Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
This paper seeks to optimize parameters, reduce the cost of desulphurization and the consumption of operation about KR pretreatment of hot metal at the Stainless Steel Company, Baosteel Group. Based on the theoretical...This paper seeks to optimize parameters, reduce the cost of desulphurization and the consumption of operation about KR pretreatment of hot metal at the Stainless Steel Company, Baosteel Group. Based on the theoretical analysis of physical chemistry in metallurgy, simulation experiments of the KR desulphurization of hot metal were conducted in a laboratory and the composition of the desulphurization was optimized, by means of chemical analysis, DSC, SEM and EDS. The water modeling displays the fluid flow characteristics of KR desulphurization. Combination of the techniques and production at the Stainless Steel Company, Baosteel Group, the optimized parameters of the process are put forward.展开更多
The experimental results of flue gas desulphurization with caustic lime andhydrated lime activated by water spraying in a desulphurization reactor are presented. The effectsof Ca/S molar ratio, approach to saturation ...The experimental results of flue gas desulphurization with caustic lime andhydrated lime activated by water spraying in a desulphurization reactor are presented. The effectsof Ca/S molar ratio, approach to saturation of flue gas, SO_2 concentration and gas velocity onsulfur retention efficiency and calcium utilization rate are investigated. Desulphurizationcharacteristics of the two sorbents are compared. The mechanism of improving desulphurizationefficiency by water spraying is analyzed. The results show that the activities of two sorbents areimproved obviously by humidification with water spray and the caustic lime has better applicationprospect because of cheaper cost.展开更多
To obtain a better desulphurization effect in hot metal, suitable desulfurizers should be selected first according to thermodynamics. However, the effect of desulphurization is also strongly affected by kinetics. The ...To obtain a better desulphurization effect in hot metal, suitable desulfurizers should be selected first according to thermodynamics. However, the effect of desulphurization is also strongly affected by kinetics. The conditions of different desulfurizers (Mg, CaC2, and lime) penetrating into hot metal, the rising up velocity in iron melt, residence time, and dissolving time are theoretically calculated and analyzed. The results are helpful to select the desulphurization process and equipment and to improve the desulphurization effect.展开更多
The contrast experiment of different stirring modes,which includes a new type of stirring-injection with the method of pulse and rotation,and the initial one-way stirring method,is done through physical simulation in ...The contrast experiment of different stirring modes,which includes a new type of stirring-injection with the method of pulse and rotation,and the initial one-way stirring method,is done through physical simulation in the laboratory.The stirring methods of pulse and rotation are of two kinds.One is pulsed and rotary stirrer with positive and opposite directions.The other is pulsed and rotary stirrer with rotation-stop-rotation.The results show that the stirring mode of pulse and rotation has better effects than the one-way stirring method.The specific effects are that the mixing time of the melting bath is apparently shortened,the number of grains involved in the liquid surface is increased,and the residence time of air bubble in water is doubled.展开更多
The process of lignite desulphurization via its treatment by an oxidant(air or air–steam mixture)has been studied.The research objective was useful determination of steam application in oxidative lignite desulphuriza...The process of lignite desulphurization via its treatment by an oxidant(air or air–steam mixture)has been studied.The research objective was useful determination of steam application in oxidative lignite desulphurization.It has been proved that the water steam should be included in the oxidant composition to increase the hydrogen sulphide and combustible constituent content in the gases obtained during the processes under research.The impact of factors which affect the reactions between solid(in our case–lignite)and gaseous reagent(oxidant,i.e.air and or air–steam mixture)upon the research process has been investigated,if these reactions occur in the kinetic area.Such factors are linear rate of oxidant movement and coal grain size.The values of oxidant movement linear rate and coal grain size,which the reaction transfer from pyrite sulphur and organic content of lignite from diffusion into kinetic area occurs by,have been determined.Under these‘‘transfer’’conditions,the values of coefficients of oxidant mass transfer(β,m/s)as well as Sherwood criteria and boiling layer differences have been calculated.展开更多
Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adso...Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.展开更多
