The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly comple...The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections.展开更多
Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overco...Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force.展开更多
The hyperloop idea,which is one of the most ecofriendly,low-carbon emissions,and fossil fuel-efficient modes of transportation,has recently become quite popular.In this study,a double-sided linear induction motor(LIM)...The hyperloop idea,which is one of the most ecofriendly,low-carbon emissions,and fossil fuel-efficient modes of transportation,has recently become quite popular.In this study,a double-sided linear induction motor(LIM)with 500 W of output power,60 N of thrust force and 200 V/38.58 Hz of supply voltage was designed to be used in hyperloop development competition hosted by the scientific and technological research council of turkey(TüB?TAK)rail transportation technologies institute(RUTE).In contrast to the studies in the literature,concentrated winding is preferred instead of distributed winding due to mechanical constraints.The electromagnetic design of LIM,whose mechanical and electrical requirements were determined considering the hyperloop development competition,was carried out by following certain steps.Then,the designed model was simulated and analyzed by finite element method(FEM),and the necessary optimizations have been performed to improve the motor characteristics.By examining the final model,the applicability of the concentrated winding type LIM for hyperloop technology has been investigated.Besides,the effects of primary material,railway material,and mechanical air-gap length on LIM performance were also investigated.In the practical phase of the study,the designed LIM has been prototyped and tested.The validation of the experimental results was achieved through good agreement with the finite element analysis results.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-p...In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.展开更多
The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and app...The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications.展开更多
In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still rel...In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.展开更多
This paper delves into the baseline design under the baseline parameterization model in experimental design, focusing on the relationship between the K-aberration criterion and the word length pattern (WLP) of regular...This paper delves into the baseline design under the baseline parameterization model in experimental design, focusing on the relationship between the K-aberration criterion and the word length pattern (WLP) of regular two-level designs. The paper provides a detailed analysis of the relationship between K5and the WLP for regular two-level designs with resolution t=3, and proposes corresponding theoretical results. These results not only theoretically reveal the connection between the orthogonal parameterization model and the baseline parameterization model but also provide theoretical support for finding the K-aberration optimal regular two-level baseline designs. It demonstrates how to apply these theories to evaluate and select the optimal experimental designs. In practical applications, experimental designers can utilize the theoretical results of this paper to quickly assess and select regular two-level baseline designs with minimal K-aberration by analyzing the WLP of the experimental design. This allows for the identification of key factors that significantly affect the experimental outcomes without frequently changing the factor levels, thereby maximizing the benefits of the experiment.展开更多
Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while...Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.展开更多
This paper explains how the optimized classrooms were selected and the results that were achieved by the optimizations carried out and finalized.The context of the research is the city of Concepción,in Chile.Virt...This paper explains how the optimized classrooms were selected and the results that were achieved by the optimizations carried out and finalized.The context of the research is the city of Concepción,in Chile.Virtual models of classrooms were evaluated using the Radiance software.We used a methodology that allowed us to determine the luminous conditions under different types of skies,seasons of the year and times of the day.The evaluation of the typologies was performed based on three defined criteria,in order to achieve the stated design objectives.We defined the optimal solutions for each orientation and,finally,we stated design recommendations for daylit classrooms to ensure the visual comfort of the students.These recommendations link all that found in the initial analysis with that found in the optimization stage.展开更多
Electromagnetic sandwich metastructure(ESM)consisting of different functional layers,has gained in-creasing attention in radiation prevention and radar stealth.However,the current ESM design is primar-ily based on the...Electromagnetic sandwich metastructure(ESM)consisting of different functional layers,has gained in-creasing attention in radiation prevention and radar stealth.However,the current ESM design is primar-ily based on the separation design method,ignoring electromagnetic-mechanical interactions between layers.Thus,subject to thin thickness constraint of ESM,it is a great challenge to achieve broadband microwave absorption(MA)and excellent mechanical performance simultaneously.To address this is-sue,an electromagnetic-mechanical collaborative design approach was proposed for ESM.The relations of geometric-electromagnetic and geometric-mechanical of ESM were first identified by machine learn-ing.They were then integrated with the heuristic genetic optimization algorithm to perform the highly efficient design.The designed ESM can achieve 36.4 GHz effective absorption bandwidth(EAB,RL≤-10 dB),334.3 MPa equivalent bending strength and 83 MPa compressive strength with a thickness of 9.3 mm,possessing the widest EAB and highest bending strength within the current available MA struc-tures(thickness less than 9.5 mm).The proposed approach provides an efficient tool for the design of electromagnetic-mechanical optimal ESM.展开更多
