The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and app...The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications.展开更多
Frankfurt am Main,7 April 2o25.Textile interior design at its best is an inte-gral part of Heimtextil,the most inftuentiailand giobai platform for home and contracttextiles as well as textile design.PatriciaUrquiola e...Frankfurt am Main,7 April 2o25.Textile interior design at its best is an inte-gral part of Heimtextil,the most inftuentiailand giobai platform for home and contracttextiles as well as textile design.PatriciaUrquiola expressed this spectacularly inJaruary in Frankfuirt with her installation'among-us'.展开更多
A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and ...A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysi...This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.展开更多
Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into...Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory.展开更多
Labubu has become a global star,from Paris and New York to London and Milan.These charming figurines from Chinese toy manufacturer Pop Mart,with their soft fur,expressive eyes,pointed teeth and rabbit ears,have captiv...Labubu has become a global star,from Paris and New York to London and Milan.These charming figurines from Chinese toy manufacturer Pop Mart,with their soft fur,expressive eyes,pointed teeth and rabbit ears,have captivated buyers both in shops and online.展开更多
Urban underutilized spaces,often the secondary by-products of large infrastructure projects,are often overlooked,despite their potential to enhance city life.With meaningful design interventions,these neglected areas ...Urban underutilized spaces,often the secondary by-products of large infrastructure projects,are often overlooked,despite their potential to enhance city life.With meaningful design interventions,these neglected areas can be transformed into inclusive public environments that offer social,environmental,and cultural value.This research investigates how modular,temporary installations beneath Toronto’s Gardiner Expressway,in Canada,can enhance thermal comfort and foster community engagement during the shoulder seasons.Using a multi-step methodology,including literature review,thermal comfort guidelines,site-specific climate analysis,and precedent studies,the research identifies key design strategies tailored to the unique microclimatic and social conditions of under-bridge spaces.The study culminates in the proposal of a flexible system of movable panels that provide wind protection,solar control,and opportunities for gathering,interaction,and rest.By reimagining these unnoticed infrastructure zones as adaptable,climate-responsive public spaces,this research contributes to sustainable urban design and highlights the importance of design strategies that address the challenges of a warming and increasingly variable climate.展开更多
G protein coupled receptor kinase 2 (GRK2) is a kinase that regulates cardiac signaling activity. Inhibiting GRK2 is a promising mechanism for the treatment of heart failure (HF). Further development and optimization ...G protein coupled receptor kinase 2 (GRK2) is a kinase that regulates cardiac signaling activity. Inhibiting GRK2 is a promising mechanism for the treatment of heart failure (HF). Further development and optimization of inhibitors targeting GRK2 are highly meaningful. Therefore, in order to design GRK2 inhibitors with better performance, the most active molecule was selected as a reference compound from a data set containing 4-pyridylhydrazone derivatives and triazole derivatives, and its scaffold was extracted as the initial scaffold. Then, a powerful optimization-based framework for de novo drug design, guided by binding affinity, was used to generate a virtual molecular library targeting GRK2. The binding affinity of each virtual compound in this dataset was predicted by our developed deep learning model, and the designed potential compound with high binding affinity was selected for molecular docking and molecular dynamics simulation. It was found that the designed potential molecule binds to the ATP site of GRK2, which consists of key amino acids including Arg199, Gly200, Phe202, Val205, Lys220, Met274 and Asp335. The scaffold of the molecule is stabilized mainly by H-bonding and hydrophobic contacts. Concurrently, the reference compound in the dataset was also simulated by docking. It was found that this molecule also binds to the ATP site of GRK2. In addition, its scaffold is stabilized mainly by H-bonding and π-cation stacking interactions with Lys220, as well as hydrophobic contacts. The above results show that the designed potential molecule has similar binding modes to the reference compound, supporting the effectiveness of our framework for activity-focused molecular design. Finally, we summarized the interaction characteristics of general GRK2 inhibitors and gained insight into their molecule-target binding mechanisms, thereby facilitating the expansion of lead to hit compound.展开更多
Combining practical engineering projects, this article analyzes the design strategies for the reconstruction and expansion of insufficient clearance sections in highway interchanges. This includes an overview of the p...Combining practical engineering projects, this article analyzes the design strategies for the reconstruction and expansion of insufficient clearance sections in highway interchanges. This includes an overview of the project, a comparison of design options for insufficient clearance in interchanges, and the main design strategies for reconstruction and expansion. It is hoped that this analysis can provide a reference for the design of such road reconstruction and expansion projects.展开更多