Aimed at the problem of short life of mixing head in KR mechanical mixing method for desulfurization of hot metal,a new type of mixing stir was proposed.CFD theory was used to simulate the characteristics of the fluid...Aimed at the problem of short life of mixing head in KR mechanical mixing method for desulfurization of hot metal,a new type of mixing stir was proposed.CFD theory was used to simulate the characteristics of the fluid flow for the new type of stirring vessel of water model for KR mechanical desulfurization.Flow characteristics and structures of the flow field were investigated and compared with the traditional cross-flow type.The results show that the new type of impeller can not only improve the defects of the flow caused by stir structure of the traditional type,but also reduce the separation of mixing zone in the stirred tank and make the flow field more uniform to make the desulfurization more fully, thus shortening the mixing time,and improving the life of mixing head.Numerical simulation method has been proven to be sound by comparing with the experimental ones.展开更多
The oxidative desulphurization process of coal with different metamorphism degrees treated by an air-steam mixture has been studied.It has been shown that the pyrite present in black coal and anthracite is oxidized wi...The oxidative desulphurization process of coal with different metamorphism degrees treated by an air-steam mixture has been studied.It has been shown that the pyrite present in black coal and anthracite is oxidized with the sulphur dioxide formation,and the process chemical mechanism does not depend on the quality of organic matter.The medium-metamorphized coal,capable of turning into a plastic state and cake in the range of investigated temperatures(350~450 ℃),is desulphurized with the greatest difficulty.The chemical mechanism dealing with the transformations of pyritic sulphur present in brown coal differs from similar processes taking place in black coal and anthracite,because FeS2 is converted with hydrogen sulphide formation at desulphurization.展开更多
The influence of main characteristics upon conversion directions of the lignite organic part during its oxidation desulphurization was studied. The optimum temperature values, the ratio oxidant : raw material, and ti...The influence of main characteristics upon conversion directions of the lignite organic part during its oxidation desulphurization was studied. The optimum temperature values, the ratio oxidant : raw material, and time of coal stay in the reaction zone, which provide the maximum degree of sulphur conversion and hydrogen sulphide content in desulphur- ization gases, were calculated. The process implemented under these conditions will decrease environment pollution by sulphur dioxide during further lignite burning at least to 55 %-60 % and utilize sulphur in coal in the form of desul- phurization gases with hydrogen sulphide content of 7 %. Such obtaining sulphur. The effect of the above three factors on the depth was studied. gases can be reprocessed by the known methods of and character of the coal organic matter transformation展开更多
In order to make the slag from desulphurization and slag skimming(SDSS)to be comprehensively recycled and utilized,a combined process of beneficiation and building materials preparation was proposed to recover iron fr...In order to make the slag from desulphurization and slag skimming(SDSS)to be comprehensively recycled and utilized,a combined process of beneficiation and building materials preparation was proposed to recover iron from SDSS,meanwhile to apply the remaining slag tailings as cement admixture.From this process,three iron-rich products were recovered in stages by clean gravity-magnetic separation,slag tailings were left.Slag powder was prepared by ultrafine grinding of slag tailings.The stability,setting time and cement mortar strength of the slag tailings cements(STC)which were mixed with Portland cement and slag powder were studied respectively.The results showed that a proper overall performance still could be obtained at the slag powder content of 30%.Chemical composition analysis,X-ray diffraction(XRD)analysis,metallographic microscope and scanning electron microscope(SEM)analysis were employed to assess the characteristics of the SDSS and the products obtained from the whole process.The results indicated that the three iron-rich products could be used as a raw material for steelmaking and ironmaking and the relatively large amount of calcium silicate(C_(2)S)and tricalcium silicate(C_(3)S)in the slag tailings make the addition of slag powder into the Portland cement feasible.展开更多
The variation of S content during VIM refining Ni-base superalloy using CaO crucible was studied. It was foundthat the desulphurization process could not be carried out by only using CaO crucible. The role of Al addit...The variation of S content during VIM refining Ni-base superalloy using CaO crucible was studied. It was foundthat the desulphurization process could not be carried out by only using CaO crucible. The role of Al additionto desulphurization was also studied. Combining with the results of XRD and composition analysis of the CaOcrucible, the mechanism of desulphurization was proposed. Thermodynamical calculation about the reaction betweenthe interface of CaO crucible and liquid metal has been discussed. This work indicated that under proper refiningtechnology the S content in the liquid Ni-base alloy could be reduced from 3×10-5 to 2×10-6~4×10-6.展开更多