The use of microalgae to recover nitrogen and phosphorus from wastewater has garnered significant attention,positioning it as one of the most promising and sustainable strategies in modern wastewater treatment.While v...The use of microalgae to recover nitrogen and phosphorus from wastewater has garnered significant attention,positioning it as one of the most promising and sustainable strategies in modern wastewater treatment.While various photobioreactors(PBRs)configurations have been widely applied for microalgae cultivation,limited research has focused on optimizing PBR design specificallyto enhance nitrogen and phosphorus removal efficiency.The high operational costs of wastewater treatment,combined with the inherent variability of microalgal growth,have prompted the search for advanced solutions that improve nitrogen and phosphorus removal while minimizing resource consumption and enabling predictive process control.Recently,the integration of PBR systems with artificialintelligence and machine learning(AI/ML)modeling has emerged as a transformative approach to enhancing nutrient removal,particularly for nitrogen and phosphorus.This study firstsummarizes existing PBR designs tailored for diverse applications,then outlines strategies for system enhancement through the optimization of mixing methods,construction materials,light intensity,and light source configuration.Furthermore,computational fluiddynamics(CFD)and AI/ML modeling are presented as tools to guide the structural design and operational optimization of microalgae-based nitrogen and phosphorus removal processes.Finally,future research directions and key challenges are discussed.展开更多
[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin cont...[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.展开更多
Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fa...Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fatigue life.This paper introduces optimization methods like standardized module interfaces and variable density methods,as well as topics related to finite element simulation,reliability enhancement,innovative practices,and their significance.展开更多
The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool...The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted.展开更多
Surface morphology of Ceratocanthus beetle elytra was investigated for spike surface texture and its geometry using Scanning Electron Microscopy(SEM).Material properties were analyzed for both surface and cross-sectio...Surface morphology of Ceratocanthus beetle elytra was investigated for spike surface texture and its geometry using Scanning Electron Microscopy(SEM).Material properties were analyzed for both surface and cross-section of elytra using nano-indentation technique.The spike texture was significantly rigid compared with the non-textured zone;a bi-layer system of E and H was identified at the elytra cross-section.Normal load acting on spike texture during free-fall conditions was estimated analytically and deflection equation was derived.The design of spike texture with conical base was studied for minimization of deflection and volume using the Non-dominated Sorting Genetic Algorithm(NSGA-II)optimization technique,confirming the smart design of the natural solution.The frictional behavior of elytra was studied using fundamental tribology test and the role of the oriented spike texture was investigated for frictional anisotropy.Compression resistance of full beetle was evaluated for both conglobated and non-conglobated configuration and tensile strengths were compared using Brazilian test.Puncture and wear resistance of full elytra were characterized and correlated with its defense mechanism.展开更多
Placement optimization is a crucial phase in chip design,involving the strategic arrangement of cells within a limited region to enhance space utilization and reduce wirelength.Chip design enterprises need to optimize...Placement optimization is a crucial phase in chip design,involving the strategic arrangement of cells within a limited region to enhance space utilization and reduce wirelength.Chip design enterprises need to optimize the placement according to design rules to meet customer demands.While mixed-cell-height circuits are widely used in modern chip design,few studies have simultaneously considered the non-overlapping cells,rails alignment,and minimum implantation area constraints in the placement optimization problems.Hence,this study involves preprocessing the non-linear parts and developing a mixed-integer linear programming model to reduce the cost of legalizing chip placements for businesses.Furthermore,this study designs and implements an exact algorithm based on Benders decomposition,utilizing dual theory to obtain an optimal cut and iteratively solve for the coordinates of cells.Numerical experiments across various scales validate the performance of the algorithm.Through a detailed analysis of the shape of the chip region division,the proportion of different types of cells,the total number of cells and bins,and their impact on the placement,we derive some potentially useful design insights that can benefit chip design enterprises.展开更多
