期刊文献+
共找到247,042篇文章
< 1 2 250 >
每页显示 20 50 100
Neutron observations from the energetic particle detector on China's Space Station
1
作者 GuoHong Shen DongHui Hou +5 位作者 Yuan Chang XianGuo Zhang HuanXin Zhang Bin Yuan BinQuan Zhang Ying Sun 《Earth and Planetary Physics》 2025年第2期460-466,共7页
The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orb... The energetic particle detector on China's space station can determine the energy, flux, and direction of medium-and highenergy protons, electrons, heavy ions, and neutrons within the path of the station's orbit. It also assesses the linear energy transfer(LET)spectra and radiation dose rates generated by these particles. Neutron detection is a significant component of this work, utilizing a new type of Cs_(2)LiYCl_(6): Ce scintillator material along with plastic scintillators as sensors. In-orbit testing has demonstrated the efficient identification of space neutrons and gamma rays(n/γ). This data plays a crucial role in supporting manned space engineering, scientific research, and other related fields. 展开更多
关键词 China's space station energy particle detector neutron detection heavy ion detection radiation effect detection
在线阅读 下载PDF
MARIE:One-Stage Object Detection Mechanism for Real-Time Identifying of Firearms 被引量:1
2
作者 Diana Abi-Nader Hassan Harb +4 位作者 Ali Jaber Ali Mansour Christophe Osswald Nour Mostafa Chamseddine Zaki 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期279-298,共20页
Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable... Security and safety remain paramount concerns for both governments and individuals worldwide.In today’s context,the frequency of crimes and terrorist attacks is alarmingly increasing,becoming increasingly intolerable to society.Consequently,there is a pressing need for swift identification of potential threats to preemptively alert law enforcement and security forces,thereby preventing potential attacks or violent incidents.Recent advancements in big data analytics and deep learning have significantly enhanced the capabilities of computer vision in object detection,particularly in identifying firearms.This paper introduces a novel automatic firearm detection surveillance system,utilizing a one-stage detection approach named MARIE(Mechanism for Realtime Identification of Firearms).MARIE incorporates the Single Shot Multibox Detector(SSD)model,which has been specifically optimized to balance the speed-accuracy trade-off critical in firearm detection applications.The SSD model was further refined by integrating MobileNetV2 and InceptionV2 architectures for superior feature extraction capabilities.The experimental results demonstrate that this modified SSD configuration provides highly satisfactory performance,surpassing existing methods trained on the same dataset in terms of the critical speedaccuracy trade-off.Through these innovations,MARIE sets a new standard in surveillance technology,offering a robust solution to enhance public safety effectively. 展开更多
关键词 Firearm and gun detection single shot multi-box detector deep learning one-stage detector MobileNet INCEPTION convolutional neural network
在线阅读 下载PDF
Advances in integrated polarization detectors with innovative features
3
作者 BU Yong-Hao ZHOU Jing +8 位作者 DENG Jie WANG Ruo-Wen YE Tao SHI Meng-Die HUANG Jun-Wei ZHANG Yu-Jie NING Jun LU Wei CHEN Xiao-Shuang 《红外与毫米波学报》 北大核心 2025年第3期371-383,共13页
The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How... The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors. 展开更多
关键词 integrated polarization detector infinite polarization extinction ratio polarization state change detection full-Stokes multidimensional detection
在线阅读 下载PDF
Development prospects of residual stress detection methods
4
作者 Xin LI Hanjun GAO Qiong WU 《Chinese Journal of Aeronautics》 2025年第7期601-603,共3页
In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At prese... In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range. 展开更多
关键词 residual stress flight safety reliability detection methods optimization traditional detection technology residual stress detection methods service performance evaluation IMPROVEMENT stress control
原文传递
Tailoring a Back-Contact Barrier for a Self-Powered Broadband Kesterite Photodetector With Ultralow Dark Current Enabling Ultra-Weak-Light Detection
5
作者 Qianfeng Wu Chuanhao Li +7 位作者 Shuo Chen Zhenghua Su Muhammad Abbas Chao Chen Qianqian Lin Jingting Luo Liming Ding Guangxing Liang 《Carbon Energy》 2025年第5期35-44,共10页
Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by hig... Visible and near-infrared photodetectors are widely used in intelligent driving,health monitoring,and other fields.However,the application of photodetectors in the near-infrared region is significantly impacted by high dark current,which can greatly reduce their performance and sensitivity,thereby limiting their effectiveness in certain applications.In this work,the introduction of a C60 back interface layer successfully mitigated back interface reactions to decrease the thickness of the Mo(S,Se)_(2)layer,tailoring the back-contact barrier and preventing reverse charge injection,resulting in a kesterite photodetector with an ultralow dark current density of 5.2×10^(-9)mA/cm^(2)and ultra-weak-light detection at levels as low as 25 pW/cm^(2).Besides,under a self-powered operation,it demonstrates outstanding performance,achieving a peak responsivity of 0.68 A/W,a wide response range spanning from 300 to 1600 nm,and an impressive detectivity of 5.27×10^(14)Jones.In addition,it offers exceptionally rapid response times,with rise and decay times of 70 and 650 ns,respectively.This research offers important insights for developing high-performance self-powered near-infrared photodetectors that have high responsivity,rapid response times,and ultralow dark current. 展开更多
