In aero engine design, determining whether the preliminary design will have disruptive effects on the detailed design is the key to multidisciplinary design optimization in the preliminary design stage. In order to ad...In aero engine design, determining whether the preliminary design will have disruptive effects on the detailed design is the key to multidisciplinary design optimization in the preliminary design stage. In order to adapt to the non-orthogonal parameter value range caused by the selfconstrained parametric modeling method, a non-orthogonal space mapping method that maps the optimal Latin hypercube sampling points of the traditional orthogonal design space to the non-orthogonal design space is proposed. Based on the logical regression method in machine learning field, a kind of feasible domain boundary identification method is employed to identify whether the sample spatial response meets the relevant criteria. The method proposed in this paper is used to identify and analyze the key technologies of the high-pressure turbine mortise joint structure. It is found that the preliminary design of the aero engine may lead to the failure to obtain a mortise joint structure meeting the design requirements in the detailed design stage. The mortise joint structure needs to be pre-optimized in the preliminary design stage.展开更多
The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, buildi...The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.展开更多
The study was carried out exclusively in Ghana to explore the approaches employed by consultants in risk assessment at the design phase of projects in Ghana. One hundred and fourteen (114) consultants were selected ou...The study was carried out exclusively in Ghana to explore the approaches employed by consultants in risk assessment at the design phase of projects in Ghana. One hundred and fourteen (114) consultants were selected out of a population of one hundred and eighty six (186) from three main professional associations in Ghana made up of the Ghana Institute of Architects, Ghana Institution of Engineers and the Ghana Institution of Surveyors (Quantity Surveying Division) practicing in Ghana for the study. Both primary and secondary data were collected. A descriptive survey was also used to observe and describe the presence, frequency or absence of characteristics of a phenomenon as it naturally occurred, in order to gain additional information. A questionnaire was also designed to collect data from the architects, engineers and quantity surveyors. The data was analyzed using Statistical Package for the Social Scientists (SPSS) 17.0. Descriptive and inferential statistics, such as frequency tables, percentages and cross tabulations were used in the data analysis and summaries. Simple tests of associations were undertaken by using Chi square and Cramer’s V statistics to compare relationships between variables. Again, relative importance index was also used to analyze some of the data by computing to deduce their rankings. The relative importance index was used to analyze some of the data by computing to deduce their rankings. The research revealed that majority of consultants had an average knowledge of risk management. Based on the findings it was recommended that consultants undergo advanced training in risk assessment. It was therefore suggested that consultancy firms should develop a set of laid down procedures for consultants to use in risk assessment in order that the use of intuition employed by majority is lessened. The challenges observed in risk assessment and the remedial steps suggested curtailing the detrimental effects of risks would be of wide importance to many developing economies.展开更多
In this paper, fast setpoint altitude tracking control for Hypersonic Flight Vehicle(HFV)satisfying Angle of Attack(AOA) constraint is studied with a two-loop structure controller, in the presence of parameter uncerta...In this paper, fast setpoint altitude tracking control for Hypersonic Flight Vehicle(HFV)satisfying Angle of Attack(AOA) constraint is studied with a two-loop structure controller, in the presence of parameter uncertainties and disturbances. For the outer loop, phase plane design is adopted for the simplified model under Bang-Bang controller to generate AOA command guaranteeing fast tracking performance. Modifications based on Feedback-Linearization(FL) technique are adopted to transform the phase trajectory into a sliding curve. Moreover, to resist mismatch between design model and actual model, Fast Exponential Reaching Law(FERL) is augmented with the baseline controller to maintain state on the sliding curve. The inner-loop controller is based on backstepping technique to track the AOA command generated by outer-loop controller. Barrier Lyapunov Function(BLF) design is employed to satisfy AOA requirement. Moreover, a novel auxiliary state is introduced to remove the restriction of BLF design on initial tracking errors. Dynamic Surface Control(DSC) is utilized to ease the computation burden. Rigorous stability proof is then given, and AOA is guaranteed to stay in predefined region theoretically. Simulations are conducted to verify the efficiency and superior performance of the proposed method.展开更多
Fascinating with high specific capacity and moderate lithiation potential,SnO_(x)-based materials have been intensively investigated as one of the most promising anodes for lithium-ion batteries.However,due to poor cy...Fascinating with high specific capacity and moderate lithiation potential,SnO_(x)-based materials have been intensively investigated as one of the most promising anodes for lithium-ion batteries.However,due to poor cycling stability,sluggish reaction kinetics,and limited electrochemical reaction reversibility,the development of SnO_(x)-based anodes has been hindered.And the current preparation and modification routes for SnO_(x)-based anodes lack direct and specific illustration.Herein,modification routes for SnO_(x)-based anodes have been emphasized.Firstly,to provide more direct instructions,the tuning routes of morphological structure for SnO_(x)-based electrodes(including slurry-based and self-supported)have been thoroughly discussed from the preparation perspective.Secondly,according to the properties of SnO_(x)-based anodes,the phase structure design ideas have also been properly classified and organized for addressing chemical reaction kinetics or thermodynamic issues.Finally,for future-oriented studies,new insights into the development and commercialization prospects of SnO_(x)-based anodes are also provided.This review,with comprehensive information on SnO_(x)-based anodes,aims to bring more specific guidance and valuable inspiration for peer researchers who are promoting the application of SnO_(x)-based materials for energy conversion and storage devices.展开更多
