期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
Salinization-Desalinization (SDS) Processes—A Linkage between Hula Valley and Lake Kinneret Ecosystem Management
1
作者 Moshe Gophen 《Open Journal of Ecology》 2024年第9期731-746,共16页
The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two... The salinization process resulted in agricultural damage in the Hula Valley and water quality deterioration in Lake Kinneret. Therefore, salinization-desalinization (SDS) processes have been emphasized in the last two decades. Global and regional extreme climatological events and water scarcity strengthen the link between Hula Valley and Lake Kinneret management design. A bond between optimizing Hula agricultural maintenance and Kinneret water quality protection is conclusively suggested. Saline contribution originated from the southern Hula Valley region to the underground and surface water is higher than from the northern organic soil. The impact of eastern water Intrusion from the Golan Heights as surface waters, river discharge and underground seepage into the Hula Valley represent north-south gradient enhancement. Salinized surface water contribution from the Hula Valley to Lake Kinneret is unwanted because presently Kinneret desalinization management policy is critically required. The present salinization of surface and underground water in the Hula Valley indicates the upper limit suitable for agricultural crop optimization and the decline of salinity is crucial. Enhancement of the portion of Jordan water within the total balance in the valley is beneficial for Hula agricultural crops but serves as a disadvantage to Kinneret desalinization implementation. Therefore, the enhancement of lake water exchange is recommended. 展开更多
关键词 Hula Valley Lake Kinneret SALINIZATION desalinization
在线阅读 下载PDF
An overview of photothermal materials for solar-driven interfacial evaporation 被引量:1
2
作者 Yiming Fang Huimin Gao +4 位作者 Kaiting Cheng Liang Bai Zhengtong Li Yadong Zhao Xingtao Xu 《Chinese Chemical Letters》 2025年第3期6-15,共10页
The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the p... The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity,primarily because of its affordability and minimal energy usage.Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials.In solar interfacial evaporation,photothermal materials exhibit a wide range of additional characteristics,but a systematic overview is lacking.This paper encompasses an examination of various categories and principles pertaining to photothermal materials,as well as the structural design considerations for salt-resistant materials.Additionally,we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment.Furthermore,potential solutions to enhance the durability of photothermal materials are also highlighted,such as the rational design of micro/nano-structures,the use of adhesives,the addition of anti-corrosion coatings,and the preparation of self-healing surfaces.The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances,presenting a guide for the forthcoming advancement of solar evaporation technology. 展开更多
关键词 Solar-driven interfacial evaporation Desalination Wastewater treatment Photothermal material SALT-RESISTANCE Durability
原文传递
Locally Enhanced Flow and Electric Fields Through a Tip Effect for Efficient Flow‑Electrode Capacitive Deionization
3
作者 Ziquan Wang Xiangfeng Chen +5 位作者 Yuan Zhang Jie Ma Zhiqun Lin Amor Abdelkader Maria‑Magdalena Titirici Libo Deng 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期1-17,共17页
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer... Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability. 展开更多
关键词 Flow-electrode Capacitive deionization Current collector Tip effect DESALINATION
在线阅读 下载PDF
Dynamic Regulation of Hydrogen Bonding Networks and Solvation Structures for Synergistic Solar‑Thermal Desalination of Seawater and Catalytic Degradation of Organic Pollutants
4
作者 Ming‑Yuan Yu Jing Wu +3 位作者 Guang Yin Fan‑Zhen Jiao Zhong‑Zhen Yu Jin Qu 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期548-565,共18页
Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herei... Although solar steam generation strategy is efficient in desalinating seawater,it is still challenging to achieve continuous solar-thermal desalination of seawater and catalytic degradation of organic pollutants.Herein,dynamic regulations of hydrogen bonding networks and solvation structures are realized by designing an asymmetric bilayer membrane consisting of a bacterial cellulose/carbon nanotube/Co_(2)(OH)_(2)CO_(3)nanorod top layer and a bacterial cellulose/Co_(2)(OH)_(2)CO_(3)nanorod(BCH)bottom layer.Crucially,the hydrogen bonding networks inside the membrane can be tuned by the rich surface–OH groups of the bacterial cellulose and Co_(2)(OH)_(2)CO_(3)as well as the ions and radicals in situ generated during the catalysis process.Moreover,both SO_(4)^(2−)and HSO_(5)−can regulate the solvation structure of Na^(+)and be adsorbed more preferentially on the evaporation surface than Cl^(−),thus hindering the de-solvation of the solvated Na^(+)and subsequent nucleation/growth of NaCl.Furthermore,the heat generated by the solar-thermal energy conversion can accelerate the reaction kinetics and enhance the catalytic degradation efficiency.This work provides a flow-bed water purification system with an asymmetric solar-thermal and catalytic membrane for synergistic solar thermal desalination of seawater/brine and catalytic degradation of organic pollutants. 展开更多