关键词 detectIVITY KESTERITE PHOTOdetectOR thin film weak light detection
在线阅读 下载PDF
YOLO-S3DT:A Small Target Detection Model for UAV Images Based on YOLOv8
6
作者 Pengcheng Gao Zhenjiang Li 《Computers, Materials & Continua》 2025年第3期4555-4572,共18页
The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photograp... The application of deep learning for target detection in aerial images captured by Unmanned Aerial Vehicles(UAV)has emerged as a prominent research focus.Due to the considerable distance between UAVs and the photographed objects,coupled with complex shooting environments,existing models often struggle to achieve accurate real-time target detection.In this paper,a You Only Look Once v8(YOLOv8)model is modified from four aspects:the detection head,the up-sampling module,the feature extraction module,and the parameter optimization of positive sample screening,and the YOLO-S3DT model is proposed to improve the performance of the model for detecting small targets in aerial images.Experimental results show that all detection indexes of the proposed model are significantly improved without increasing the number of model parameters and with the limited growth of computation.Moreover,this model also has the best performance compared to other detecting models,demonstrating its advancement within this category of tasks. 展开更多
关键词 Target detection UAV images detection small target detection YOLO
在线阅读 下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
7
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view
8
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing Object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
Drone-based superconducting nanowire single-photon detection system with a detection efficiency of more than 90%
9
作者 Ruoyan Ma Zhimin Guo +11 位作者 Dai Chen Xiaojun Dai You Xiao Chengjun Zhang Jiamin Xiong Jia Huang Xingyu Zhang Xiaoyu Liu Liangliang Rong Hao Li Xiaofu Zhang Lixing You 《Advanced Photonics Nexus》 2025年第2期25-30,共6页
Conventional superconducting nanowire single-photon detectors(SNSPDs)have been typically limited in their applications due to their size,weight,and power consumption,which confine their use to laboratory settings.Howe... Conventional superconducting nanowire single-photon detectors(SNSPDs)have been typically limited in their applications due to their size,weight,and power consumption,which confine their use to laboratory settings.However,with the rapid development of remote imaging,sensing technologies,and long-range quantum communication with fewer topographical constraints,the demand for high-efficiency single-photon detectors integrated with avionic platforms is rapidly growing.We herein designed and manufactured the first drone-based SNSPD system with a system detection efficiency(SDE)as high as 91.8%.This drone-based system incorporates high-performance NbTiN SNSPDs,a self-developed miniature liquid helium dewar,and custom-built integrated electrical setups,making it capable of being launched in complex topographical conditions.Such a drone-based SNSPD system may open the use of SNSPDs for applications that demand high SDE in complex environments. 展开更多
关键词 superconducting nanowire single-photon detector drone-based single-photon detection system high system detection efficiency dark count rate
在线阅读 下载PDF
An Ultralytics YOLOv8-Based Approach for Road Detection in Snowy Environments in the Arctic Region of Norway 被引量:2
10
作者 Aqsa Rahim Fuqing Yuan Javad Barabady 《Computers, Materials & Continua》 2025年第6期4411-4428,共18页
In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,par... In recent years,advancements in autonomous vehicle technology have accelerated,promising safer and more efficient transportation systems.However,achieving fully autonomous driving in challenging weather conditions,particularly in snowy environments,remains a challenge.Snow-covered roads introduce unpredictable surface conditions,occlusions,and reduced visibility,that require robust and adaptive path detection algorithms.This paper presents an enhanced road detection framework for snowy environments,leveraging Simple Framework forContrastive Learning of Visual Representations(SimCLR)for Self-Supervised pretraining,hyperparameter optimization,and uncertainty-aware object detection to improve the performance of YouOnly Look Once version 8(YOLOv8).Themodel is trained and evaluated on a custom-built dataset collected from snowy roads in Tromsø,Norway,which covers a range of snow textures,illumination conditions,and road geometries.The proposed framework achieves scores in terms of mAP@50 equal to 99%and mAP@50–95 equal to 97%,demonstrating the effectiveness of YOLOv8 for real-time road detection in extreme winter conditions.The findings contribute to the safe and reliable deployment of autonomous vehicles in Arctic environments,enabling robust decision-making in hazardous weather conditions.This research lays the groundwork for more resilient perceptionmodels in self-driving systems,paving the way for the future development of intelligent and adaptive transportation networks. 展开更多