A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phas...A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phase during the sintering process. Thus, the grain size and oxygen content were controlled via low-temperature sintering, resulting in high coercivity and maximum energy products. In addition, Ce formed massive agglomerations at the triple-point junctions, as confirmed by elemental mapping results. Transmission electron micros- copy (TEM) images indicated the presence of (Ce,Nd)Ox phases at grain boundaries. By controlling the composition and optimizing the preparation process, we successfully obtained Ce9Nd21FebalBx sintered magnets; the prepared magnets exhibited a residual induction, coerciv- ity, and energy product of 1.353 T, 759 kA/m, and 342 kJ/m3, respectively.展开更多
A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elast...A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elastic matrix. It is demon- strated that a pseudoelastic stress-strain loop in a macroscopic loading-unloading cy- cle can be obtained by microscopically stress induced forward and reverse martensitic transformations in the SMA particles. The relation between the macroscopic stress- strain response and the material parameters of the constituents of this composite is quantified through the micromechanics calculations, which reveals that the best duc- tility and thus the greatest energy absorption capacity of this novel microstructure can be obtained by the optimum material design.展开更多
This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genet...This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module com- prises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.展开更多
This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software sy...This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics.展开更多
Geotechnical parameters derived from an intrusive cone penetration test(CPT)are used to asses mechanical properties to inform the design phase of infrastructure projects.However,local,in situ 1D measurements can fail ...Geotechnical parameters derived from an intrusive cone penetration test(CPT)are used to asses mechanical properties to inform the design phase of infrastructure projects.However,local,in situ 1D measurements can fail to capture 3D subsurface variations,which could mean less than optimal design decisions for foundation engineering.By coupling the localised measurements from CPTs with more global 3D measurements derived from geophysical methods,a higher fidelity 3D overview of the subsurface can be obtained.Machine Learning(ML)may offer an effective means to capture all types of geophysical information associated with CPT data at a site scale to build a 2D or 3D ground model.In this paper,we present an ML approach to build a 3D ground model of cone resistance and sleeve friction by combining several CPT measurements with Multichannel Analysis of Surface Waves(MASW)and Electrical Resistivity Tomography(ERT)data on a land site characterisation project in the United Arab Emirates(UAE).To avoid a potential overfitting problem inherent to the use of machine learning and a lack of data at certain locations,we explore the possibility of using a prior Geo-Statistical(GS)approach that attempts to constrain the overfitting process by“artificially”increasing the amount of input data.A sensitivity study is also performed on input features used to train the ML algorithm to better define the optimal combination of input features for the prediction.Our results showed that ERT data were not useful in capturing 3D variations of geotechnical properties compared to Vs due to the geographical location of the site(200 m east from the Oman Gulf)and the possible effect of saline water intrusion.Additionally,we demonstrate that the use of a prior GS phase could be a promising and interesting means to make the prediction of ground properties more robust,especially for this specific case study described in this paper.Looking ahead,better representation of the subsurface can lead to a number of benefits for stakeholders involved in developing assets.Better ground/geotechnical models mean better site calibration of design methods and fewer design assumptions for reliability-based design,creating an opportunity for value engineering in the form of lighter construction without compromising safety,shorter construction timelines,and reduced resource requirements.展开更多
文摘In aero engine design, determining whether the preliminary design will have disruptive effects on the detailed design is the key to multidisciplinary design optimization in the preliminary design stage. In order to adapt to the non-orthogonal parameter value range caused by the selfconstrained parametric modeling method, a non-orthogonal space mapping method that maps the optimal Latin hypercube sampling points of the traditional orthogonal design space to the non-orthogonal design space is proposed. Based on the logical regression method in machine learning field, a kind of feasible domain boundary identification method is employed to identify whether the sample spatial response meets the relevant criteria. The method proposed in this paper is used to identify and analyze the key technologies of the high-pressure turbine mortise joint structure. It is found that the preliminary design of the aero engine may lead to the failure to obtain a mortise joint structure meeting the design requirements in the detailed design stage. The mortise joint structure needs to be pre-optimized in the preliminary design stage.