This paper focuses on the construction organization design of office building projects.It elucidates its concept,core elements,and characteristics,highlighting the shortcomings of traditional designs.The paper introdu...This paper focuses on the construction organization design of office building projects.It elucidates its concept,core elements,and characteristics,highlighting the shortcomings of traditional designs.The paper introduces the improvement effects of technologies such as prefabricated curtain walls,the collaborative optimization role of BIM technology,and various optimization methods,including the establishment of work breakdown structures and the creation of progress deviation warning systems.It also touches on aspects like green construction and risk management.Finally,it emphasizes the significance of optimizing construction organization design,addresses research deficiencies,and looks forward to future research directions.展开更多
Designing refractory high-entropy alloys(RHEAs)for high-temperature(HT)applications is an outstanding challenge given the vast possible composition space,which contains billions of candidates,and the need to optimize ...Designing refractory high-entropy alloys(RHEAs)for high-temperature(HT)applications is an outstanding challenge given the vast possible composition space,which contains billions of candidates,and the need to optimize across multiple objectives.Here,we present an approach that accelerates the discovery of RHEA compositions with superior strength and ductility by integrating machine learning(ML),genetic search,cluster analysis,and experimental design.We iteratively synthesize and characterize 24 predicted compositions after six feedback loops.Four compositions show outstanding combinations of HT yield strength and room-temperature(RT)ductility spanning the ranges of 714–1061 MPa and 17.2%–50.0%fracture strain,respectively.We identify an attractive alloy system,ZrNbMoHfTa,particularly the composition Zr_(0.13)Nb_(0.27)Mo_(0.26)Hf_(0.13)Ta_(0.21),which demonstrates a yield approaching 940 MPa at 1200℃ and favorable RT ductility with 17.2%fracture strain.The high yield strength at 1200℃ exceeds that reported for RHEAs,with 1200℃ exceeding the service temperature limit for nickel(Ni)-based superalloys.Our ML-based approach makes it possible to rapidly optimize multiple properties for materials design,thus overcoming the common problems of limited data and a vast composition space in complex materials systems while satisfying multiple objectives.展开更多
Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.Th...Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications.展开更多
基金financially supported by Guangdong Province Basic and Applied Basic Research Fund Project(Grant No.2022B1515250009)Liaoning Provincial Natural Science Foundation-Doctoral Research Start-up Fund Project(Grant No.2024-BSBA-05)+1 种基金Major Science and Technology Innovation Project in Shandong Province(Grant No.2024CXGC010803)the National Natural Science Foundation of China(Grant Nos.52271269 and 12302147).
文摘The umbilical,a key component in offshore energy extraction,plays a vital role in ensuring the stable operation of the entire production system.The extensive variety of cross-sectional components creates highly complex layout combinations.Furthermore,due to constraints in component quantity and geometry within the cross-sectional layout,filler bodies must be incorporated to maintain cross-section performance.Conventional design approaches based on manual experience suffer from inefficiency,high variability,and difficulties in quantification.This paper presents a multi-level automatic filling optimization design method for umbilical cross-sectional layouts to address these limitations.Initially,the research establishes a multi-objective optimization model that considers compactness,balance,and wear resistance of the cross-section,employing an enhanced genetic algorithm to achieve a near-optimal layout.Subsequently,the study implements an image processing-based vacancy detection technique to accurately identify cross-sectional gaps.To manage the variability and diversity of these vacant regions,the research introduces a multi-level filling method that strategically selects and places filler bodies of varying dimensions,overcoming the constraints of uniform-size fillers.Additionally,the method incorporates a hierarchical strategy that subdivides the complex cross-section into multiple layers,enabling layer-by-layer optimization and filling.This approach reduces manufac-turing equipment requirements while ensuring practical production process feasibility.The methodology is validated through a specific umbilical case study.The results demonstrate improvements in compactness,balance,and wear resistance compared with the initial cross-section,offering novel insights and valuable references for filler design in umbilical cross-sections.
基金financially supported in-part by the National Natural Science Foundation of China(52275011)the Natural Science Foundation of Guangdong Province(2023B1515020080)+3 种基金the Natural Science Foundation of Guangzhou(2024A04J2552)the Fundamental Research Funds for the Central Universities,the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST)(2021QNRC001)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011253)the Higher Education Institution Featured Innovation Project of Department of Education of Guangdong Province(GrantNo.2023KTSCX138).