The influence of various water soluble cations(K^+,Na^+,Ca^2+,Mg^2+)on the hydration of calcined flue gas desulphurization gypsum was investigated.The results show that all cations but Ca^2+can accelerate the hydratio...The influence of various water soluble cations(K^+,Na^+,Ca^2+,Mg^2+)on the hydration of calcined flue gas desulphurization gypsum was investigated.The results show that all cations but Ca^2+can accelerate the hydration of bassanite.The final crystal size is not largely influenced by different salts,except for Na^+,where the giant crystal with length of>130μm is observed.Current study clarifies the influence of different ions on the hydration of bassanite,which could provide sufficient guide for the pre-treatment of original flue gas desulphurization gypsum before actual application.展开更多
Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hiera...Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.展开更多
Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon...Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon content and large particle size (>45μm).But it is thought that the rejected ash may have potential uses in chemical stabilization/solidification (S/S) processes which need relatively lower strengths and a lower chemical reactivity.Flue Gas Desulphurisation (FGD) sludge is a by-product of air pollution control equipment in coal fired power plants whose chemical composition is mainly gypsum.As there is no effective usage of both of these two materials,it is of interest to research on the possible activation of rFA using FGD.This paper presents experimental results of a study on the properties of rFA activated by the FGD in rFA-cement pastes.Different percentages of FGD were added into the mix to study the effects of the FGD on the reaction of the rFA blended cement pastes.The results show that FGD takes effect as an activator only at late curing ages.Adding Ca(OH) 2 enhances the effect of FGD on activating the hydration of rFA.Also,10% FGD by weight of rFA is the optimal addition in the rFA-cement pastes.The results of the compressive strength measurements correlate well with the porosity results.展开更多
The characteristics of the desulphurized gypsum produced in the flue gas desulphurization (FGD) process of the Baosteel sintering plant are investigated in this study. According to the technical and quality requirem...The characteristics of the desulphurized gypsum produced in the flue gas desulphurization (FGD) process of the Baosteel sintering plant are investigated in this study. According to the technical and quality requirements of gypsum in the cement industry ,the feasibility of using desulphurized gypsum as a cement retarder is also studied. The results show that desulphurized gypsum can be used as a cement retarder instead of natural gypsum.展开更多
The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out.For pre-treatment of hot metal,both desulphurization and dephos...The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out.For pre-treatment of hot metal,both desulphurization and dephosphorization are improved with the increase of CaO in slag,but deteriorated with the increase of CaF2 in slag.The average desulphurization and dephosphorization rate is 68.83 % and 78.46 %,respectively.For molten steel,the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization.The desulphurization and dephosphorization rate is higher than 90% and 50% respectively with the lowest final sulfur and phosphorus mass percent being 0.001 2% and 0.010%,respectively.The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.展开更多
The study reviews the process of oxidative desulphurization of high-sulphur Ukrainian lignite, which was performed by coal treatment using an air or air-steam mixture. In the process. sulphur-free fuel and tar from th...The study reviews the process of oxidative desulphurization of high-sulphur Ukrainian lignite, which was performed by coal treatment using an air or air-steam mixture. In the process. sulphur-free fuel and tar from the decomposition of coal organic matter was obtained. Hence, the sulphur in the coal was converted inlo hydrogen sulphide. The coal desulphurization process is critical to power generatio n. power generation and technology, and tech no logy field of application. The coal desulphurization process ensures the maximum recovery of the highest content of sulphur and hydrogen sulphide (H2S) in desulphurized gases at minimal energy costs. The process also enhances the maximum decomposition of tar and sulphur recovery (> 50%) during coal power generation. Based on smnniarized field studies, a block schematic diagram coupled with heat and material balances of the process was developed for the calculations. The application of the tech no logy at the first stage of coal combustion in thermal power plants will en able the utilizatio n of over 50% of recovered coal sulphur in the form of concentrated H2S or commercial elemental sulphur. This will, nevertheless, allow for a reduction of sulphur oxide pollution in the environment by at least 53%-56%. It has been suggested that the product of thermal decomposition of coal organic matter (tar) can be used as a componenl of fumace fuel oil or as a plasticizer of petroleum-based road bitumen.展开更多
Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simu...Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simultaneously to transform sulphide minerals into useful by-products. To achieve desirable sulphur removal rate and efficiency, central composite design was adopted as a response surface methodology for the optimization and evaluation of the process. A full-quadratic polynomial equation between the sulphur removal and the studied parameters was established to assess the behaviour of sulphur removal as a function of the factors and to predict the results in various conditions. The optimum conditions were obtained based on the variance tests and response surface plots, from which the optimized ranges for each factor resulting in the best response (corresponding to the highest percentage of desulphurization) could be then achieved. The results show that most desirable conditions are atmospheric leaching in 1.39 mol/dm3 nitric acid and 0.88 mol/dm3 sulphuric acid for 47 h. The designed process under the optimized desulphurization conditions was applied to a real iron ore concentrate. More than 75% of the total sulphur was removed via the leaching process. In addition to the desulphurization, the conversion of sulphide-bearing minerals into useful by-products, extraction of valuable metals, and executing the process under atmospheric conditions are the other advantages of the proposed method.展开更多
In this work, numerical simulations for the flow characteristics in a tank of KR mechanical stirring or/and gas injection are performed using the Fluent software. The Eulerian multi-fluid model is employed along with ...In this work, numerical simulations for the flow characteristics in a tank of KR mechanical stirring or/and gas injection are performed using the Fluent software. The Eulerian multi-fluid model is employed along with the standard k-ε turbulence model to simulate the gas-liquid flow in the stirring tank. A multiple reference frame approach is used to model the impeller rotation. Combined the KR mechanical stirring method and gas injection method, a new gas injection plus mechanical stirring method is proposed. The present results show that the gas phase distributes widely in the eccentric gas injection plus mechanical stirring tank. Therefore, the gas holdup would be increased and the better gas-liquid mixing effect can be obtained in the gas injection plus mechanical stirring case.展开更多
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
文摘This paper seeks to optimize parameters, reduce the cost of desulphurization and the consumption of operation about KR pretreatment of hot metal at the Stainless Steel Company, Baosteel Group. Based on the theoretical analysis of physical chemistry in metallurgy, simulation experiments of the KR desulphurization of hot metal were conducted in a laboratory and the composition of the desulphurization was optimized, by means of chemical analysis, DSC, SEM and EDS. The water modeling displays the fluid flow characteristics of KR desulphurization. Combination of the techniques and production at the Stainless Steel Company, Baosteel Group, the optimized parameters of the process are put forward.
文摘The experimental results of flue gas desulphurization with caustic lime andhydrated lime activated by water spraying in a desulphurization reactor are presented. The effectsof Ca/S molar ratio, approach to saturation of flue gas, SO_2 concentration and gas velocity onsulfur retention efficiency and calcium utilization rate are investigated. Desulphurizationcharacteristics of the two sorbents are compared. The mechanism of improving desulphurizationefficiency by water spraying is analyzed. The results show that the activities of two sorbents areimproved obviously by humidification with water spray and the caustic lime has better applicationprospect because of cheaper cost.
文摘To obtain a better desulphurization effect in hot metal, suitable desulfurizers should be selected first according to thermodynamics. However, the effect of desulphurization is also strongly affected by kinetics. The conditions of different desulfurizers (Mg, CaC2, and lime) penetrating into hot metal, the rising up velocity in iron melt, residence time, and dissolving time are theoretically calculated and analyzed. The results are helpful to select the desulphurization process and equipment and to improve the desulphurization effect.
文摘The contrast experiment of different stirring modes,which includes a new type of stirring-injection with the method of pulse and rotation,and the initial one-way stirring method,is done through physical simulation in the laboratory.The stirring methods of pulse and rotation are of two kinds.One is pulsed and rotary stirrer with positive and opposite directions.The other is pulsed and rotary stirrer with rotation-stop-rotation.The results show that the stirring mode of pulse and rotation has better effects than the one-way stirring method.The specific effects are that the mixing time of the melting bath is apparently shortened,the number of grains involved in the liquid surface is increased,and the residence time of air bubble in water is doubled.