关键词 Autonomous vehicles self-driving vehicles road detection snow-covered roads YOLOv8 road detection using segmentation
在线阅读 下载PDF
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:2
11
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 Machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
12
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Flatness detection method of splicing detector based on channel spectral dispersion
13
作者 ZHAO Hong-chao ZHANG Xiao-qian AN Qi-chang 《中国光学(中英文)》 北大核心 2025年第4期889-898,共10页
For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchma... For segmented detectors,surface flatness is critical as it directly influences both energy resolution and image clarity.Additionally,the limited adjustment range of the segmented detectors necessitates precise benchmark construction.This paper proposes an architecture for detecting detector flatness based on channel spectral dispersion.By measuring the dispersion fringes for coplanar adjustment,the final adjustment residual is improved to better than 300 nm.This result validates the feasibility of the proposed technology and provides significant technical support for the development of next-generation large-aperture sky survey equipment. 展开更多
关键词 large aperture telescope segmented detector surface wavefront detection channel spectral dispersion
在线阅读 下载PDF
Evaluation of On-Vehicle Bone-Conduct Acoustic Emission Detection for Rail Defects
14
作者 Lei Jia Jee Woong Park +2 位作者 Ming Zhu Yingtao Jiang Hualiang Teng 《Journal of Transportation Technologies》 2025年第1期95-121,共27页
Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,... Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches. 展开更多
关键词 Railroad Infrastructure Rail Defect detection Rail Health Monitoring Wavelet Analysis Acoustic Emission detection
在线阅读 下载PDF
Enhancing Fire Detection with YOLO Models:A Bayesian Hyperparameter Tuning Approach
15
作者 Van-Ha Hoang Jong Weon Lee Chun-Su Park 《Computers, Materials & Continua》 2025年第6期4097-4116,共20页
Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,ha... Fire can cause significant damage to the environment,economy,and human lives.If fire can be detected early,the damage can be minimized.Advances in technology,particularly in computer vision powered by deep learning,have enabled automated fire detection in images and videos.Several deep learning models have been developed for object detection,including applications in fire and smoke detection.This study focuses on optimizing the training hyperparameters of YOLOv8 andYOLOv10models usingBayesianTuning(BT).Experimental results on the large-scale D-Fire dataset demonstrate that this approach enhances detection performance.Specifically,the proposed approach improves the mean average precision at an Intersection over Union(IoU)threshold of 0.5(mAP50)of the YOLOv8s,YOLOv10s,YOLOv8l,and YOLOv10lmodels by 0.26,0.21,0.84,and 0.63,respectively,compared tomodels trainedwith the default hyperparameters.The performance gains are more pronounced in larger models,YOLOv8l and YOLOv10l,than in their smaller counterparts,YOLOv8s and YOLOv10s.Furthermore,YOLOv8 models consistently outperform YOLOv10,with mAP50 improvements of 0.26 for YOLOv8s over YOLOv10s and 0.65 for YOLOv8l over YOLOv10l when trained with BT.These results establish YOLOv8 as the preferred model for fire detection applications where detection performance is prioritized. 展开更多
关键词 Fire detection smoke detection deep learning YOLO Bayesian hyperparameter tuning hyperparameter optimization Optuna
在线阅读 下载PDF
NADSA:A Novel Approach for Detection of Sinkhole Attacks Based on RPL Protocol in 6LowPAN Network
16
作者 Atena Shiranzaei Emad Alizadeh +2 位作者 Mahdi Rabbani Sajjad Bagheri Baba Ahmadi Mohsen Tajgardan 《Computers, Materials & Continua》 2025年第9期5381-5402,共22页
The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other a... The sinkhole attack is one of the most damaging threats in the Internet of Things(IoT).It deceptively attracts neighboring nodes and initiates malicious activity,often disrupting the network when combined with other attacks.This study proposes a novel approach,named NADSA,to detect and isolate sinkhole attacks.NADSA is based on the RPL protocol and consists of two detection phases.In the first phase,the minimum possible hop count between the sender and receiver is calculated and compared with the sender’s reported hop count.The second phase utilizes the number of DIO messages to identify suspicious nodes and then applies a fuzzification process using RSSI,ETX,and distance measurements to confirm the presence of a malicious node.The proposed method is extensively simulated in highly lossy and sparse network environments with varying numbers of nodes.The results demonstrate that NADSA achieves high efficiency,with PDRs of 68%,70%,and 73%;E2EDs of 81,72,and 60 ms;TPRs of 89%,83%,and 80%;and FPRs of 24%,28%,and 33%.NADSA outperforms existing methods in challenging network conditions,where traditional approaches typically degrade in effectiveness. 展开更多
关键词 Internet of Things security RPL intrusion detection sinkhole attack detection RSSI
在线阅读 下载PDF
DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s
17
