Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN mo...Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively.展开更多
This paper applies genetic simulated annealing algorithm (SAGA) to solving geometric constraint problems. This method makes full use of the advantages of SAGA and can handle under-/over- constraint problems naturally....This paper applies genetic simulated annealing algorithm (SAGA) to solving geometric constraint problems. This method makes full use of the advantages of SAGA and can handle under-/over- constraint problems naturally. It has advantages (due to its not being sensitive to the initial values) over the Newton-Raphson method, and its yielding of multiple solutions, is an advantage over other optimal methods for multi-solution constraint system. Our experiments have proved the robustness and efficiency of this method.展开更多
On the basis of current development of urban rail transit complex in China,this paper proposed that it is necessary to build a complete landscape design system of urban traffic complex.Combined with the concept of sus...On the basis of current development of urban rail transit complex in China,this paper proposed that it is necessary to build a complete landscape design system of urban traffic complex.Combined with the concept of sustainable urban landscape design,this paper explored landscape design of urban rail transit complex from the macroscopic,mesocopic and microscopic perspective,and analyzed many design cases to provide references for the sustainable landscape design of urban rail transit complex in China.展开更多
In nature,animals adapt themselves to different states in response to environmental changes for the purposes of alarming danger,courtship,protection,and so forth,which are realized by altering in-body molecules or mic...In nature,animals adapt themselves to different states in response to environmental changes for the purposes of alarming danger,courtship,protection,and so forth,which are realized by altering in-body molecules or microstructures.For example,chameleons will change skin colors(Figure 1A)to attract the attention of mates or warn potential enemies,and the color variation is closely related to the molecules released by pigment cells.Inspired by these smart behaviors,scientists are endeavoring to explore and design smart materials for advanced applications,which are demanded to achieve an intelligent,sustainable,and comfortable human life in the future.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.2024JBZY021)the National Natural Science Foundation of China (No.61575018)。
文摘Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively.
文摘This paper applies genetic simulated annealing algorithm (SAGA) to solving geometric constraint problems. This method makes full use of the advantages of SAGA and can handle under-/over- constraint problems naturally. It has advantages (due to its not being sensitive to the initial values) over the Newton-Raphson method, and its yielding of multiple solutions, is an advantage over other optimal methods for multi-solution constraint system. Our experiments have proved the robustness and efficiency of this method.
文摘On the basis of current development of urban rail transit complex in China,this paper proposed that it is necessary to build a complete landscape design system of urban traffic complex.Combined with the concept of sustainable urban landscape design,this paper explored landscape design of urban rail transit complex from the macroscopic,mesocopic and microscopic perspective,and analyzed many design cases to provide references for the sustainable landscape design of urban rail transit complex in China.
基金supported by the Science and Technology Project of State Grid Corpora-tion of China(5700-202399630A-3-2-ZN)the National Natural Science Foundation of China(52173241)the Youth Top-notch Talents Program of Chongqing(cstc2024ycjh-bgzxm0132 and CQYC20220511198).
文摘In nature,animals adapt themselves to different states in response to environmental changes for the purposes of alarming danger,courtship,protection,and so forth,which are realized by altering in-body molecules or microstructures.For example,chameleons will change skin colors(Figure 1A)to attract the attention of mates or warn potential enemies,and the color variation is closely related to the molecules released by pigment cells.Inspired by these smart behaviors,scientists are endeavoring to explore and design smart materials for advanced applications,which are demanded to achieve an intelligent,sustainable,and comfortable human life in the future.