文摘The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.
文摘The study was carried out exclusively in Ghana to explore the approaches employed by consultants in risk assessment at the design phase of projects in Ghana. One hundred and fourteen (114) consultants were selected out of a population of one hundred and eighty six (186) from three main professional associations in Ghana made up of the Ghana Institute of Architects, Ghana Institution of Engineers and the Ghana Institution of Surveyors (Quantity Surveying Division) practicing in Ghana for the study. Both primary and secondary data were collected. A descriptive survey was also used to observe and describe the presence, frequency or absence of characteristics of a phenomenon as it naturally occurred, in order to gain additional information. A questionnaire was also designed to collect data from the architects, engineers and quantity surveyors. The data was analyzed using Statistical Package for the Social Scientists (SPSS) 17.0. Descriptive and inferential statistics, such as frequency tables, percentages and cross tabulations were used in the data analysis and summaries. Simple tests of associations were undertaken by using Chi square and Cramer’s V statistics to compare relationships between variables. Again, relative importance index was also used to analyze some of the data by computing to deduce their rankings. The relative importance index was used to analyze some of the data by computing to deduce their rankings. The research revealed that majority of consultants had an average knowledge of risk management. Based on the findings it was recommended that consultants undergo advanced training in risk assessment. It was therefore suggested that consultancy firms should develop a set of laid down procedures for consultants to use in risk assessment in order that the use of intuition employed by majority is lessened. The challenges observed in risk assessment and the remedial steps suggested curtailing the detrimental effects of risks would be of wide importance to many developing economies.
基金supported by the National Natural Science Foundation of China (Nos. 61833016, 61873295, 61622308and 61933010)。
文摘In this paper, fast setpoint altitude tracking control for Hypersonic Flight Vehicle(HFV)satisfying Angle of Attack(AOA) constraint is studied with a two-loop structure controller, in the presence of parameter uncertainties and disturbances. For the outer loop, phase plane design is adopted for the simplified model under Bang-Bang controller to generate AOA command guaranteeing fast tracking performance. Modifications based on Feedback-Linearization(FL) technique are adopted to transform the phase trajectory into a sliding curve. Moreover, to resist mismatch between design model and actual model, Fast Exponential Reaching Law(FERL) is augmented with the baseline controller to maintain state on the sliding curve. The inner-loop controller is based on backstepping technique to track the AOA command generated by outer-loop controller. Barrier Lyapunov Function(BLF) design is employed to satisfy AOA requirement. Moreover, a novel auxiliary state is introduced to remove the restriction of BLF design on initial tracking errors. Dynamic Surface Control(DSC) is utilized to ease the computation burden. Rigorous stability proof is then given, and AOA is guaranteed to stay in predefined region theoretically. Simulations are conducted to verify the efficiency and superior performance of the proposed method.
基金financially supported by the National Natural Science Foundation of China(Nos.52071144,51831009 and 51621001)Guangzhou key research and development program(No.202103040001)。
文摘Fascinating with high specific capacity and moderate lithiation potential,SnO_(x)-based materials have been intensively investigated as one of the most promising anodes for lithium-ion batteries.However,due to poor cycling stability,sluggish reaction kinetics,and limited electrochemical reaction reversibility,the development of SnO_(x)-based anodes has been hindered.And the current preparation and modification routes for SnO_(x)-based anodes lack direct and specific illustration.Herein,modification routes for SnO_(x)-based anodes have been emphasized.Firstly,to provide more direct instructions,the tuning routes of morphological structure for SnO_(x)-based electrodes(including slurry-based and self-supported)have been thoroughly discussed from the preparation perspective.Secondly,according to the properties of SnO_(x)-based anodes,the phase structure design ideas have also been properly classified and organized for addressing chemical reaction kinetics or thermodynamic issues.Finally,for future-oriented studies,new insights into the development and commercialization prospects of SnO_(x)-based anodes are also provided.This review,with comprehensive information on SnO_(x)-based anodes,aims to bring more specific guidance and valuable inspiration for peer researchers who are promoting the application of SnO_(x)-based materials for energy conversion and storage devices.