Dental caries,a chronic disease characterized by tooth decay,occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria,especially Streptococcus mutans,because of its acidog...Dental caries,a chronic disease characterized by tooth decay,occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria,especially Streptococcus mutans,because of its acidogenic,aciduric,and biofilm-forming capabilities.Developing novel targeted anti-virulence agents is always a focal point in caries control to overcome the limitations of conventional anti-virulence agents.The current study represents an up-to-date review of in silico approaches of drug design against dental caries,which have emerged more and more powerful complementary to biochemical attempts.Firstly,we categorize the in silico approaches into computer-aided drug design(CADD)and AI-assisted drug design(AIDD)and highlight the specific methods and models they contain respectively.Subsequently,we detail the design of anti-virulence drugs targeting single or multiple cariogenic virulence targets of S.mutans,such as glucosyltransferases(Gtfs),antigen I/II(AgI/II),sortase A(SrtA),the VicRK signal transduction system and superoxide dismutases(SODs).Finally,we outline the current opportunities and challenges encountered in this field to aid future endeavors and applications of CADD and AIDD in anti-virulence drug design.展开更多
With the advancement of globalization,South Korea has become a key destination for international students.However,these students often face challenges in adapting to daily life,particularly when using mobile banking a...With the advancement of globalization,South Korea has become a key destination for international students.However,these students often face challenges in adapting to daily life,particularly when using mobile banking applications,due to insufficient language support,cultural differences,and complex operational procedures.This study focuses on Chinese international students and analyzes the UI/UX design of mobile banking applications offered by Kookmin Bank and Hana Bank.Through literature reviews and surveys,the study identifies limitations in language adaptability,functionality layout,user interaction,and cultural adaptation,proposing concrete design improvements.The findings indicate that optimizing UI/UX design can significantly enhance international students’user experience and strengthen the global competitiveness of South Korean mobile banking services.This research provides reference material for designing for multicultural user groups and aims to promote research and practice in cross-cultural UI/UX design.展开更多
From decorative and furniture fabrics to wallpaper,flooring and carpets,to mattresses,bed linen and table linen,Heimtextil brings together a diverse product range for holistic interior design January 13-16,2026.Interi...From decorative and furniture fabrics to wallpaper,flooring and carpets,to mattresses,bed linen and table linen,Heimtextil brings together a diverse product range for holistic interior design January 13-16,2026.Interior designers and buyers from the hospitality and retail sectors find the latest textile and non-textile material innovations under one roof.Leading brands and promising newcomers have already announced their participation.The new hall layout creates targeted synergies for an efficient trade fair visit.展开更多
Since the reform and opening up,the development approach targeting urban economic growth has led to a sharp increase in the proportion of impervious hardened surfaces in cities and significant waste of natural resourc...Since the reform and opening up,the development approach targeting urban economic growth has led to a sharp increase in the proportion of impervious hardened surfaces in cities and significant waste of natural resources.The urgent need for water ecological civilization construction is of great significance to the continuation of human civilization in the long run.This paper focuses on the urban waterfront landscape design of the Chongqing Institute of Engineering section of the Huaxi River in Banan District,emphasizing the concept of“symbiosis”.Using site cultural symbols as a medium to connect the campus and the city on both sides of the river,returning the riverbank to the people,restoring the ecological space of the riverfront,enriching the landscape belt,promoting the protection of bird and fish habitats,and stimulating the vitality of the riverbank space;it aims to pave the way for ecological restoration,functional expansion,landscape renewal,and riverfront space activation at the study site.展开更多