作者 Honglin Wang Yaolong Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第5期1929-1949,共21页
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp... UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks. 展开更多
关键词 YOLOv8 UAV-based object detection AFPN small-object detection head SPPELAN DualConv loss function
在线阅读 下载PDF
Research Progress on Detection Technologies for Pseudomonas Aeruginosa
18
作者 Yangke Wang Dong Liu +2 位作者 Junjie Liu Baojun Yu Lingzi Yang 《Asia Pacific Journal of Clinical Medical Research》 2025年第3期49-57,共9页
Pseudomonas aeruginosa is an opportunistic pathogen widely distributed in the natural environment,which can cause a variety of infections,especially in people with low immunity and high pathogenicity.In recent years,s... Pseudomonas aeruginosa is an opportunistic pathogen widely distributed in the natural environment,which can cause a variety of infections,especially in people with low immunity and high pathogenicity.In recent years,significant progress has been made in the detection technology of Pseudomonas aeruginosa,covering traditional methods,molecular biology techniques,immunological methods and automated detection systems.Traditional methods such as the national standard method and the filter membrane method are easy to operate,but have the problems of long time consuming and limited sensitivity.Molecular biological techniques(such as PCR,gene cloning)and immunological methods(such as ELISA,colloidal gold immunochromatography)have significantly improved the sensitivity and specificity of detection,but they require high equipment and technology,and are expensive.Automated detection systems,such as VITEK 2 Compact and AutoMS 1000 mass spectrometry identification system,are excellent in improving detection efficiency and accuracy,but their high cost and complex operation process limit their wide application.In addition,the resistance of Pseudomonas aeruginosa to bacteriostatic agents further increases the difficulty of detection.In this paper,the development and application of immunological detection technology,molecular biological technology and immunological technology of Pseudomonas aeruginosa were reviewed,and the principles,advantages,disadvantages and research progress of various detection technologies of Pseudomonas aeruginosa were described,and the future development trend was prospected,in order to provide reference for the optimization and development of detection methods of Pseudomonas aeruginosa. 展开更多
关键词 Pseudomonas Aeruginosa detection Technology Molecular Biology IMMUNOLOGY Automated detection
暂未订购
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
19
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
SSANet-Based Lightweight and Efficient Crop Disease Detection
20
作者 Hao Sun Di Cai Dae-Ki Kang 《Computers, Materials & Continua》 2025年第10期1675-1692,共18页
Accurately identifying crop pests and diseases ensures agricultural productivity and safety.Although current YOLO-based detection models offer real-time capabilities,their conventional convolutional layers involve hig... Accurately identifying crop pests and diseases ensures agricultural productivity and safety.Although current YOLO-based detection models offer real-time capabilities,their conventional convolutional layers involve high computational redundancy and a fixed receptive field,making it challenging to capture local details and global semantics in complex scenarios simultaneously.This leads to significant issues like missed detections of small targets and heightened sensitivity to background interference.To address these challenges,this paper proposes a lightweight adaptive detection network—StarSpark-AdaptiveNet(SSANet),which optimizes features through a dual-module collaborative mechanism.Specifically,the StarNet module utilizes Depthwise separable convolutions(DW-Conv)and dynamic star operations to establish multi-stage feature extraction pathways,enhancing local detail perception within a lightweight framework.Moreover,the Multi-scale Adaptive Spatial Attention Gate(MASAG)module integrates cross-layer feature fusion and dynamic weight allocation to capture multi-scale global contextual information,effectively suppressing background noise.These modules jointly form a“local enhancement-global calibration”bidirectional optimization mechanism,significantly improving the model’s adaptability to complex disease patterns.Furthermore,the proposed Scale-based Dynamic Loss(SD Loss)dynamically adjusts the weight of scale and localization losses,improving regression stability and localization accuracy,especially for small targets.Experiments on the eggplant fruit disease dataset demonstrate that SSANet achieves an mAP50 of 83.9%and a detection speed of 273.5 FPS with only 2.11 M parameters and 5.1 GFLOPs computational cost,outperforming the baseline YOLO11 model by reducing parameters by 18.1%,increasing mAP50 by 1.3%,and improving inference speed by 9.1%.Ablation studies further confirm the effectiveness and complementarity of the modules.SSANet offers a high-accuracy,low-cost solution suitable for real-time pest and disease detection in crops,facilitating edge device deployment and promoting precision agriculture. 展开更多
关键词 Crop disease detection lightweight network adaptive attention scale-based loss YOLO real-time detection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部