA damage. These results suggest that the reactive oxygen species generated by iron, iron-ascorbate, and iron-bleomycin are responsible for the DNA strand breaks in isolated rat liver nuclei.展开更多
Recently, the Bureau of Geology and Mineral Exploration and Development of Guizhou Province detected an about 140 million tons resource in Zheng'an County, 100 million tons of which was bauxite. This is the second de...Recently, the Bureau of Geology and Mineral Exploration and Development of Guizhou Province detected an about 140 million tons resource in Zheng'an County, 100 million tons of which was bauxite. This is the second detected super large-scaled bauxite deposit after the Dazhuyuan bauxite deposit in Wuchuan County.展开更多
Pulmonary arteriovenous fistula (PAVF) is a kind of malformation resulting in the abnormal vessels between pulmonary artery and pulmonary vein. Part of pulmonary arterial blood flows into pulmonary veins through the...Pulmonary arteriovenous fistula (PAVF) is a kind of malformation resulting in the abnormal vessels between pulmonary artery and pulmonary vein. Part of pulmonary arterial blood flows into pulmonary veins through the fistula and then arrives at left atrium, inducing the right-to-left shunt. Moreover, the emboli and bacteria can also flow directly through the PAVF into systemic circulation, which can cause thromboembolic diseases such as stroke.展开更多
We carried out a proof-of-principle demonstration of the reconstruction of a static vector magnetic field involving adjacent three nitrogen-vacancy(NV) sensors with corresponding different NV symmetry axes in a bulk d...We carried out a proof-of-principle demonstration of the reconstruction of a static vector magnetic field involving adjacent three nitrogen-vacancy(NV) sensors with corresponding different NV symmetry axes in a bulk diamond. By means of optical detection of the magnetic resonance(ODMR) techniques, our experiment employs the continuous wave(CW) to monitor resonance frequencies and it extracts the information of the detected field strength and polar angles with respect to each NV frame of reference. Finally, the detected magnetic field relative to a fixed laboratory reference frame was reconstructed from the information acquired by the multi-NV sensor.展开更多
The present letter to the editor is related to the study entitled“Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors.”Not every microorganism grown in samples taken from crit...The present letter to the editor is related to the study entitled“Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors.”Not every microorganism grown in samples taken from critically ill patients can be considered as an infectious agent.Accurate and adequate information about nosocomial infections is essential in introducing effective prevention programs in hospitals.Therefore,the development and implementation of care bundles for frequently used medical devices and invasive treatment devices(e.g.,intravenous catheters and invasive ventilation),adequate staffing not only for physicians,nurses,and other medical staff but also for housekeeping staff,and infection surveillance and motivational feedback are key points of infection prevention in the intensive care unit.展开更多
AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye.METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18 min. An independentl...AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye.METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18 min. An independently designed novel ocular contacttype temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity(PSV), end diastolic velocity(EDV), and resistance index(RI) of each of the central retinal artery(CRA), long posterior ciliary artery(LPCA), and ophthalmic artery(OA), as well as the mean velocity(V_m) of the central retinal vein(CRV), were measured using a color Doppler flow imaging(CDFI) technique and expressed as mean values with standard deviation(mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the V_m of the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future.展开更多
Within today's product development process, various FE-simulations (finite element) for the functional validation of the desired characteristics are made to avoid expensive testing with real components. Those simul...Within today's product development process, various FE-simulations (finite element) for the functional validation of the desired characteristics are made to avoid expensive testing with real components. Those simulations are performed with great effort for discretization, use of simulations conditions, like taking different non-linearities (i.e., material behavior, etc.) into account, to create meaningful results. Despite knowing the effects of deformations occurring during the production processes, always the non-deformed design model of a CAD-system (computer aided design) is used for the FE-simulations. It seems rather doubtful that further refinement of simulation methods makes sense, if the real manufactured geometry of the component is not considered for in the simulation. For an efficient exploit of the potential of simulation methods, an approach has been developed which offers a geometry model for simulation based on the existing CAD-model but with integrated production deviations as soon as a first prototype is at hand by adapting the FE-mesh to the real, 3D surface detected geometry.展开更多
Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a...Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.展开更多
Polycomb group (PcG) proteins were originally identified in Drosophila. They generally maintain gene silencing by forming multimeric complexes. Two main complexes, namely Polycomb repressive complex 2 (PRC2) and P...Polycomb group (PcG) proteins were originally identified in Drosophila. They generally maintain gene silencing by forming multimeric complexes. Two main complexes, namely Polycomb repressive complex 2 (PRC2) and PRC1, have been described. PRC2 methylates histone H3 on lysine 27 (H3K27). PRC1, mainly composed of Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs (Psc) and dRing/Sce, has been shown to directly compact chromatin in vitro.展开更多
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can...Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.展开更多
According to the characteristics of sodar echo,a classified method for temperature stratification is given. By using sodar data observed in Yanshan Mountain area in Beijing,the statistical characteristics for the heig...According to the characteristics of sodar echo,a classified method for temperature stratification is given. By using sodar data observed in Yanshan Mountain area in Beijing,the statistical characteristics for the height of inversion layer,thermal plume,and the depth of mixed layer are compared.Finally,the appearance frequency for stable,unstable and neutral stratification is analyzed.展开更多
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng...Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.展开更多
The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risk...The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risks,including floods and droughts.Recent research associated with the implementation of the Global Monsoons Model Intercomparison Project under the umbrella of CMIP6 has advanced our understanding of its historical variability and driving mechanisms.Observational data reveal a 20th-century shift:increased rainfall pre-1950s,followed by aridification and partial recovery post-1980s,driven by both internal variability(e.g.,Atlantic Multidecadal Oscillation)and external forcings(greenhouse gases,aerosols),while ENSO drives interannual variability through ocean-atmosphere interactions.Future projections under greenhouse forcing suggest long-term monsoon intensification,though regional disparities and model uncertainties persist.Models indicate robust trends but struggle to quantify extremes,where thermodynamic effects(warming-induced moisture rise)uniformly boost heavy rainfall,while dynamical shifts(circulation changes)create spatial heterogeneity.Volcanic eruptions and proposed solar radiation modification(SRM)further complicate predictions:tropical eruptions suppress monsoons,whereas high-latitude events alter cross-equatorial flows,highlighting unresolved feedbacks.The emergent constraint approach is booming in terms of correcting future projections and reducing uncertainty with respect to the global monsoons.Critical challenges remain.Model biases and sparse 20th-century observational data hinder accurate attribution.The interplay between natural variability and anthropogenic forcings,along with nonlinear extreme precipitation risks under warming,demands deeper mechanistic insights.Additionally,SRM’s regional impacts and hemispheric monsoon interactions require systematic evaluation.Addressing these gaps necessitates enhanced observational networks,refined climate models,and interdisciplinary efforts to disentangle multiscale drivers,ultimately improving resilience strategies for monsoon-dependent regions.展开更多
The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests suc...The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions.展开更多
Supported by the Science Fund of the Creative Research Group,the research team led by Prof.Chen Hualan(陈化兰)in Harbin Veterinary Research Institute,Chinese Academy of Agricultural Sciences found that the low pathoge...Supported by the Science Fund of the Creative Research Group,the research team led by Prof.Chen Hualan(陈化兰)in Harbin Veterinary Research Institute,Chinese Academy of Agricultural Sciences found that the low pathogenic H7N9viruses emerging in 2013have mutated to highly pathogenic viruses in chickens and are more dangerous to humans,which was published in Cell Research(2017,doi:10.1038/cr.2017.129).展开更多
基金supported by the National Key R&D Program of China(Grant No.2024YFE0105200)the National Natural Science Foundation of China(Grant Nos.62422408,12374016,12174348,62271450,62027816,12422413,and 62475242).