关键词 Solar steam generation Seawater desalination Catalytic degradation Bacterial cellulose Cobalt hydroxycarbonate nanorods
在线阅读 下载PDF
A Parametrical Comprehensive Review of Solar Assisted Humidification-Dehumidification Desalination Units
5
作者 Zahrah F.Hussein Abas Ramiar Karima E.Amori 《Frontiers in Heat and Mass Transfer》 2025年第3期765-817,共53页
The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination... The deficiency of potable water resources and energy supply is emerging as a significant and concerning obstacle to sustainable development.Solar and waste heat-powered humidification dehumidification(HDH)desalination systems become essential due to the severe impacts of global warming and water shortages.This problem highlights the need to apply boosted water desalination solutions.Desalination is a capital-intensive process that demands considerable energy,predominantly sourced fromfossil fuels worldwide,posing a significant carbon footprint risk.HDH is a very efficient desalination method suitable for remote areas with moderate freshwater requirements for domestic and agricultural usage.Several operational and maintenance concerns are to blame.The flow and thermal balances of humidifiers and dehumidifiers under the right conditions are crucial for system efficiency.These systems comprise a humidifier and dehumidifier,energy foundations for space or process heating and electricity generation,fluid transfer or efficiency enhancement accessories,and measurement-control devices.All technologies that enhance the performance of HDH systems are elucidated in this work.These are utilizing efficient components,renewable energy,heat recovery via multi-effect and multi-stage processes,waste heat-powered,and accelerating humidification and dehumidification processes through pressure variation or employing heat pumps,in addition to exergy and economical analyses.According to the present work,the seawater HDH system is feasible for freshwater generation.Regarding economics and gain output ratio,humidification–dehumidification is a viable approach for decentralized small-scale freshwater production applications,but it needs significant refinement.Systemproductivity of fresh water is much higher with integrated solar water heating than with solar air heating.The HDH offers the lowest water yield cost per liter and ideal system productivity when paired with a heat pump.The suggested changes aim to enhance system and process efficiency,reducing electrical energy consumption and cost-effective,continuous,decentralized freshwater production.This thorough analysis establishes a foundation for future research on energy and exergy cycles based on humidification and dehumidification. 展开更多
关键词 DESALINATION solar desalination HUMIDIFICATION-DEHUMIDIFICATION energy EXERGY performance solar power
在线阅读 下载PDF
Biomass-derived nitrogen-doped porous carbon as a sustainable flowelectrode material for enhanced capacitive deionization
6
作者 Hongyang Liu Li Zhang +9 位作者 Jiali Cai Siyu Liu Cuijiao Zhao Shuyu Wang Mengyu Zhao Menglong Liu Wenwen Ding Hongjian Zhou Weiji Dai Saifang Huang 《Chinese Journal of Chemical Engineering》 2025年第7期244-253,共10页
Freshwater scarcity has emerged as a critical global environmental challenge.Flow-electrode capacitive deionization(FCDI)represents a promising technology for achieving efficient and low-energy seawater desalination.T... Freshwater scarcity has emerged as a critical global environmental challenge.Flow-electrode capacitive deionization(FCDI)represents a promising technology for achieving efficient and low-energy seawater desalination.This study presents a novel flow-electrode material,nitrogen-doped porous carbon(NPC),which is derived from biomass and demonstrates both cost-effectiveness and high performance.The NPC material is synthesized from bean shells through high-temperature pre-carbonization followed by activation with KHCO_(3),resulting in a rich porous structure,increased specific surface area,and high graphitization degree,which collectively confer superior capacitance performance compared to activated carbon(AC).Desalination experiments indicate that the FCDI performance of the NPC flow-electrode surpasses that of the AC flow-electrode.Specifically,at a voltage of 2.5 V in a 6 g·L^(-1)NaCl solution,the NPC system achieves an average salt removal rate(ASRR)of 104.9 μg·cm^(-2)·min^(-1),with a charge efficiency(CE)of 94.0%and an energy consumption(EC)of only 4.4 kJ·g^(-1).Furthermore,the NPC-based FCDI system exhibits commendable desalination cycling stability,maintaining relatively stable energy consumption and efficiency after prolonged continuous desalination cycles.This research holds significant implications for the advancement of environmentally friendly,low-cost,high-performance FCDI systems for large-scale applications. 展开更多