文摘The process of lignite desulphurization via its treatment by an oxidant(air or air–steam mixture)has been studied.The research objective was useful determination of steam application in oxidative lignite desulphurization.It has been proved that the water steam should be included in the oxidant composition to increase the hydrogen sulphide and combustible constituent content in the gases obtained during the processes under research.The impact of factors which affect the reactions between solid(in our case–lignite)and gaseous reagent(oxidant,i.e.air and or air–steam mixture)upon the research process has been investigated,if these reactions occur in the kinetic area.Such factors are linear rate of oxidant movement and coal grain size.The values of oxidant movement linear rate and coal grain size,which the reaction transfer from pyrite sulphur and organic content of lignite from diffusion into kinetic area occurs by,have been determined.Under these‘‘transfer’’conditions,the values of coefficients of oxidant mass transfer(β,m/s)as well as Sherwood criteria and boiling layer differences have been calculated.
基金Project 50204011 supported by the National Natural Science Foundation of Chinaa part work of the Inno- vation Program for Undergraduate supported by China University of Mining & Technology,Beijing
文摘Commercial coke was modified by H2O2 and/or NH3.H2O to obtain an activated coke containing additional oxygen functional groups and/or nitrogen functional groups. The aim of the modification was to enhance the SO2 adsorption capacity of the activated coke. Several techniques, including total nitrogen content measurements, SO2 adsorption, XPS and FTIR analysis, were used to characterize the coke samples. The XPS and FTIR spectra suggest the existence of -CONH2 groups in the H2O2 plus ammonia modified coke. The SO2 adsorption capacity of an activated coke increases slightly with an increase in H2O2 concentration during the modification process. The desulphurization performance of a modified coke is considerably enhanced by increasing the treatment temperature during ammonia modification. The amount of nitrogen in a coke modified by H2O2 plus NH3.H2O is the highest, and the SO2 adsorption capacity of the coke is also the highest (89.9 mg/gC). The NH3.H2O (only) modified sample has lower nitrogen content and lower desulphurization capacity (79.9 mg/gC). H2O modification gives the lowest SO2 adsorption capacity (28.9 mg/gC). The H2O2 pre-treatment is beneficial for the introduction of nitrogen onto the surface of a sample during the following ammonia treatment process.
基金Item Sponsored by Natural Science Foundation of Liaoning Province[No.20092002]the Program of Introducing Talents of Discipline to Universities[No.B07015]
文摘Aimed at the problem of short life of mixing head in KR mechanical mixing method for desulfurization of hot metal,a new type of mixing stir was proposed.CFD theory was used to simulate the characteristics of the fluid flow for the new type of stirring vessel of water model for KR mechanical desulfurization.Flow characteristics and structures of the flow field were investigated and compared with the traditional cross-flow type.The results show that the new type of impeller can not only improve the defects of the flow caused by stir structure of the traditional type,but also reduce the separation of mixing zone in the stirred tank and make the flow field more uniform to make the desulfurization more fully, thus shortening the mixing time,and improving the life of mixing head.Numerical simulation method has been proven to be sound by comparing with the experimental ones.
文摘The oxidative desulphurization process of coal with different metamorphism degrees treated by an air-steam mixture has been studied.It has been shown that the pyrite present in black coal and anthracite is oxidized with the sulphur dioxide formation,and the process chemical mechanism does not depend on the quality of organic matter.The medium-metamorphized coal,capable of turning into a plastic state and cake in the range of investigated temperatures(350~450 ℃),is desulphurized with the greatest difficulty.The chemical mechanism dealing with the transformations of pyritic sulphur present in brown coal differs from similar processes taking place in black coal and anthracite,because FeS2 is converted with hydrogen sulphide formation at desulphurization.
文摘The influence of main characteristics upon conversion directions of the lignite organic part during its oxidation desulphurization was studied. The optimum temperature values, the ratio oxidant : raw material, and time of coal stay in the reaction zone, which provide the maximum degree of sulphur conversion and hydrogen sulphide content in desulphur- ization gases, were calculated. The process implemented under these conditions will decrease environment pollution by sulphur dioxide during further lignite burning at least to 55 %-60 % and utilize sulphur in coal in the form of desul- phurization gases with hydrogen sulphide content of 7 %. Such obtaining sulphur. The effect of the above three factors on the depth was studied. gases can be reprocessed by the known methods of and character of the coal organic matter transformation
基金The authors gratefully acknowledge the National Key Research and Development Program of China(No.2018YFC1901902)the Liao Ning Revitalization Talents Program(No.XLYC1907162).
