期刊文献+
共找到23,894篇文章
< 1 2 250 >
每页显示 20 50 100
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
1
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Towards a blank design method for manufacturing big-tapered profiled ring disk by spinning-rolling process 被引量:1
2
作者 Xuechao LI Lianggang GUO +1 位作者 Xiaoqing CHEN Heng LI 《Chinese Journal of Aeronautics》 2025年第1期70-86,共17页
The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficien... The big-tapered profiled ring disk is a key component of engines for rockets and missiles.A new forming technology,as called spinning-rolling process,has been proposed previously for the high performance,high efficiency and low-cost manufacturing of the component.Blank design is the key part of plastic forming process design.For spinning-rolling process,the shape and size of the blank play a crucial role in process stability,deformation behavior and dimensional accuracy.So this work proposes a blank design method to determine the geometry structure and sizes of the blank.The mathematical model for calculating the blank size has been deduced based on volume conservation and neutral layer length invariance principle.The FE simulation and corresponding trial production of an actual big-tapered profiled ring disk show that the proposed blank design method is applicative.In order to obtain a preferred blank,the influence rules of blank size determined by different deformation degrees(rolling ratio k)on the spinning-rolling process are revealed by comprehensive FE simulations.Overall considering the process stability,circularity of the deformed ring disk and forming forces,a reasonable range of deformation degree(rolling ratio k)is recommended for the blank design of the new spinning-rolling process. 展开更多
关键词 Blank design method Spinning-rolling process Big-tapered profiled ring disk Rolling ratio Intelligent FE simulation
原文传递
Optimization of Extraction Process of Qingdu Jianpi Mixture by Orthogonal Experimental Design
3
作者 Jiangcun WEI Bing QING +4 位作者 Jinqing PENG Xiaofen FENG Weiwei CHEN Wen ZHONG Zujie QIN 《Medicinal Plant》 2025年第3期10-14,共5页
[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin cont... [Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture. 展开更多
关键词 Qingdu Jianpi MIXTURE AHP-entropy method ORTHOGONAL design EXTRACTION process
在线阅读 下载PDF
Advances in conceptual process design:From conventional strategies to AI-assisted methods
4
作者 Ali Tarik Karagoz Omar Alqusair +1 位作者 Chao Liu Jie Li 《Chinese Journal of Chemical Engineering》 2025年第8期60-76,共17页
Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as ... Conceptual process design (CPD) research focuses on finding design alternatives that address various design problems. It has a long history of well-established methodologies to answer these complex questions, such as heuristics, mathematical programming, and pinch analysis. Nonetheless, progress continues from different formulations of design problems using bottom-up approaches, to the utilization of new tools such as artificial intelligence (AI). It was not until recently that AI methods were involved again in assisting the decision-making steps for chemical engineers. This has led to a gap in understanding AI's capabilities and limitations within the field of CPD research. Thus, this article aims to provide an overview of conventional methods for process synthesis, integration, and intensification approaches and survey emerging AI-assisted process design applications to bridge the gap. A review of all AI-assisted methods is highlighted, where AI is used as a key component within a design framework, to explain the utility of AI with comparative examples. The studies were categorized into supervised and reinforcement learning based on the machine learning training principles they used to enhance the understanding of requirements, benefits, and challenges that come with it. Furthermore, we provide challenges and prospects that can facilitate or hinder the progress of AI-assisted approaches in the future. 展开更多
关键词 process systems process design Mathematical programming Artificial intelligence Machine learning Neural networks
在线阅读 下载PDF
RCSB Protein Data Bank: revolutionising drug discovery and design for over five decades
5
作者 Shaban Ahmad Nagmi Bano Khalid Raza 《Medical Data Mining》 2025年第2期9-20,共12页