关键词 Biomass Activation DESALINATION N-DOPED Flow-electrode
在线阅读 下载PDF
Desalination Brine Discharge in Morocco
7
作者 Zineb Chari Essediya Cherkaoui +1 位作者 Mohamed Khamar Abderrahman Nounah 《Journal of Environmental & Earth Sciences》 2025年第3期166-177,共12页
Seawater desalination has been considered an important solution for water scarcity in coastal areas.Morocco,with its 3,500 km long coastline,has seen significant growth in population and industrial activities in recen... Seawater desalination has been considered an important solution for water scarcity in coastal areas.Morocco,with its 3,500 km long coastline,has seen significant growth in population and industrial activities in recent years.The dams that supply water to most regions of Morocco have faced periods of drought.This led the government to start a large-scale seawater desalination project that shall produce over 2 MM m^(3)/year.The most common environmental impact associated with desalination plants is the high concentration brine discharge which can alter the physical,chemical,and biological properties of the receiving water body,In fact,the increasing number of desalination plants along the coastline amplifies the potential risks that brine discharges pose to marine ecosystems.This highlights the critical need for regulations to manage pollutant concentrations in water,both at the discharge point(Effluent Standards-ES)and in the receiving environment(Ambient Standards-AS).Law 36-15,in its Article 72,grants any natural or legal person,whether public or private,the right to carry out seawater desalination to meet their own water needs or those of other users,in accordance with current legislation and regulations.However,the definition of regulations concerning marine environmental aspects and the substantial limits for discharges has not yet been specified.Indeed,these regulations will need to be developed with due consideration for the local biodiversity.These regulations should also take into account the technical criteria required to determine the compliance point and define the boundaries of the brine discharge impact zone. 展开更多
关键词 DROUGHT DESALINATION Environmental Impact Brine Discharge REGULATIONS Marine
在线阅读 下载PDF
Electrospun Membranes of Hydrophobic Polyimide and NH_(2)-UiO-66 Nanocomposite for Desalination
8
作者 Seungju Kim Jue Hou +1 位作者 Namita Roy Choudhury Sandra EKentish 《Energy & Environmental Materials》 2025年第2期264-272,共9页
Hydrophobic nanofiber composite membranes comprising polyimide and metal-organic frameworks are developed for desalination via direct contact membrane distillation(DCMD).Our study demonstrates the synthesis of hydroph... Hydrophobic nanofiber composite membranes comprising polyimide and metal-organic frameworks are developed for desalination via direct contact membrane distillation(DCMD).Our study demonstrates the synthesis of hydrophobic polyimides with trifluoromethyl groups,along with superhydrophobic UiO-66(hMOF)prepared by phenylsilane modification on the metal-oxo nodes.These components are then combined to create nanofiber membranes with improved hydro ph obi city,ensuring long-term stability while preserving a high water flux.Integration of hMOF into the polymer matrix further increases membrane hydrophobic properties and provides additional pathways for vapor transport during MD.The resulting nanofiber composite membranes containing 20 wt%of hMOFs(PI-1-hMOF-20)were able to desalinate hypersaline feed solution of up to 17 wt%NaCl solution,conditions that are beyond the capability of reverse osmosis systems.These membranes demonstrated a water flux of 68.1 kg m^(-2)h^(-1) with a rejection rate of 99.98%for a simulated seawater solution of 3.5 wt%NaCl at 70℃,while maintaining consistent desalination performance for 250 h. 展开更多
关键词 DESALINATION ELECTROSPINNING membrane distillation metal organic frameworks POLYIMIDE
在线阅读 下载PDF
Charged functional groups modified porous spherical hollow carbon material as CDI electrode for salty water desalination
9
作者 Yushan Ni Yunlong Pu +3 位作者 Jie Zhang Weiyan Cui Mingjun Gao Dongjiang You 《Journal of Environmental Sciences》 2025年第3期254-267,共14页
As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC... As a new electrochemical technology,capacitive deionization(CDI)has been increasingly applied in environmental water treatment and seawater desalination.In this study,functional groups modified porous hollow carbon(HC)were synthesized as CDI electrode material for removing Na^(+)and Cl^(−)in salty water.Results showed that the average diameter of HC was approximately 180 nm,and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups,respectively.The sulfonic acid functionalized HC(HC-S)showed better electrochemical and desalting performance than the amino-functionalized HC(HC–N),with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl.Additionally,92.63%capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S.The main findings prove that HC-S is viable as an electrodematerial for desalination by high-performance CDI applications. 展开更多
关键词 Hollow carbon Functional groups DESALINATION Capacitive deionization
原文传递
Next-Generation Desalination Membranes Empowered by Novel Materials:Where Are We Now?