Urban memory is the soul and vitality of the city, which is created and maintained by people’s memory of the living environment. However, urban planning and architecture increasingly lose attention to urban memory, r...Urban memory is the soul and vitality of the city, which is created and maintained by people’s memory of the living environment. However, urban planning and architecture increasingly lose attention to urban memory, resulting in the loss of uniqueness of urban appearance, and then affect people’s sense of identity of the city. Therefore, using the theory of typology for reference, a new design tool - urban memory typology is proposed, which focuses on and introduces historical elements into urban design, and maintains urban memory through the protection of cultural heritage. This method involves clarifying the intrinsic relationship between existing buildings and urban space through typology theory, identifying carriers of urban memory, and, on this basis, proposing strategies and technologies for urban renewal. This study verifies the validity of urban memory typology through case analysis, such as the conservation planning of Qingdao Old city. The results show that using the typology theory can protect the city memory, maintain the stability of the city form, and enhance the local identity of the residents, which is a new method of urban planning and design in line with the concept of humanistic care and sustainable development. This research work provides new theoretical guidance and practical strategies for the protection of urban memory and urban planning and design.展开更多
Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasin...Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.展开更多
The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) metho...The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) method to address these limitations. In the vLEC method, the waverider is directly designed from the preassigned leading edge and the variable shock angle distribution based on the Leading-Edge Cone (LEC) concept. Since the vLEC method is an approximate method, two test waveriders are designed and evaluated using numerical simulations to validate the shock design accuracy and the effectiveness of the vLEC method. The results show that the shocks of the test waveriders coincide well with the preassigned positions. Furthermore, four specifically designed application cases are conducted to analyze the performance benefits of the vLEC waveriders. The results of these cases indicate that, due to their variable shock angle distributions, the vLEC waveriders exhibit higher lift-to-drag ratios and better longitudinal static stability than conventional waveriders. Additionally, the vLEC waveriders demonstrate superior volumetric capacities near the symmetry plane, albeit with a minor decrease in volumetric efficiency.展开更多
With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simu...With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simulations of the unit,including the passive pattern and active devices,requiring high data acquisition and training costs.In addition,for passive patterns,the widely employed random pixe-lated method presents design efficiency and effectiveness challenges due to the massive pixel combina-tions and blocked excitation current flow in discrete patterns.To overcome these two critical problems,we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture.First,a non-uniform rational B-spline(NURBS)is introduced to represent continuous pat-terns and solve excitation current flow issues.This representation makes it possible to finely tune con-tinuous patterns with several control points,greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization.Then,employing multiport network theory to separate the passive pat-tern and active device from the unit,the separate design architecture significantly reduces the dataset acquisition cost by 62.5%.Through multistep multiport calculation,the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response,thereby achieving dataset and model reuse for different RIS designs.With a hybrid continuous-discrete optimization algorithm,three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm.Our work offers an efficient solution for RIS automatic design,and the resulting structure is expected to boost RIS appli-cations in the fields of wireless communication and sensing.展开更多
基金supported by the National Key R&D Program of China(Grant No.2024YFB3614600)the National Natural Science Foundation of China(Grant No.52402185)+1 种基金Guangzhou Basic and Applied Basic Research Foundation(Grant No.2025A1515011800)Shenzhen Science and Technology Program(Grant No.JCYJ20241202123712017)。
文摘The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications.
文摘Frankfurt am Main,7 April 2o25.Textile interior design at its best is an inte-gral part of Heimtextil,the most inftuentiailand giobai platform for home and contracttextiles as well as textile design.PatriciaUrquiola expressed this spectacularly inJaruary in Frankfuirt with her installation'among-us'.
基金co-supported by National Key R&D Program of China(No.2022YFB4602003)Key Project of National Natural Science Foundation of China(No.12032018)+2 种基金Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110489)National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research(No.52375380)National Key Research and Development Program of China(No.2022YFB3402200)。
文摘A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金Chongqing Engineering University Undergraduate Innovation and Entrepreneurship Training Program Project:Wireless Fire Automatic Alarm System(Project No.:CXCY2024017)Chongqing Municipal Education Commission Science and Technology Research Project:Development and Research of Chongqing Wireless Fire Automatic Alarm System(Project No.:KJQN202401906)。
文摘This article explores the design of a wireless fire alarm system supported by advanced data fusion technology.It includes discussions on the basic design ideas of the wireless fire alarm system,hardware design analysis,software design analysis,and simulation analysis,all supported by data fusion technology.Hopefully,this analysis can provide some reference for the rational application of data fusion technology to meet the actual design and application requirements of the system.