文摘Moles exhibit highly effective capabilities due to their unique body structures and digging techniques,making them ideal models for biomimetic research.However,a major challenge for mole-inspired robots lies in overcoming resistance in granular media when burrowing with forelimbs.In the absence of effective forepaw design strategies,most robotic designs rely on increased power to enhance performance.To address this issue,this paper employs Resistive Force Theory to optimize mole-inspired forepaws,aiming to enhance burrowing efficiency.By analyzing the relationship between geometric parameters and burrowing forces,we propose several forepaw design variations.Through granular resistance assessments,an effective forepaw configuration is identified and further refined using parameters such as longitudinal and transverse curvature.Subsequently,the Particle Swarm Optimization algorithm is applied to determine the optimal forepaw design.In force-loading tests,the optimized forepaw demonstrated a 79.44%reduction in granular lift force and a 22.55%increase in propulsive force compared with the control group.In robotic burrowing experiments,the optimized forepaw achieved the longest burrow displacement(179.528 mm)and the lowest burrowing lift force(0.9355 mm/s),verifying its effectiveness in reducing the lift force and enhancing the propulsive force.
基金the Istanbul Technical University Scientific Research Projects Unit with grant number MGA-2022-43948。
文摘The hyperloop idea,which is one of the most ecofriendly,low-carbon emissions,and fossil fuel-efficient modes of transportation,has recently become quite popular.In this study,a double-sided linear induction motor(LIM)with 500 W of output power,60 N of thrust force and 200 V/38.58 Hz of supply voltage was designed to be used in hyperloop development competition hosted by the scientific and technological research council of turkey(TüB?TAK)rail transportation technologies institute(RUTE).In contrast to the studies in the literature,concentrated winding is preferred instead of distributed winding due to mechanical constraints.The electromagnetic design of LIM,whose mechanical and electrical requirements were determined considering the hyperloop development competition,was carried out by following certain steps.Then,the designed model was simulated and analyzed by finite element method(FEM),and the necessary optimizations have been performed to improve the motor characteristics.By examining the final model,the applicability of the concentrated winding type LIM for hyperloop technology has been investigated.Besides,the effects of primary material,railway material,and mechanical air-gap length on LIM performance were also investigated.In the practical phase of the study,the designed LIM has been prototyped and tested.The validation of the experimental results was achieved through good agreement with the finite element analysis results.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
文摘In order to accurately forecast the main engine fuel consumption and reduce the Energy Efficiency Operational Indicator(EEOI)of merchant ships in polar ice areas,the energy transfer relationship between ship-machine-propeller is studied by analyzing the complex force situation during ship navigation and building a MATLAB/Simulink simulation platform based on multi-environmental resistance,propeller efficiency,main engine power,fuel consumption,fuel consumption rate and EEOI calculation module.Considering the environmental factors of wind,wave and ice,the route is divided into sections,the calculation of main engine power,main engine fuel consumption and EEOI for each section is completed,and the speed design is optimized based on the simulation model for each section.Under the requirements of the voyage plan,the optimization results show that the energy efficiency operation index of the whole route is reduced by 3.114%and the fuel consumption is reduced by 9.17 t.
基金supported by the National Key R&D Program of China(Grant No.2024YFB3614600)the National Natural Science Foundation of China(Grant No.52402185)+1 种基金Guangzhou Basic and Applied Basic Research Foundation(Grant No.2025A1515011800)Shenzhen Science and Technology Program(Grant No.JCYJ20241202123712017)。
文摘The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications.