In the year 1971,the world’s biggest structural biology collaboration name—The Research Collaboratory for Structural Bioinformatics(RCSB),was formed to gather all the structural biologists at a single platform and t... In the year 1971,the world’s biggest structural biology collaboration name—The Research Collaboratory for Structural Bioinformatics(RCSB),was formed to gather all the structural biologists at a single platform and then extended out to be the world’s most extensive structural data repository named RCSB-Protein Data Bank(PDB)(https://www.rcsb.org/)that has provided the service for more than 50 years and continues its legacy for the discoveries and repositories for structural data.The RCSB has evolved from being a collaboratory network to a full-fledged database and tool with a huge list of protein structures,nucleic acid-containing structures,ModelArchive,and AlphaFold structures,and the best is that it is expanding day by day with computational advancement with tools and visual experiences.In this review article,we have discussed how RCSB has been a successful collaboratory network,its expansion in each decade,and how it has helped the ground-breaking research.The PDB tools that are helping the researchers,yearly data deposition,validation,processing,and suggestions that can help the developer improve for upcoming years are also discussed.This review will help future researchers understand the complete history of RCSB and its developments in each decade and how various future collaborative networks can be developed in various scientific areas and can be successful by keeping RCSB as a case study. 展开更多
关键词 Research Collaboratory for Structural Bioinformatics Protein Data Bank CRYSTALLOGRAPHY structural biology database drug design
在线阅读 下载PDF
Iridium-based electrocatalysts for oxygen evolution reaction in acidic media:From in situ characterization to rational design
6
作者 Bo Sun Haoyan Cheng +5 位作者 Kexing Song Zhonghan Jiang Changrui Shi Hao Liang Shuaiyu Ma Hao Hu 《Journal of Energy Chemistry》 2025年第8期472-494,共23页
Proton exchange membrane water electrolyzer(PEMWE)is crucial for the storage and conversion of renewable energy.However,the harsh anode environment and the oxygen evolution reaction(OER),which involves a four-electron... Proton exchange membrane water electrolyzer(PEMWE)is crucial for the storage and conversion of renewable energy.However,the harsh anode environment and the oxygen evolution reaction(OER),which involves a four-electron transfer,result in a significant overpotential that limits the overall efficiency of hydrogen production.Identifying active sites in the OER is crucial for understanding the reaction mechanism and guiding the development of novel electrocatalysts with high activity,cost-effectiveness,and durability.Herein,we summarize the widely accepted OER mechanism in acidic media,in situ characterization and monitoring of active sites during the reaction,and provide a general understanding of the active sites on various catalysts in the OER,including Ir-based metals,Ir-based oxides,carbon/oxide-supported Ir,Ir-based perovskite oxides,and Ir-based pyrochlore oxides.For each type of electrocatalysts,reaction pathways and actual active sites are proposed based on in situ characterization techniques and theoretical calculations.Finally,the challenges and strategic research directions associated with the design of highly efficient Ir-based electrocatalysts are discussed,offering new insights for the further scientific advancement and practical application of acidic OER. 展开更多
关键词 Ir-based electrocatalysts Water splitting Acidic oxygen evolution In situ characterization Reaction mechanisms Catalyst design
在线阅读 下载PDF
A Review of Intelligent Design and Optimization of Metal Casting Processes
7
作者 Xiaolong Pei Hua Hou Yuhong Zhao 《Acta Metallurgica Sinica(English Letters)》 2025年第8期1293-1311,共19页
Casting technology is a fundamental and irreplaceable method in advanced manufacturing.The design and optimization of casting processes are crucial for producing high-performance,complex metal components.Transitioning... Casting technology is a fundamental and irreplaceable method in advanced manufacturing.The design and optimization of casting processes are crucial for producing high-performance,complex metal components.Transitioning from traditional process design based on"experience+experiment"to an integrated,intelligent approach is essential for achieving precise control over microstructure and properties.This paper provides a comprehensive and systematic review of intelligent casting process design and optimization for the first time.First,it explores process design methods based on casting simulation and integrated computational materials engineering(ICME).It then examines the application of machine learning(ML)in process design,highlighting its efficiency and existing challenges,along with the development of integrated intelligent design platforms.Finally,future research directions are discussed to drive further advancements and sustainable development in intelligent casting design and optimization. 展开更多
关键词 Casting process Intelligent design Numerical simulation Integrated computational materials engineering Machine learning
原文传递
Novel Design Method for the Roll Forming Process and Improved Forming Quality of 316L Stainless Steel BPP Flow Channels with Right-Angled Sidewalls
8