文摘Non-hydrostatic stress plays a significant role in shaping the properties of materials under compression.High-pressure effects such as yielding deformation,phase transitions,and volume contraction can alter the pressure distribution within the pressure chamber.However,due to the inherent size limitation of the diamond anvil cell(DAC),in situ high-pressure studies usually assume a hydrostatic environment,equaling the pressure of samples to a pressure calibrator inside the chamber.Accurately imaging pressure distribution within the DAC chamber remains challenging,particularly as the material undergoes phase transitions.Here,we present a method for mapping pressure distribution with high spatial resolution using wide-field optically detected magnetic resonance(ODMR)of nanodiamonds.The pressure gradients during the highpressure transition of zinc oxide(ZnO)were compared using both the multiple rubies technique and wide-field ODMR.The latter technique demonstrated superior spatial resolution,easier operation,and more detailed information.These results highlight the potential of wide-field ODMR as a powerful tool for precise pressure sensing,particularly in studies involving non-hydrostatic pressure conditions.
基金funded by the National Natural Science Foundation of China(Grant No.10973026)
文摘We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.
文摘In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11874080 and 11734002)supported as a Simons Investigator by the Simons Foundation (Grant No. 511064)。
文摘We study the spin-1/2 two-dimensional Shastry–Sutherland spin model by exact diagonalization of clusters with periodic boundary conditions, developing an improved level spectroscopic technique using energy gaps between states with different quantum numbers. The crossing points of some of the relative(composite) gaps have much weaker finite-size drifts than the normally used gaps defined only with respect to the ground state, thus allowing precise determination of quantum critical points even with small clusters. Our results support the picture of a spin liquid phase intervening between the well-known plaquette-singlet and antiferromagnetic ground states, with phase boundaries in almost perfect agreement with a recent density matrix renormalization group study, where much larger cylindrical lattices were used [J. Yang et al., Phys. Rev. B 105, L060409(2022)]. The method of using composite low-energy gaps to reduce scaling corrections has potentially broad applications in numerical studies of quantum critical phenomena.
文摘A set of detected avalanches from January to April 2012 on a hillside southeast of lschgl, Austria is given. The avalanches are off-the-cut or caused by blast. The meteorological data of two monitoring stations nearby the hillside are taken for analysing the weather situation. The meteorological parameters air temperature, wind intensity and wind speed, relative humidity, precipitation and snow depth are investigated for similarities short before and during an avalanche. The avalanches are grouped into three categories and meteorological characteristics are found for each category. Thereby the avalanche hazard for the observed hillside is better assessed and an infrastructure safety by avalanche control due to concerted avalanche blasts is more effective. The result of the analysis shows three kinds of hazard weather conditions, which increase the avalanche hazard: warm air temperatures cause a settlement of the snow pack, but in the beginning of the process a weakening in the snow pack happens. Rapidly decreasing of the air temperature cause cracks in the snow pack and the combination of fresh snow and strong wind speed leads to accumulation of snow on sheltered slopes.
文摘Studies were performed to determine the extent of nuclear DNA degradation induced by iron, iron-ascorbate, or iron-bleomycin under aerobic conditions in a model system using isolated rat liver nuclei. The effects of five antioxidants (catalase, superoxide dismutase, dimethyl sulfoxide, glutathione and diallyl sulfide) on this oxidative nuclear damage were also investigated. At the 0.05 level for statistical significance, iron induced concentration-dependent DNA degradation, and this effect was enhanced by ascorbate and bleomycin. The antioxidants catalase, dimethyl sulfoxide, and diallyl sulfide significantly reduced the iron-ascorbate-induced DNA damage, whereas superoxide dismutase and dimethyl sulfoxide significantly reduced iron-bleomycin-induced damage. Glutathione significantly increased the iron-bleomycin-induced DNA damage. These results suggest that the reactive oxygen species generated by iron, iron-ascorbate, and iron-bleomycin are responsible for the DNA strand breaks in isolated rat liver nuclei.
文摘Recently, the Bureau of Geology and Mineral Exploration and Development of Guizhou Province detected an about 140 million tons resource in Zheng'an County, 100 million tons of which was bauxite. This is the second detected super large-scaled bauxite deposit after the Dazhuyuan bauxite deposit in Wuchuan County.