文摘Neuroscience (also known as neurobiology) is a science that studies the structure, function, development, pharmacology and pathology of the nervous system. In recent years, C. Cotardo has introduced coding theory into neuroscience, proposing the concept of combinatorial neural codes. And it was further studied in depth using algebraic methods by C. Curto. In this paper, we construct a class of combinatorial neural codes with special properties based on classical combinatorial structures such as orthogonal Latin rectangle, disjoint Steiner systems, groupable designs and transversal designs. These neural codes have significant weight distribution properties and large minimum distances, and are thus valuable for potential applications in information representation and neuroscience. This study provides new ideas for the construction method and property analysis of combinatorial neural codes, and enriches the study of algebraic coding theory.
文摘Labubu has become a global star,from Paris and New York to London and Milan.These charming figurines from Chinese toy manufacturer Pop Mart,with their soft fur,expressive eyes,pointed teeth and rabbit ears,have captivated buyers both in shops and online.
文摘Urban underutilized spaces,often the secondary by-products of large infrastructure projects,are often overlooked,despite their potential to enhance city life.With meaningful design interventions,these neglected areas can be transformed into inclusive public environments that offer social,environmental,and cultural value.This research investigates how modular,temporary installations beneath Toronto’s Gardiner Expressway,in Canada,can enhance thermal comfort and foster community engagement during the shoulder seasons.Using a multi-step methodology,including literature review,thermal comfort guidelines,site-specific climate analysis,and precedent studies,the research identifies key design strategies tailored to the unique microclimatic and social conditions of under-bridge spaces.The study culminates in the proposal of a flexible system of movable panels that provide wind protection,solar control,and opportunities for gathering,interaction,and rest.By reimagining these unnoticed infrastructure zones as adaptable,climate-responsive public spaces,this research contributes to sustainable urban design and highlights the importance of design strategies that address the challenges of a warming and increasingly variable climate.
基金supported by the National Natural Science Foundation of China Excellent Young Scientist Fund(22422801)the National Natural Science Foundation of China General Project(22278053)+1 种基金the National Natural Science Foundation of China General Project(22078041)Dalian High-level Talents Innovation Support Program(2023RQ059).
文摘G protein coupled receptor kinase 2 (GRK2) is a kinase that regulates cardiac signaling activity. Inhibiting GRK2 is a promising mechanism for the treatment of heart failure (HF). Further development and optimization of inhibitors targeting GRK2 are highly meaningful. Therefore, in order to design GRK2 inhibitors with better performance, the most active molecule was selected as a reference compound from a data set containing 4-pyridylhydrazone derivatives and triazole derivatives, and its scaffold was extracted as the initial scaffold. Then, a powerful optimization-based framework for de novo drug design, guided by binding affinity, was used to generate a virtual molecular library targeting GRK2. The binding affinity of each virtual compound in this dataset was predicted by our developed deep learning model, and the designed potential compound with high binding affinity was selected for molecular docking and molecular dynamics simulation. It was found that the designed potential molecule binds to the ATP site of GRK2, which consists of key amino acids including Arg199, Gly200, Phe202, Val205, Lys220, Met274 and Asp335. The scaffold of the molecule is stabilized mainly by H-bonding and hydrophobic contacts. Concurrently, the reference compound in the dataset was also simulated by docking. It was found that this molecule also binds to the ATP site of GRK2. In addition, its scaffold is stabilized mainly by H-bonding and π-cation stacking interactions with Lys220, as well as hydrophobic contacts. The above results show that the designed potential molecule has similar binding modes to the reference compound, supporting the effectiveness of our framework for activity-focused molecular design. Finally, we summarized the interaction characteristics of general GRK2 inhibitors and gained insight into their molecule-target binding mechanisms, thereby facilitating the expansion of lead to hit compound.
文摘Combining practical engineering projects, this article analyzes the design strategies for the reconstruction and expansion of insufficient clearance sections in highway interchanges. This includes an overview of the project, a comparison of design options for insufficient clearance in interchanges, and the main design strategies for reconstruction and expansion. It is hoped that this analysis can provide a reference for the design of such road reconstruction and expansion projects.