文摘In order to make the slag from desulphurization and slag skimming(SDSS)to be comprehensively recycled and utilized,a combined process of beneficiation and building materials preparation was proposed to recover iron from SDSS,meanwhile to apply the remaining slag tailings as cement admixture.From this process,three iron-rich products were recovered in stages by clean gravity-magnetic separation,slag tailings were left.Slag powder was prepared by ultrafine grinding of slag tailings.The stability,setting time and cement mortar strength of the slag tailings cements(STC)which were mixed with Portland cement and slag powder were studied respectively.The results showed that a proper overall performance still could be obtained at the slag powder content of 30%.Chemical composition analysis,X-ray diffraction(XRD)analysis,metallographic microscope and scanning electron microscope(SEM)analysis were employed to assess the characteristics of the SDSS and the products obtained from the whole process.The results indicated that the three iron-rich products could be used as a raw material for steelmaking and ironmaking and the relatively large amount of calcium silicate(C_(2)S)and tricalcium silicate(C_(3)S)in the slag tailings make the addition of slag powder into the Portland cement feasible.
文摘The variation of S content during VIM refining Ni-base superalloy using CaO crucible was studied. It was foundthat the desulphurization process could not be carried out by only using CaO crucible. The role of Al additionto desulphurization was also studied. Combining with the results of XRD and composition analysis of the CaOcrucible, the mechanism of desulphurization was proposed. Thermodynamical calculation about the reaction betweenthe interface of CaO crucible and liquid metal has been discussed. This work indicated that under proper refiningtechnology the S content in the liquid Ni-base alloy could be reduced from 3×10-5 to 2×10-6~4×10-6.
基金supported by the National Natural Science Foundation of China(No.51473152)Scientific research foundation for Young Talents from Fujian Provincial Department of Education(No.JT180494)+2 种基金Start-up Foundation for Advanced Talents in Sanming University(No.18YG07)Industry-University-Research Cooperation Fund from Sanming Institute of Fluorine Chemical Industry Technology(FCIT20180105)Scientific research Platform Construction Pproject from Fujian Provincial Department of Science and Technology(No.2018H2002).
文摘The influence of various water soluble cations(K^+,Na^+,Ca^2+,Mg^2+)on the hydration of calcined flue gas desulphurization gypsum was investigated.The results show that all cations but Ca^2+can accelerate the hydration of bassanite.The final crystal size is not largely influenced by different salts,except for Na^+,where the giant crystal with length of>130μm is observed.Current study clarifies the influence of different ions on the hydration of bassanite,which could provide sufficient guide for the pre-treatment of original flue gas desulphurization gypsum before actual application.
基金supported by the National Key Research and Development Program of China (2017YFB0601805)。
文摘Efficient control of the desulphurization system is challenging in maximizing the economic objective while reducing the SO_(2) emission concentration. The conventional optimization method is generally based on a hierarchical structure in which the upper optimization layer calculates the steady-state results and the lower control layer is responsible to drive the process to the target point. However, the conventional hierarchical structure does not take the economic performance of the dynamic tracking process into account. To this end, multi-objective economic model predictive control(MOEMPC) is introduced in this paper, which unifies the optimization and control layers in a single stage. The objective functions are formulated in terms of a dynamic horizon and to balance the stability and economic performance. In the MOEMPC scheme, economic performance and SO_(2) emission performance are guaranteed by tracking a set of utopia points during dynamic transitions. The terminal penalty function and stabilizing constraint conditions are designed to ensure the stability of the system. Finally, an optimized control method for the stable operation of the complex desulfurization system has been established. Simulation results demonstrate that MOEMPC is superior over another control strategy in terms of economic performance and emission reduction, especially when the desulphurization system suffers from frequent flue gas disturbances.
文摘Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon content and large particle size (>45μm).But it is thought that the rejected ash may have potential uses in chemical stabilization/solidification (S/S) processes which need relatively lower strengths and a lower chemical reactivity.Flue Gas Desulphurisation (FGD) sludge is a by-product of air pollution control equipment in coal fired power plants whose chemical composition is mainly gypsum.As there is no effective usage of both of these two materials,it is of interest to research on the possible activation of rFA using FGD.This paper presents experimental results of a study on the properties of rFA activated by the FGD in rFA-cement pastes.Different percentages of FGD were added into the mix to study the effects of the FGD on the reaction of the rFA blended cement pastes.The results show that FGD takes effect as an activator only at late curing ages.Adding Ca(OH) 2 enhances the effect of FGD on activating the hydration of rFA.Also,10% FGD by weight of rFA is the optimal addition in the rFA-cement pastes.The results of the compressive strength measurements correlate well with the porosity results.