文摘Pulmonary arteriovenous fistula (PAVF) is a kind of malformation resulting in the abnormal vessels between pulmonary artery and pulmonary vein. Part of pulmonary arterial blood flows into pulmonary veins through the fistula and then arrives at left atrium, inducing the right-to-left shunt. Moreover, the emboli and bacteria can also flow directly through the PAVF into systemic circulation, which can cause thromboembolic diseases such as stroke.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11305074,11135002,11804112,and 11275083)the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province,China(Grant No.gxyqZD2017080)+2 种基金the Natural Science Foundation of Anhui Province,China(Grant No.KJHS2015B09)the Open Fund of Anhui Ley Laboratory for Condensed Matter Physics under Extreme Conditions and CAS Key Laboratory of Microscale Magnetic Resonance(Grant No.KLMMR201804)the Fund of Scientific Research Platform of Huangshan University
文摘We carried out a proof-of-principle demonstration of the reconstruction of a static vector magnetic field involving adjacent three nitrogen-vacancy(NV) sensors with corresponding different NV symmetry axes in a bulk diamond. By means of optical detection of the magnetic resonance(ODMR) techniques, our experiment employs the continuous wave(CW) to monitor resonance frequencies and it extracts the information of the detected field strength and polar angles with respect to each NV frame of reference. Finally, the detected magnetic field relative to a fixed laboratory reference frame was reconstructed from the information acquired by the multi-NV sensor.
文摘The present letter to the editor is related to the study entitled“Multidrug-resistant organisms in intensive care units and logistic analysis of risk factors.”Not every microorganism grown in samples taken from critically ill patients can be considered as an infectious agent.Accurate and adequate information about nosocomial infections is essential in introducing effective prevention programs in hospitals.Therefore,the development and implementation of care bundles for frequently used medical devices and invasive treatment devices(e.g.,intravenous catheters and invasive ventilation),adequate staffing not only for physicians,nurses,and other medical staff but also for housekeeping staff,and infection surveillance and motivational feedback are key points of infection prevention in the intensive care unit.
基金Supported by the National Natural Science Funds for Young Scholar(No.81400394)Heilongjiang Province Science Foundation for Youths(No.QC08C97)Research Fund for the Doctoral Program of the Second Affiliated Hospital of Harbin Medical University(No.BS2008-23)
文摘AIM: To investigate the ocular hemodynamic effects of applying a hot compress to the eye.METHODS: The right eyes of five New Zealand white rabbits, both male and female, were hot-compressed for 18 min. An independently designed novel ocular contacttype temperature measuring device was used to measure the ocular surface temperature before and after the heating. Relevant retrobulbar hemodynamic parameters such as peak systolic velocity(PSV), end diastolic velocity(EDV), and resistance index(RI) of each of the central retinal artery(CRA), long posterior ciliary artery(LPCA), and ophthalmic artery(OA), as well as the mean velocity(V_m) of the central retinal vein(CRV), were measured using a color Doppler flow imaging(CDFI) technique and expressed as mean values with standard deviation(mean±SD). A statistical analysis was conducted based on a paired t-test and the Wilcoxon signed-rank test. RESULTS: The employed real-time temperature measuring device was able to accurately measure ocular surface temperature during the hot-compress process. The temperature increased after the hot compress was applied. Analysis showed that the PSV and EDV values of the CRA and LPCA significantly increased after the application of the hot compress, as did the V_m of the CRV. There were no significant changes in the EDV of the OA nor the RI of each artery. CONCLUSION: This experiment, which is the first of its kind, confirms that the retrobulbar blood flow velocities can increase upon heating the ocular surface. This simple method may be useful in the future.