基金supported by the Sichuan Science and Technology Program,China(Grant Nos.:2023ZYD0105 and 2023YFS0343)。
文摘Dental caries,a chronic disease characterized by tooth decay,occupies the second position in terms of disease burden and is primarily caused by cariogenic bacteria,especially Streptococcus mutans,because of its acidogenic,aciduric,and biofilm-forming capabilities.Developing novel targeted anti-virulence agents is always a focal point in caries control to overcome the limitations of conventional anti-virulence agents.The current study represents an up-to-date review of in silico approaches of drug design against dental caries,which have emerged more and more powerful complementary to biochemical attempts.Firstly,we categorize the in silico approaches into computer-aided drug design(CADD)and AI-assisted drug design(AIDD)and highlight the specific methods and models they contain respectively.Subsequently,we detail the design of anti-virulence drugs targeting single or multiple cariogenic virulence targets of S.mutans,such as glucosyltransferases(Gtfs),antigen I/II(AgI/II),sortase A(SrtA),the VicRK signal transduction system and superoxide dismutases(SODs).Finally,we outline the current opportunities and challenges encountered in this field to aid future endeavors and applications of CADD and AIDD in anti-virulence drug design.
文摘With the advancement of globalization,South Korea has become a key destination for international students.However,these students often face challenges in adapting to daily life,particularly when using mobile banking applications,due to insufficient language support,cultural differences,and complex operational procedures.This study focuses on Chinese international students and analyzes the UI/UX design of mobile banking applications offered by Kookmin Bank and Hana Bank.Through literature reviews and surveys,the study identifies limitations in language adaptability,functionality layout,user interaction,and cultural adaptation,proposing concrete design improvements.The findings indicate that optimizing UI/UX design can significantly enhance international students’user experience and strengthen the global competitiveness of South Korean mobile banking services.This research provides reference material for designing for multicultural user groups and aims to promote research and practice in cross-cultural UI/UX design.
文摘From decorative and furniture fabrics to wallpaper,flooring and carpets,to mattresses,bed linen and table linen,Heimtextil brings together a diverse product range for holistic interior design January 13-16,2026.Interior designers and buyers from the hospitality and retail sectors find the latest textile and non-textile material innovations under one roof.Leading brands and promising newcomers have already announced their participation.The new hall layout creates targeted synergies for an efficient trade fair visit.
基金Chongqing Institute of Engineering School-level Project:Research on Urban Waterfront Landscape Design Based on the Concept of River Ecological Restoration-Taking the Section of Chongqing Institute of Engineering on Huaxi River as an Example(Project No.:2022xskz02)。
文摘Since the reform and opening up,the development approach targeting urban economic growth has led to a sharp increase in the proportion of impervious hardened surfaces in cities and significant waste of natural resources.The urgent need for water ecological civilization construction is of great significance to the continuation of human civilization in the long run.This paper focuses on the urban waterfront landscape design of the Chongqing Institute of Engineering section of the Huaxi River in Banan District,emphasizing the concept of“symbiosis”.Using site cultural symbols as a medium to connect the campus and the city on both sides of the river,returning the riverbank to the people,restoring the ecological space of the riverfront,enriching the landscape belt,promoting the protection of bird and fish habitats,and stimulating the vitality of the riverbank space;it aims to pave the way for ecological restoration,functional expansion,landscape renewal,and riverfront space activation at the study site.
文摘Urban memory is the soul and vitality of the city, which is created and maintained by people’s memory of the living environment. However, urban planning and architecture increasingly lose attention to urban memory, resulting in the loss of uniqueness of urban appearance, and then affect people’s sense of identity of the city. Therefore, using the theory of typology for reference, a new design tool - urban memory typology is proposed, which focuses on and introduces historical elements into urban design, and maintains urban memory through the protection of cultural heritage. This method involves clarifying the intrinsic relationship between existing buildings and urban space through typology theory, identifying carriers of urban memory, and, on this basis, proposing strategies and technologies for urban renewal. This study verifies the validity of urban memory typology through case analysis, such as the conservation planning of Qingdao Old city. The results show that using the typology theory can protect the city memory, maintain the stability of the city form, and enhance the local identity of the residents, which is a new method of urban planning and design in line with the concept of humanistic care and sustainable development. This research work provides new theoretical guidance and practical strategies for the protection of urban memory and urban planning and design.
基金supported by Shanghai Science and Technology Commission Project(No.21DZ1201502)Shanghai Municipal Bureau of Ecology and Environment(Shanghai Environ-mental Science[2023]No.40)+1 种基金the Interdisciplinary Joint Research Project of Tongji University(No.2022-4-YB-12)Shanghai Science and Technology Commission Project(No.22DZ2200200).