文摘The characteristics of the desulphurized gypsum produced in the flue gas desulphurization (FGD) process of the Baosteel sintering plant are investigated in this study. According to the technical and quality requirements of gypsum in the cement industry ,the feasibility of using desulphurized gypsum as a cement retarder is also studied. The results show that desulphurized gypsum can be used as a cement retarder instead of natural gypsum.
基金Sponsored by Provincial Natural Science Foundation of Anhui of China
文摘The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out.For pre-treatment of hot metal,both desulphurization and dephosphorization are improved with the increase of CaO in slag,but deteriorated with the increase of CaF2 in slag.The average desulphurization and dephosphorization rate is 68.83 % and 78.46 %,respectively.For molten steel,the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization.The desulphurization and dephosphorization rate is higher than 90% and 50% respectively with the lowest final sulfur and phosphorus mass percent being 0.001 2% and 0.010%,respectively.The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.
文摘The study reviews the process of oxidative desulphurization of high-sulphur Ukrainian lignite, which was performed by coal treatment using an air or air-steam mixture. In the process. sulphur-free fuel and tar from the decomposition of coal organic matter was obtained. Hence, the sulphur in the coal was converted inlo hydrogen sulphide. The coal desulphurization process is critical to power generatio n. power generation and technology, and tech no logy field of application. The coal desulphurization process ensures the maximum recovery of the highest content of sulphur and hydrogen sulphide (H2S) in desulphurized gases at minimal energy costs. The process also enhances the maximum decomposition of tar and sulphur recovery (> 50%) during coal power generation. Based on smnniarized field studies, a block schematic diagram coupled with heat and material balances of the process was developed for the calculations. The application of the tech no logy at the first stage of coal combustion in thermal power plants will en able the utilizatio n of over 50% of recovered coal sulphur in the form of concentrated H2S or commercial elemental sulphur. This will, nevertheless, allow for a reduction of sulphur oxide pollution in the environment by at least 53%-56%. It has been suggested that the product of thermal decomposition of coal organic matter (tar) can be used as a componenl of fumace fuel oil or as a plasticizer of petroleum-based road bitumen.
文摘Owing to the negative effects of sulphur in iron ore on steelmaking process and environment, a tank leaching process was performed in atmospheric conditions to remove the sulphur from the iron ore concentrate and simultaneously to transform sulphide minerals into useful by-products. To achieve desirable sulphur removal rate and efficiency, central composite design was adopted as a response surface methodology for the optimization and evaluation of the process. A full-quadratic polynomial equation between the sulphur removal and the studied parameters was established to assess the behaviour of sulphur removal as a function of the factors and to predict the results in various conditions. The optimum conditions were obtained based on the variance tests and response surface plots, from which the optimized ranges for each factor resulting in the best response (corresponding to the highest percentage of desulphurization) could be then achieved. The results show that most desirable conditions are atmospheric leaching in 1.39 mol/dm3 nitric acid and 0.88 mol/dm3 sulphuric acid for 47 h. The designed process under the optimized desulphurization conditions was applied to a real iron ore concentrate. More than 75% of the total sulphur was removed via the leaching process. In addition to the desulphurization, the conversion of sulphide-bearing minerals into useful by-products, extraction of valuable metals, and executing the process under atmospheric conditions are the other advantages of the proposed method.
基金supported financially by the Natural Science Foundation of Liaoning Province under the grant of 20092002the Program of Introducing Talents of Discipline to Universities under the grant of B07015
文摘In this work, numerical simulations for the flow characteristics in a tank of KR mechanical stirring or/and gas injection are performed using the Fluent software. The Eulerian multi-fluid model is employed along with the standard k-ε turbulence model to simulate the gas-liquid flow in the stirring tank. A multiple reference frame approach is used to model the impeller rotation. Combined the KR mechanical stirring method and gas injection method, a new gas injection plus mechanical stirring method is proposed. The present results show that the gas phase distributes widely in the eccentric gas injection plus mechanical stirring tank. Therefore, the gas holdup would be increased and the better gas-liquid mixing effect can be obtained in the gas injection plus mechanical stirring case.