基金2024 Science and Technology Commissioner Service Group's Emergency Science and Technology Research Project for Wind Disaster Relief in Hainan Province(ZDYF2024YJGG002-8)China Huaneng Group Co.,Ltd.Headquarters Technology Project,Optimization of Photovoltaic Vegetable Greenhouse Structure and Research on Planting Agronomy in Tropical Regions(HNKJ22-HF77)。
文摘In the tropical regions represented by Hainan,there are abundant solar and thermal resources,and it is relatively suitable for the construction of photovoltaic greenhouse(PVG).However,the construction of PVG still relies mainly on experience and is incapable of quantifying the balance between the photovoltaic(PV)generation and the light requirements for agricultural production.As a result,actual PVGs are primarily PV-based,without carefully considering the needs of agricultural daylighting.To quantify the influence of the design parameters of PVGs and the layout of PV panels on the internal daylighting of serrated PVGs,and to optimize the daylighting design of the roof,this paper utilizes the Design Builder software to establish gradient models for a multi-span serrated-type PVG in tropical regions.Gradient models were established in terms of aspects,namely span,width of longitudinal/transverse daylighting strip,height,roof angle,and photovoltaic panel coverage rate(PCR).Daylighting in the greenhouse of each gradient model was simulated,and with the annual average daily light integral(A_(DLI))and distribution uniformity(DU)as evaluation indicators,the influence of various design parameters on the daylighting inside the greenhouse was quantified.The result reveals that:(1)PCR is the decisive indicator for daylighting in the PVG,and a function between PCR and the A_(DLI) is derived as A_(DLI)=-15.5 PCR+16.841;(2)Increasing the width of longitudinal daylighting strip significantly improves the A_(DLI) and enhances DU while increasing the span has a noticeable effect on improving A_(DLI) but does not significantly enhance DU;(3)Increasing the eave height without changing PCR does not enhance A_(DLI) but effectively improves DU;increasing the transverse daylighting strip and adjusting the roof angle hardly improves A_(DLI).In summary,it is recommended that the optimal span for PVGs in tropical regions be set within the range of 6.5-8.0m,and the eave height be set within the range of 2.5-3.5m.Preferably,the longitudinal daylighting strip with a width ranging from 0.5-0.8m should be installed.Based on the above relationship function,the PCR can be calculated according to the appropriate light demand for the cultivated crops.The daylighting design theory proposed in this paper can provide a theoretical basis and reference for the healthy development of the PV industry in tropical regions.
文摘This paper delves into the baseline design under the baseline parameterization model in experimental design, focusing on the relationship between the K-aberration criterion and the word length pattern (WLP) of regular two-level designs. The paper provides a detailed analysis of the relationship between K5and the WLP for regular two-level designs with resolution t=3, and proposes corresponding theoretical results. These results not only theoretically reveal the connection between the orthogonal parameterization model and the baseline parameterization model but also provide theoretical support for finding the K-aberration optimal regular two-level baseline designs. It demonstrates how to apply these theories to evaluate and select the optimal experimental designs. In practical applications, experimental designers can utilize the theoretical results of this paper to quickly assess and select regular two-level baseline designs with minimal K-aberration by analyzing the WLP of the experimental design. This allows for the identification of key factors that significantly affect the experimental outcomes without frequently changing the factor levels, thereby maximizing the benefits of the experiment.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZC20242194)the National Natural Science Foundation of China(Grant Nos.52175251 and 52205268)+1 种基金the Industry Key Technology Research Fund Project of Northwestern Polytechnical University(Grant No.HYGJXM202318)the National Basic Scientific Research Program(Grant No.JCKY2021206B005).
文摘Unlike traditional propeller-driven underwater vehicles,blended-wing-body underwater gliders(BWBUGs)achieve zigzag gliding through periodic adjustments of their net buoyancy,enhancing their cruising capabilities while mini-mizing energy consumption.However,enhancing gliding performance is challenging due to the complex system design and limited design experience.To address this challenge,this paper introduces a model-based,multidisciplinary system design optimization method for BWBUGs at the conceptual design stage.First,a model-based,multidisciplinary co-simulation design framework is established to evaluate both system-level and disciplinary indices of BWBUG performance.A data-driven,many-objective multidisciplinary optimization is subsequently employed to explore the design space,yielding 32 Pareto optimal solutions.Finally,a model-based physical system simulation,which represents the design with the largest hyper-volume contribution among the 32 final designs,is established.Its gliding perfor-mance,validated by component behavior,lays the groundwork for constructing the entire system’s digital prototype.In conclusion,this model-based,multidisciplinary design optimization method effectively generates design schemes for innovative underwater vehicles,facilitating the development of digital prototypes.
文摘This paper explains how the optimized classrooms were selected and the results that were achieved by the optimizations carried out and finalized.The context of the research is the city of Concepción,in Chile.Virtual models of classrooms were evaluated using the Radiance software.We used a methodology that allowed us to determine the luminous conditions under different types of skies,seasons of the year and times of the day.The evaluation of the typologies was performed based on three defined criteria,in order to achieve the stated design objectives.We defined the optimal solutions for each orientation and,finally,we stated design recommendations for daylit classrooms to ensure the visual comfort of the students.These recommendations link all that found in the initial analysis with that found in the optimization stage.