作者 Fuqiang Zhao Hugang Tian +4 位作者 Qingxue Huang Yanlei Zhang Xiaolong Xie Zhigang Qi Shuaifeng Chen 《Chinese Journal of Mechanical Engineering》 2025年第2期163-182,共20页
The forming quality of metal bipolar plate(BPP)flow channels in proton exchange membrane fuel cells(PEMFCs)is a key factor affecting battery performance.A flow channel with straight sidewalls and a low thinning rate c... The forming quality of metal bipolar plate(BPP)flow channels in proton exchange membrane fuel cells(PEMFCs)is a key factor affecting battery performance.A flow channel with straight sidewalls and a low thinning rate can enhance battery output.Roll forming,as a new technology for BPP production,offers advantages such as a low thinning rate and high efficiency.However,existing roll curve design methods struggle to accommodate both low thinning rates and straight sidewall angles simultaneously.This study aims to develop flow channels with right-angled sidewalls,which provide benefits such as a low thinning rate,reduced residual stress,and high accuracy.A roller tooth profile was designed to achieve a flow channel with right-angled sidewalls and minimal thinning.Simulations and experiments were conducted to validate the feasibility of this novel design method for the roll forming process.The study investigated the effects of roller tooth parameters on sidewall angle,thinning rate,and residual stress.A multifactor evaluation method was developed to optimize the tip fillet radius and the tooth profile backlash of the roller.The results indicated that the tip fillet radius and the tooth profile backlash were negatively correlated with the sidewall angle.As the tip fillet radius and tooth profile backlash increased,the thinning rate and residual stress decreased.With a tip fillet radius of 0.25 mm and a tooth profile backlash of 0.19 mm,the flow channel achieved an approximately right-angled sidewall,a maximum thinning rate of 7.7%,a 29.6%reduction in maximum residual stress,and maximum and average residual stress imbalance values of 7.1%and 3.2%,respectively.This study proposes a new design method for a right-angled sidewall runner roller gear profile,facilitating the roll forming of metal BPPs with right-angled sidewalls and minimal thinning.This method provides theoretical support for the large-scale application of roll forming in the manufacture of PEMFC BPPs. 展开更多
关键词 Proton exchange membrane fuel cell 316L stainless steel bipolar plate Roll forming process Roller tooth profile design Flow channel with right-angled sidewall Residaul stress
在线阅读 下载PDF
Contextual design and real-time verification for agile casting design
9
作者 Dong Xiang Chu-hao Zhou +3 位作者 Xuan-pu Dong Shu-ren Guo Yan-song Ding Hua-tang Cao 《China Foundry》 2025年第2期231-238,共8页
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea... In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market. 展开更多
关键词 agile design context-design casting process design real-time verification smart manufacturing
在线阅读 下载PDF
Large Language Model-Driven Knowledge Discovery for Designing Advanced Micro/Nano Electrocatalyst Materials
10
作者 Ying Shen Shichao Zhao +3 位作者 Yanfei Lv Fei Chen Li Fu Hassan Karimi-Maleh 《Computers, Materials & Continua》 2025年第8期1921-1950,共30页
This review presents a comprehensive and forward-looking analysis of how Large Language Models(LLMs)are transforming knowledge discovery in the rational design of advancedmicro/nano electrocatalyst materials.Electroca... This review presents a comprehensive and forward-looking analysis of how Large Language Models(LLMs)are transforming knowledge discovery in the rational design of advancedmicro/nano electrocatalyst materials.Electrocatalysis is central to sustainable energy and environmental technologies,but traditional catalyst discovery is often hindered by high complexity,fragmented knowledge,and inefficiencies.LLMs,particularly those based on Transformer architectures,offer unprecedented capabilities in extracting,synthesizing,and generating scientific knowledge from vast unstructured textual corpora.This work provides the first structured synthesis of how LLMs have been leveraged across various electrocatalysis tasks,including automated information extraction from literature,text-based property prediction,hypothesis generation,synthesis planning,and knowledge graph construction.We comparatively analyze leading LLMs and domain-specific frameworks(e.g.,CatBERTa,CataLM,CatGPT)in terms of methodology,application scope,performance metrics,and limitations.Through curated case studies across key electrocatalytic reactions—HER,OER,ORR,and CO_(2)RR—we highlight emerging trends such as the growing use of embedding-based prediction,retrieval-augmented generation,and fine-tuned scientific LLMs.The review also identifies persistent challenges,including data heterogeneity,hallucination risks,lack of standard benchmarks,and limited multimodal integration.Importantly,we articulate future research directions,such as the development of multimodal and physics-informedMatSci-LLMs,enhanced interpretability tools,and the integration of LLMswith selfdriving laboratories for autonomous discovery.By consolidating fragmented advances and outlining a unified research roadmap,this review provides valuable guidance for both materials scientists and AI practitioners seeking to accelerate catalyst innovation through large language model technologies. 展开更多