文摘Over the past century,advancements in chemistry have significantly propelled human innovation,enhancing both industrial and consumer products.However,this rapid progression has resulted in chemical pollution increasingly surpassing planetary boundaries,as production and release rates have outpaced our monitoring capabilities.To catalyze more impactful efforts,this study transitions from traditional chemical assessment to inverse chemical design,introducing a generative graph latent diffusion model aimed at discovering safer alternatives.In a case study on the design of green solvents for cyclohexane/benzene extraction distillation,we constructed a design database encompassing functional,environmental hazards,and process constraints.Virtual screening of previous design dataset revealed distinct trade-off trends between these design requirements.Based on the screening outcomes,an unconstrained generative model was developed,which covered a broader chemical space and demonstrated superior capabilities for structural interpolation and extrapolation.To further optimize molecular generation towards desired properties,a multi-objective latent diffusion method was applied,yielding 19 candidate molecules.Of these,7 were identified in PubChem as the most viable green solvent candidates,while the remaining 12 as potential novel candidates.Overall,this study effectively designed green solvent candidates for safer and more sustainable industrial production,setting a promising precedent for the development of environmentally friendly alternatives in other areas of chemical research.
基金supported by grants from the National Natural Science Foundation of China(No.U20B2006)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110145)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2022QNRC001).
文摘The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) method to address these limitations. In the vLEC method, the waverider is directly designed from the preassigned leading edge and the variable shock angle distribution based on the Leading-Edge Cone (LEC) concept. Since the vLEC method is an approximate method, two test waveriders are designed and evaluated using numerical simulations to validate the shock design accuracy and the effectiveness of the vLEC method. The results show that the shocks of the test waveriders coincide well with the preassigned positions. Furthermore, four specifically designed application cases are conducted to analyze the performance benefits of the vLEC waveriders. The results of these cases indicate that, due to their variable shock angle distributions, the vLEC waveriders exhibit higher lift-to-drag ratios and better longitudinal static stability than conventional waveriders. Additionally, the vLEC waveriders demonstrate superior volumetric capacities near the symmetry plane, albeit with a minor decrease in volumetric efficiency.
基金supported by the National Key Research and Development Program of China(2023YFB3811502)the National Science Foundation of China(62225108)+5 种基金the Fundamental Research Funds for the Central Universities(2242022k60003)the National Natural Science Foundation of China(62288101 and 62201139)the Jiangsu Province Frontier Leading Technology Basic Research Project(BK20212002)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the Fundamental Research Funds for the Central Universities(2242024RCB0005 and 2242024K30009)the 111 Project(111-2-05).
文摘With digital coding technology,reconfigurable intelligent surfaces(RISs)become powerful real-time sys-tems for manipulating electromagnetic(EM)waves.However,most automatic RIS designs involve exten-sive numerical simulations of the unit,including the passive pattern and active devices,requiring high data acquisition and training costs.In addition,for passive patterns,the widely employed random pixe-lated method presents design efficiency and effectiveness challenges due to the massive pixel combina-tions and blocked excitation current flow in discrete patterns.To overcome these two critical problems,we propose a versatile RIS design paradigm with efficient topology representation and a separate design architecture.First,a non-uniform rational B-spline(NURBS)is introduced to represent continuous pat-terns and solve excitation current flow issues.This representation makes it possible to finely tune con-tinuous patterns with several control points,greatly reducing the pattern solution space by 20-fold and facilitating RIS optimization.Then,employing multiport network theory to separate the passive pat-tern and active device from the unit,the separate design architecture significantly reduces the dataset acquisition cost by 62.5%.Through multistep multiport calculation,the multistate EM responses of the RIS under different structural combinations can be quickly obtained with only one prediction of pattern response,thereby achieving dataset and model reuse for different RIS designs.With a hybrid continuous-discrete optimization algorithm,three examples—including two typical high-performance RISs and an ultra-wideband multilayer RIS—are provided to validate the superiority of our paradigm.Our work offers an efficient solution for RIS automatic design,and the resulting structure is expected to boost RIS appli-cations in the fields of wireless communication and sensing.