基金supported by the National Natural Sci-ence Foundation of China(Nos.52375383 and 52035011).
文摘Electromagnetic sandwich metastructure(ESM)consisting of different functional layers,has gained in-creasing attention in radiation prevention and radar stealth.However,the current ESM design is primar-ily based on the separation design method,ignoring electromagnetic-mechanical interactions between layers.Thus,subject to thin thickness constraint of ESM,it is a great challenge to achieve broadband microwave absorption(MA)and excellent mechanical performance simultaneously.To address this is-sue,an electromagnetic-mechanical collaborative design approach was proposed for ESM.The relations of geometric-electromagnetic and geometric-mechanical of ESM were first identified by machine learn-ing.They were then integrated with the heuristic genetic optimization algorithm to perform the highly efficient design.The designed ESM can achieve 36.4 GHz effective absorption bandwidth(EAB,RL≤-10 dB),334.3 MPa equivalent bending strength and 83 MPa compressive strength with a thickness of 9.3 mm,possessing the widest EAB and highest bending strength within the current available MA struc-tures(thickness less than 9.5 mm).The proposed approach provides an efficient tool for the design of electromagnetic-mechanical optimal ESM.
基金supported by the National Natural Science Foundation of China(22038012,U24A20543)the Science and Technology Pro-gram of Fujian Province,China(2025Y4001).
文摘The use of microalgae to recover nitrogen and phosphorus from wastewater has garnered significant attention,positioning it as one of the most promising and sustainable strategies in modern wastewater treatment.While various photobioreactors(PBRs)configurations have been widely applied for microalgae cultivation,limited research has focused on optimizing PBR design specificallyto enhance nitrogen and phosphorus removal efficiency.The high operational costs of wastewater treatment,combined with the inherent variability of microalgal growth,have prompted the search for advanced solutions that improve nitrogen and phosphorus removal while minimizing resource consumption and enabling predictive process control.Recently,the integration of PBR systems with artificialintelligence and machine learning(AI/ML)modeling has emerged as a transformative approach to enhancing nutrient removal,particularly for nitrogen and phosphorus.This study firstsummarizes existing PBR designs tailored for diverse applications,then outlines strategies for system enhancement through the optimization of mixing methods,construction materials,light intensity,and light source configuration.Furthermore,computational fluiddynamics(CFD)and AI/ML modeling are presented as tools to guide the structural design and operational optimization of microalgae-based nitrogen and phosphorus removal processes.Finally,future research directions and key challenges are discussed.
基金Supported by Huang Ruisong's National Famous Old Traditional Chinese Medicine Expert Inheritance Studio Construction Project[GuoZhongYiYaoRenJiaoHan(2022)75]Hospital Pharmacy Research Project of Guangxi Pharmaceutical Association(GXYXH-202404)+4 种基金2024 Youth Science Fund Project of International Zhuang Medical Hospital(2024GZYJKT005)High-level Traditional Chinese Medicine Key Discipline Construction Project of National Administration of Traditional Chinese Medicine(ZYYZDXK-2023165)National Old Pharmaceutical Workers Inheritance Studio Construction Project of National Administration of Traditional Chinese Medicine[GuoZhongYiYaoRenJiaoHan(2024)255]Talent Cultivation Project-"Young Crop Project"of International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine(2022001)Guangxi Traditional Chinese Medicine Multidisciplinary Innovation Team Project(GZKJ2309).