关键词 Large languagemodels ELECTROCATALYSIS NANOMATERIALS knowledge discovery materials design artificial intelligence natural language processing
在线阅读 下载PDF
Design strategies for cost-effective high-performance electrocatalysts in seawater electrolysis to produce hydrogen
11
作者 Muhammad Aizaz Ud Din Mohan Raj Krishnan Edreese H.Alsharaeh 《Journal of Energy Chemistry》 2025年第3期497-515,共19页
Direct electrolysis of seawater to produce green hydrogen is a more environmentally friendly process than freshwater electrolysis.The renewable energy sector exhibits tremendous interest in practical seawater electrol... Direct electrolysis of seawater to produce green hydrogen is a more environmentally friendly process than freshwater electrolysis.The renewable energy sector exhibits tremendous interest in practical seawater electrolysis techniques due to its substantial capacity to mitigate the need for freshwater consumption.With the low catalytic efficiency of the current seawater splitting process and the poor reliability of its operation,the process suffers from severe corrosion caused by chloride ions,as well as anodic competition between oxygen evolution and chlorine oxidation reactions.This review provides an overview of the latest electrocatalyst developments for promoting selectivity and stability in seawater electrolysis.Using the characterization and simulation results,as well as active machine learning,advanced electrocatalytic materials can be designed and developed,a research direction that will become increasingly important in the future.A variety of strategies are discussed in detail for designing advanced electrocatalysts in seawater electrolysis,including the surface protective layer,structural regulation by heteroatom doping and vacancies,porous structure,core-shell construction,and 3D hetero-structure construction to hinder chlorine evolution reactions.Finally,future perspectives and challenges for green hydrogen production from seawater electrolysis are also described. 展开更多
关键词 Green hydrogen production Seawater electrolysis Chlorine evolution tolerance design strategies HETEROSTRUCTURES
在线阅读 下载PDF
15 Years of Progress on Transition Metal-Based Electrocatalysts for Microbial Electrochemical Hydrogen Production:From Nanoscale Design to Macroscale Application
12
作者 Seyed Masoud Parsa Zhijie Chen +5 位作者 Huu Hao Ngo Wei Wei Xinbo Zhang Ying Liu Bing-Jie Ni Wenshan Guo 《Nano-Micro Letters》 2025年第12期178-239,共62页
Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production.Transition metal-based(TM-based)electrocatalysts are introduced as an astoni... Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production.Transition metal-based(TM-based)electrocatalysts are introduced as an astonishing alternative for future catalysts by addressing several disadvantages,like the high cost and low performance of noble metal and metal-free electrocatalysts,respectively.In this critical review,a comprehensive analysis of the major development of all families of TMbased catalysts from the beginning development of microbial electrolysis cells in the last 15 years is presented.Importantly,pivotal design parameters such as selecting efficient synthesis methods based on the type of material,main criteria during each synthesizing method,and the pros and cons of various procedures are highlighted and compared.Moreover,procedures for tuning and tailoring the structures,advanced strategies to promote active sites,and the potential for implementing novel unexplored TM-based hybrid structures suggested.Furthermore,consideration for large-scale application of TM-based catalysts for future mass production,including life cycle assessment,cost assessment,economic analysis,and recently pilot-scale studies were highlighted.Of great importance,the potential of utilizing artificial intelligence and advanced computational methods such as active learning,microkinetic modeling,and physics-informed machine learning in designing high-performance electrodes in successful practices was elucidated.Finally,a conceptual framework for future studies and remaining challenges on different aspects of TM-based electrocatalysts in microbial electrolysis cells is proposed. 展开更多
关键词 Bioelectrochemical systems Hydrogen evolution reaction Transition metal catalysts Cost analysis Life cycle assessment Artificial intelligence design
在线阅读 下载PDF
Integrated design of iridium-based catalysts for proton exchange membrane water electrolyzers
13