基金financially supported by the National Natural Science Foundation of China (No. 51171048)the National High Technology Research and Development Program of China (No. 2014CB643701)the National Science and Technology Support Program of China (No. 2012BAE02B01)
文摘A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phase during the sintering process. Thus, the grain size and oxygen content were controlled via low-temperature sintering, resulting in high coercivity and maximum energy products. In addition, Ce formed massive agglomerations at the triple-point junctions, as confirmed by elemental mapping results. Transmission electron micros- copy (TEM) images indicated the presence of (Ce,Nd)Ox phases at grain boundaries. By controlling the composition and optimizing the preparation process, we successfully obtained Ce9Nd21FebalBx sintered magnets; the prepared magnets exhibited a residual induction, coerciv- ity, and energy product of 1.353 T, 759 kA/m, and 342 kJ/m3, respectively.
文摘A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elastic matrix. It is demon- strated that a pseudoelastic stress-strain loop in a macroscopic loading-unloading cy- cle can be obtained by microscopically stress induced forward and reverse martensitic transformations in the SMA particles. The relation between the macroscopic stress- strain response and the material parameters of the constituents of this composite is quantified through the micromechanics calculations, which reveals that the best duc- tility and thus the greatest energy absorption capacity of this novel microstructure can be obtained by the optimum material design.
文摘This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module com- prises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.
文摘This paper presents the design of a computational software system that enables solutions of multi-phase and multi-scale problems in mechanics. It demonstrated how mechanicians can design “process-driven” software systems directly, and that such efforts are more suitable in solving multi-phase or multi-scale problems, rather than utilizing the “data-driven” approaches of legacy network systems. Specifically, this paper demonstrates how this approach can be used to solve problems in flexible dynamics. Then it suggests a view of mechanics algorithms as ‘state equilibrium’ enforcers residing as servers, rather than as computer programs that solve field equations. It puts forth the need for identical input/output files to ensure widespread deployment on laptops. Then it presents an assessment of the laptop platform. A software system such as the one presented here can also be used to supply virtual environments, animations and entertainment/education software with physics.
文摘Geotechnical parameters derived from an intrusive cone penetration test(CPT)are used to asses mechanical properties to inform the design phase of infrastructure projects.However,local,in situ 1D measurements can fail to capture 3D subsurface variations,which could mean less than optimal design decisions for foundation engineering.By coupling the localised measurements from CPTs with more global 3D measurements derived from geophysical methods,a higher fidelity 3D overview of the subsurface can be obtained.Machine Learning(ML)may offer an effective means to capture all types of geophysical information associated with CPT data at a site scale to build a 2D or 3D ground model.In this paper,we present an ML approach to build a 3D ground model of cone resistance and sleeve friction by combining several CPT measurements with Multichannel Analysis of Surface Waves(MASW)and Electrical Resistivity Tomography(ERT)data on a land site characterisation project in the United Arab Emirates(UAE).To avoid a potential overfitting problem inherent to the use of machine learning and a lack of data at certain locations,we explore the possibility of using a prior Geo-Statistical(GS)approach that attempts to constrain the overfitting process by“artificially”increasing the amount of input data.A sensitivity study is also performed on input features used to train the ML algorithm to better define the optimal combination of input features for the prediction.Our results showed that ERT data were not useful in capturing 3D variations of geotechnical properties compared to Vs due to the geographical location of the site(200 m east from the Oman Gulf)and the possible effect of saline water intrusion.Additionally,we demonstrate that the use of a prior GS phase could be a promising and interesting means to make the prediction of ground properties more robust,especially for this specific case study described in this paper.Looking ahead,better representation of the subsurface can lead to a number of benefits for stakeholders involved in developing assets.Better ground/geotechnical models mean better site calibration of design methods and fewer design assumptions for reliability-based design,creating an opportunity for value engineering in the form of lighter construction without compromising safety,shorter construction timelines,and reduced resource requirements.