文摘[Objectives]To optimize the optimal extraction process of Qingdu Jianpi Mixture.[Methods]Taking water addition ratio,extraction time and extraction times as process investigation factors,psoralen content,astilbin content and dry extract yield as evaluation indicators,the main influencing factors and level range of the extraction process of Qingdu Jianpi Mixture were determined on the basis of single factor test method,and the optimal weight coefficient was screened by AHP-entropy method mixed with weighting method.Combined with L_(9)(3^(4))orthogonal experiment,the best extraction process was obtained.At the same time,thin-layer chromatographic identification was used to identify Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal liquid.[Results]The best extraction process:add 1:12 water to the prescription decoction pieces,extract under reflux for 2 times,1.5 h per time,and combine the filtrate to 250 mL.Thin layer chromatography analysis showed that the spots of Ficus simplicissima Lour.and Smilax glabra Roxb.in the medicinal solution were the same as those of reference substances at the corresponding positions,and the negative control had no interference.[Conclusions]The experimental method is reasonable and feasible,and the process is reliable,which can provide experimental reference for the subsequent application of in-hospital preparations and research and development of Qingdu Jianpi Mixture.
文摘Materials mechanics and structural dynamics provide theoretical support for the structural optimization of amusement facilities.The design code system guides the design process,covering aspects such as strength and fatigue life.This paper introduces optimization methods like standardized module interfaces and variable density methods,as well as topics related to finite element simulation,reliability enhancement,innovative practices,and their significance.
基金Supported by the National Natural Science Foundation of China(Grant Nos.52375448,52275440).
文摘The CNC machine tool is the fundamental equipment of the manufacturing industry,particularly in sectors where achieving high levels of accuracy is crucial.Geometric accuracy design is an important step in machine tool design and plays an essential role in determining the machining accuracy of the workpiece.Researchers have extensively studied methods to model,extract,optimize,and measure the geometric errors that affect the geometric accuracy of machine tools.This paper provides a comprehensive review of the state-of-the-art approaches and an overview of the latest research progress associated with geometric accuracy design in CNC machine tools.This paper explores the interrelated aspects of CNC machine tool accuracy design:modeling,analysis and optimization.Accuracy analysis,which includes geometric error modeling and sensitivity analysis,determines a machine tool’s output accuracy through its volumetric error model,given the known accuracy of its individual components.Conversely,accuracy allocation designs the accuracy of the machine tool components according to given output accuracy requirements to achieve optimization between the objectives of manufacturing cost,quality,reliability,and environmental impact.In addition to discussing design factors and evaluation methods,this paper outlines methods for verifying the accuracy of design results,aiming to provide a practical basis for ensuring that the designed accuracy is achieved.Finally,the challenges and future research directions in geometric accuracy design are highlighted.
基金supported by Ministero Universitàe Ricerca(MUR-PRIN 20222022ATZCJN AMPHYBIA)CUP N.E53D23003040006Ministero dell'istruzione dell'universitàe della ricerca(MIUR-PON 2018 PROSCAN)CUP N.E96C18000440008European Union NextGenerationEU PNRR Spoke 7 CN00000013 HPC CUP N.E63C22000970007.
文摘Surface morphology of Ceratocanthus beetle elytra was investigated for spike surface texture and its geometry using Scanning Electron Microscopy(SEM).Material properties were analyzed for both surface and cross-section of elytra using nano-indentation technique.The spike texture was significantly rigid compared with the non-textured zone;a bi-layer system of E and H was identified at the elytra cross-section.Normal load acting on spike texture during free-fall conditions was estimated analytically and deflection equation was derived.The design of spike texture with conical base was studied for minimization of deflection and volume using the Non-dominated Sorting Genetic Algorithm(NSGA-II)optimization technique,confirming the smart design of the natural solution.The frictional behavior of elytra was studied using fundamental tribology test and the role of the oriented spike texture was investigated for frictional anisotropy.Compression resistance of full beetle was evaluated for both conglobated and non-conglobated configuration and tensile strengths were compared using Brazilian test.Puncture and wear resistance of full elytra were characterized and correlated with its defense mechanism.
基金supported by the National Natural Science Foundation of China(72025103,72394360,72394362,and 72361137001)the Project of Science and Technology Commission of Shanghai Municipality,China(23JC1402200).
文摘Placement optimization is a crucial phase in chip design,involving the strategic arrangement of cells within a limited region to enhance space utilization and reduce wirelength.Chip design enterprises need to optimize the placement according to design rules to meet customer demands.While mixed-cell-height circuits are widely used in modern chip design,few studies have simultaneously considered the non-overlapping cells,rails alignment,and minimum implantation area constraints in the placement optimization problems.Hence,this study involves preprocessing the non-linear parts and developing a mixed-integer linear programming model to reduce the cost of legalizing chip placements for businesses.Furthermore,this study designs and implements an exact algorithm based on Benders decomposition,utilizing dual theory to obtain an optimal cut and iteratively solve for the coordinates of cells.Numerical experiments across various scales validate the performance of the algorithm.Through a detailed analysis of the shape of the chip region division,the proportion of different types of cells,the total number of cells and bins,and their impact on the placement,we derive some potentially useful design insights that can benefit chip design enterprises.