作者 Jiahao Yang Zhaoping Shi +3 位作者 Minhua Shao Meiling Xiao Changpeng Liu Wei Xing 《Chinese Journal of Catalysis》 2025年第10期20-44,共25页
Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity... Proton exchange membrane water electrolysis (PEMWE) has garnered significant attention as apivotal technology for converting surplus electricity into hydrogen for long-term storage, as well asfor providing high-purity hydrogen for aerospace and high-end manufacturing applications. Withthe ongoing commercialization of PEMWE, advancing iridium-based oxygen evolution reaction(OER) catalysts remains imperative to reconcile stringent requirements for high activity, extendedlongevity, and minimized noble metal loading. The review provides a systematic analysis of theintegrated design of iridium-based catalysts in PEMWE, starting from the fundamentals of OER,including the operation environment of OER catalysts, catalytic performance evaluation withinPEMWE, as well as catalytic and dissolution mechanisms. Subsequently, the catalyst classificationand preparation/characterization techniques are summarized with the focus on the dynamic structure-property relationship. Guided by these understandings, an overview of the design strategiesfor performance enhancement is presented. Specifically, we construct a mathematical frameworkfor cost-performance optimization to offer quantitative guidance for catalyst design. Finally, futureperspectives are proposed, aiming to establish a theoretical framework for rational catalyst design. 展开更多
关键词 Proton exchange membrane water electrolysis Oxygen evolution reaction Iridium-based catalyst Integrated design Cost-performance optimization
在线阅读 下载PDF
Parametric Analysis and Designing Maps for Powder Spreading in Metal Additive Manufacturing
14
作者 Yuxuan Wu Sirish Namilae 《Computer Modeling in Engineering & Sciences》 2025年第2期2067-2090,共24页
Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding signific... Powder bed fusion(PBF)in metallic additive manufacturing offers the ability to produce intricate geometries,high-strength components,and reliable products.However,powder processing before energy-based binding significantly impacts the final product’s integrity.Processing maps guide efficient process design to minimize defects,but creating them through experimentation alone is challenging due to the wide range of parameters,necessitating a comprehensive computational parametric analysis.In this study,we used the discrete element method to parametrically analyze the powder processing design space in PBF of stainless steel 316L powders.Uniform lattice parameter sweeps are often used for parametric analysis,but are computationally intensive.We find that non-uniform parameter sweep based on the low discrepancy sequence(LDS)algorithm is ten times more efficient at exploring the design space while accurately capturing the relationship between powder flow dynamics and bed packing density.We introduce a multi-layer perceptron(MLP)model to interpolate parametric causalities within the LDS parameter space.With over 99%accuracy,it effectively captures these causalities while requiring fewer simulations.Finally,we generate processing design maps for machine setups and powder selections for efficient process design.We find that recoating speed has the highest impact on powder processing quality,followed by recoating layer thickness,particle size,and inter-particle friction. 展开更多
关键词 Powder bed fusion additive manufacturing discrete element method parameter sweep process design
在线阅读 下载PDF
Optimized Foil-Based Impeller Design for Enhanced Power Recovery in Pump-as-Turbine Applications
15
作者 Ali Abdulshaheed Faizal Mustapha Mohd Anuar 《Fluid Dynamics & Materials Processing》 2025年第9期2289-2304,共16页
A pump operating as a turbine(PAT)is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction.The pump-as-turbine(PAT)approach presents an effective method of ... A pump operating as a turbine(PAT)is a type of hydraulic machine capable of functioning both as a pump and as a turbine by reversing the flow direction.The pump-as-turbine(PAT)approach presents an effective method of hydropower generation,particularly suitable for addressing the increasing global energy demands in rural and remote areas.In addition to its adaptability,PAT-based micro-hydropower systems typically incur lower operating costs than conventional hydrodynamic turbines,despite requiring higher initial investment.Recent research has focused on integrating PATs into pipe distribution systems to harness untapped hydraulic energy.This study presents the development and performance evaluation of a novel pump operating as a turbine(PAT)impeller,designed to enhance hydropower recovery in water distribution systems.A three-dimensional(3D)impeller model was created using Catia software,integrating airfoil(hydrofoil)geometries into the blade profile to improve the efficiency of power extraction during turbine operation.Unlike conventional designs,the new impeller configuration generates additional force components aligned with the rotor’s direction of rotation,thereby increasing the moment about the axis and enhancing angular velocity.Computational fluid dynamics(CFD)simulations performed in ANSYS Fluent confirmed that the redesigned PAT significantly improves both performance and efficiency,demonstrating superior power recovery compared to the original design.The results highlight the potential of integrating PAT systems with optimized blade geometries into water distribution networks,offering a viable solution for energy recovery and head reduction during periods of low demand. 展开更多