文摘Within today's product development process, various FE-simulations (finite element) for the functional validation of the desired characteristics are made to avoid expensive testing with real components. Those simulations are performed with great effort for discretization, use of simulations conditions, like taking different non-linearities (i.e., material behavior, etc.) into account, to create meaningful results. Despite knowing the effects of deformations occurring during the production processes, always the non-deformed design model of a CAD-system (computer aided design) is used for the FE-simulations. It seems rather doubtful that further refinement of simulation methods makes sense, if the real manufactured geometry of the component is not considered for in the simulation. For an efficient exploit of the potential of simulation methods, an approach has been developed which offers a geometry model for simulation based on the existing CAD-model but with integrated production deviations as soon as a first prototype is at hand by adapting the FE-mesh to the real, 3D surface detected geometry.
文摘Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.
文摘Polycomb group (PcG) proteins were originally identified in Drosophila. They generally maintain gene silencing by forming multimeric complexes. Two main complexes, namely Polycomb repressive complex 2 (PRC2) and PRC1, have been described. PRC2 methylates histone H3 on lysine 27 (H3K27). PRC1, mainly composed of Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs (Psc) and dRing/Sce, has been shown to directly compact chromatin in vitro.
文摘Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.
文摘According to the characteristics of sodar echo,a classified method for temperature stratification is given. By using sodar data observed in Yanshan Mountain area in Beijing,the statistical characteristics for the height of inversion layer,thermal plume,and the depth of mixed layer are compared.Finally,the appearance frequency for stable,unstable and neutral stratification is analyzed.
文摘Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0608904)the International Partnership Program of the Chinese Academy of Sciences(Grant Nos.060GJHZ2023079GC and 134111KYSB20160031)+1 种基金supported by the Office of Science,U.S.Department of Energy(DOE)Biological and Environmental Research as part of the Regional and Global Model Analysis program area through the Water Cycle and Climate Extremes Modeling(WACCEM)scientific focus areaoperated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830。
文摘The global monsoon system,encompassing the Asian-Australian,African,and American monsoons,sustains two-thirds of the world’s population by regulating water resources and agriculture.Monsoon anomalies pose severe risks,including floods and droughts.Recent research associated with the implementation of the Global Monsoons Model Intercomparison Project under the umbrella of CMIP6 has advanced our understanding of its historical variability and driving mechanisms.Observational data reveal a 20th-century shift:increased rainfall pre-1950s,followed by aridification and partial recovery post-1980s,driven by both internal variability(e.g.,Atlantic Multidecadal Oscillation)and external forcings(greenhouse gases,aerosols),while ENSO drives interannual variability through ocean-atmosphere interactions.Future projections under greenhouse forcing suggest long-term monsoon intensification,though regional disparities and model uncertainties persist.Models indicate robust trends but struggle to quantify extremes,where thermodynamic effects(warming-induced moisture rise)uniformly boost heavy rainfall,while dynamical shifts(circulation changes)create spatial heterogeneity.Volcanic eruptions and proposed solar radiation modification(SRM)further complicate predictions:tropical eruptions suppress monsoons,whereas high-latitude events alter cross-equatorial flows,highlighting unresolved feedbacks.The emergent constraint approach is booming in terms of correcting future projections and reducing uncertainty with respect to the global monsoons.Critical challenges remain.Model biases and sparse 20th-century observational data hinder accurate attribution.The interplay between natural variability and anthropogenic forcings,along with nonlinear extreme precipitation risks under warming,demands deeper mechanistic insights.Additionally,SRM’s regional impacts and hemispheric monsoon interactions require systematic evaluation.Addressing these gaps necessitates enhanced observational networks,refined climate models,and interdisciplinary efforts to disentangle multiscale drivers,ultimately improving resilience strategies for monsoon-dependent regions.
文摘The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions.
文摘Supported by the Science Fund of the Creative Research Group,the research team led by Prof.Chen Hualan(陈化兰)in Harbin Veterinary Research Institute,Chinese Academy of Agricultural Sciences found that the low pathogenic H7N9viruses emerging in 2013have mutated to highly pathogenic viruses in chickens and are more dangerous to humans,which was published in Cell Research(2017,doi:10.1038/cr.2017.129).