文摘This paper focuses on the construction organization design of office building projects.It elucidates its concept,core elements,and characteristics,highlighting the shortcomings of traditional designs.The paper introduces the improvement effects of technologies such as prefabricated curtain walls,the collaborative optimization role of BIM technology,and various optimization methods,including the establishment of work breakdown structures and the creation of progress deviation warning systems.It also touches on aspects like green construction and risk management.Finally,it emphasizes the significance of optimizing construction organization design,addresses research deficiencies,and looks forward to future research directions.
基金financial support of the National Key Research and Development Program of China(2021YFB3802100)the National Natural Science Foundation of China(52203293)the Innovation Centre of Nuclear Materials Fund(ICNM-2022-ZH-02).
文摘Designing refractory high-entropy alloys(RHEAs)for high-temperature(HT)applications is an outstanding challenge given the vast possible composition space,which contains billions of candidates,and the need to optimize across multiple objectives.Here,we present an approach that accelerates the discovery of RHEA compositions with superior strength and ductility by integrating machine learning(ML),genetic search,cluster analysis,and experimental design.We iteratively synthesize and characterize 24 predicted compositions after six feedback loops.Four compositions show outstanding combinations of HT yield strength and room-temperature(RT)ductility spanning the ranges of 714–1061 MPa and 17.2%–50.0%fracture strain,respectively.We identify an attractive alloy system,ZrNbMoHfTa,particularly the composition Zr_(0.13)Nb_(0.27)Mo_(0.26)Hf_(0.13)Ta_(0.21),which demonstrates a yield approaching 940 MPa at 1200℃ and favorable RT ductility with 17.2%fracture strain.The high yield strength at 1200℃ exceeds that reported for RHEAs,with 1200℃ exceeding the service temperature limit for nickel(Ni)-based superalloys.Our ML-based approach makes it possible to rapidly optimize multiple properties for materials design,thus overcoming the common problems of limited data and a vast composition space in complex materials systems while satisfying multiple objectives.
基金financially supported by National Natural Science Foundation of China (Nos.62305392 and 62305123)Independent Research and Development Project of Naval Engineering University (No.2023504050)the Nursery Plan Project of Navel University of Engineering (2022)。
文摘Optimization and simplification of optical systems represent a milestone in advancing the development of handheld and portable laser-induced breakdown spectroscopy(LIBS)systems towards smaller,more integrated forms.This research,for the first time,conducted a comprehensive optimization design and comparative analysis of three compact LIBS system optical paths:the paraxial optical path(OP),the off-axis OP,and the reflective OP.The differences in spectral intensity and stability among these paths were revealed,providing a scientific basis for selecting the optimal OP for LIBS systems.The research found that the paraxial OP excels in spectral performance and quantitative analysis accuracy,making it the preferred choice for compact LIBS systems.Specifically,the paraxial OP significantly enhances spectral intensity,achieving a 6 times improvement over the off-axis OP and an even more remarkable 150 times increase compared to the reflective OP,greatly enhancing detection sensitivity.Additionally,the relative standard deviation,spectral stability index,maintains a consistently low level,ranging from 10.9%to 13.4%,significantly outperforming the other two OPs and ensuring the reliability of analytical results.In the field of quantitative analysis,the paraxial OP also demonstrates higher accuracy,precision,and sensitivity,comparing to other OPs.The quantitative analysis models for Si,Cu,and Ti elements exhibit excellent fitting,providing users with high-quality quantitative analysis results that are of great significance for applications in material science,environmental monitoring,industrial inspection,and other fields.In summary,this study not only confirms the enormous application potential of the paraxial OP in compact LIBS systems but also provides valuable practical experience and theoretical support for the miniaturization and integration of LIBS systems.Looking ahead,with continuous technological advancements,the design of the paraxial OP is expected to further propel the widespread adoption of LIBS technology in portable,on-site detection applications.