关键词 Airfoil specifications and database airfoil equations impeller design using Catia 3D pump-as-turbine model energy recovery from pipe distribution systems
在线阅读 下载PDF
Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization 被引量:1
16
作者 Chunliang Liu Jianhui Zhong +5 位作者 Ranran Wei Jiuxu Ruan Kaicong Wang Zhaoyou Zhu Yinglong Wang Limei Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期24-44,共21页
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ... This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes. 展开更多
关键词 Azeotrope separation process design Optimization algorithm process integration Dynamic control Entrainer selection
在线阅读 下载PDF
Advancements in machine learning for material design and process optimization in the field of additive manufacturing 被引量:1
17
作者 Hao-ran Zhou Hao Yang +8 位作者 Huai-qian Li Ying-chun Ma Sen Yu Jian shi Jing-chang Cheng Peng Gao Bo Yu Zhi-quan Miao Yan-peng Wei 《China Foundry》 SCIE EI CAS CSCD 2024年第2期101-115,共15页
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co... Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing. 展开更多
关键词 additive manufacturing machine learning material design process optimization intersection of disciplines embedded machine learning
在线阅读 下载PDF
基于MATLAB App Designer的新能源汽车驾驶性分析系统设计
18
作者 卜凯 《汽车实用技术》 2025年第13期54-59,共6页
为了解决行业内对汽车驾驶性评价缺乏客观量化的问题,文章根据汽车驾驶性主观评价指标设计了一套客观分析系统。通过MATLAB App Designer编写工况识别、信号处理和驾驶性指标分析代码,对车辆蠕行、起步加速、匀速、急加急减和滑行减速... 为了解决行业内对汽车驾驶性评价缺乏客观量化的问题,文章根据汽车驾驶性主观评价指标设计了一套客观分析系统。通过MATLAB App Designer编写工况识别、信号处理和驾驶性指标分析代码,对车辆蠕行、起步加速、匀速、急加急减和滑行减速五种典型工况进行响应性、平顺性和驾驶风格差异性分析。结果可知,驾驶性分析系统在某插电式混合动力汽车(PHEV)车型上的实践运用中取得了良好的效果,显著提高驾驶性开发效率,有助于推动汽车驾驶性客观分析的标准化和自动化进程。 展开更多
关键词 驾驶性分析系统 新能源汽车 信号处理 工况识别 评价指标 MATLAB App designer
在线阅读 下载PDF
Design of pH-universal electrocatalysts for hydrogenevolution reaction 被引量:1
19
作者 Jingwen Lin Xu Wang +6 位作者 Zhenyun Zhao Dongliang Chen Rumin Liu Zhizhen Ye Bin Lu Yang Hou Jianguo Lu 《Carbon Energy》 CSCD 2024年第11期27-58,共32页
The path to searching for sustainable energy has never stopped since thedepletion of fossil fuels can lead to serious environmental pollution andenergy shortages.Using water electrolysis to produce hydrogen has beenpr... The path to searching for sustainable energy has never stopped since thedepletion of fossil fuels can lead to serious environmental pollution andenergy shortages.Using water electrolysis to produce hydrogen has beenproven to be a prioritized approach for green resource production.It is highlycrucial to explore inexpensive and high-performance electrocatalysts foraccelerating hydrogen evolution reaction(HER)and apply them to industrialcases on a large scale.Here,we summarize the different mechanisms of HERin different pH settings and review recent advances in non-noble-metal-basedelectrocatalysts.Then,based on the previous efforts,we discuss severaluniversal strategies for designing pH-independent catalysts and showdirections for the future design of pH-universal catalysts. 展开更多
关键词 design strategy hydrogen evolution reaction pH-universal electrocatalysts
在线阅读 下载PDF
MULTI-WORLD MECHANISM FOR MODELING EVOLUTIONARY DESIGN PROCESS FROM CONCEPTUAL DESIGN TO DETAILED DESIGN
20
作者 XUE Deyi YANG Haoguang TU Yiliu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期104-108,共5页
A multi-world mechanism is developed for modeling evolutionary design process from conceptual design to detailed design. In this mechanism, the evolutionary design database is represented by a sequence of worlds corre... A multi-world mechanism is developed for modeling evolutionary design process from conceptual design to detailed design. In this mechanism, the evolutionary design database is represented by a sequence of worlds corresponding to the design descriptions at different design stages. In each world, only the differences with its ancestor world are recorded. When the design descriptions in one world are changed, these changes are then propagated to its descendant worlds automatically. Case study is conducted to show the effectiveness of this evolutionary design database model. 展开更多
关键词 design database design process design evolution
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部