10
作者 Siqi Wu Lu Elfa Peng +4 位作者 Zhe Yang Pulak Sarkar Mihail Barboiu Chuyang Y.Tang Anthony G.Fane 《Nano-Micro Letters》 2025年第4期308-331,共24页
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity.However,state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materia... Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity.However,state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements.These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes(e.g.,NaCl).Still,in real applications,the results fall below the theoretical predictions,and a few properties,including large-scale fabrication,mechanical strength,and chemical stability,also have an impact on the overall effectiveness of those materials.In view of this,we develop a new evaluation framework in the form of radar charts with five dimensions(i.e.,water permeance,water/NaCl selectivity,membrane cost,scale of development,and stability)to assess the advantages,disadvantages,and potential of state-of-the-art and newly developed desalination membranes.In this framework,the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes.This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes.In this review,we also point out the prospects and challenges of next-generation membranes for desalination applications.We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology,leading to new insights and advancements. 展开更多
关键词 Novel materials Desalination membranes Reverse osmosis Evaluation framework Separation performance
在线阅读 下载PDF
Stable radicals in bacteria composites hybridized by a doubly-strapped perylene diimide for near-infrared photothermal conversion
11
作者 Jingjing Zhang Fei Yang +4 位作者 Liying Zhang Ran Li Guo Wang Yanqing Xu Wei Wei 《Chinese Chemical Letters》 2025年第7期386-390,共5页
Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in a... Radical anions of electron-deficient perylene diimides(PDI)are attractive near-infrared(NIR)absorbers for photothermal conversion;however,their stability is often compromised by strong aggregation and reoxidation in air.Herein,we present a class of bacterial composites hybridized with a newly synthesized doubly-strapped PDI cyclophane,termed“Gemini Box”(GBox-3^(4+)),which features air-stable PDI radicals for NIR photothermal conversion.The effective spatial isolation provided by the double-sided cationic molecular straps allows GBox-3^(4+)to completely suppress chromophore aggregation,even in concentrated aqueous solutions up to 2 mmol/L,thereby preserving its characteristic fluorescence for live-cell imaging.After incubation of bacteria with GBox-3^(4+),the radical species PDI·-have been found to stably exist in the bacterial composites under ambient conditions,both in aqueous suspension and solid forms.Further experiments demonstrate that the air stability of the radical species relies on the simultaneous presence of the doubly-strapped PDI dye and the bacteria.Moreover,the dye-bacterial composites exhibited an high-efficiency NIR photothermal effect with high durability,enabling their application as photothermal agents for seawater desalination.This work provides a new access to the in situ fabrication of photothermal materials from biomass,relying on the rational molecular design and the unique microenvironment of bacteria. 展开更多
关键词 Perylene diimides Bacteria composites Spatial insulation Photothermal conversion Seawater desalination
原文传递
Recent advance in utilization of advanced composite photothermal materials for water disinfection:Synthesis,mechanism,and application
12
作者 Ruiting Ni Kwame Nana Opoku +3 位作者 Xingrong Li Yarao Gao Yanyun Wang Fu Yang 《Chinese Chemical Letters》 2025年第9期171-179,共9页
Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials... Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials offer a promising alternative strategy for solving water disinfection challenges.This technology effectively destroys bacterial biofilms by designing materials with controlled photothermal properties.Despite the potential of this technology,there is a lack of comprehensive reviews on the application of photothermal materials in water disinfection.The aim of this paper is to provide a comprehensive and up-to-date overview of the research and application of photothermal materials in water disinfection.It focuses on composites in photothermal materials,elucidates their basic mechanisms and sterilization properties,and provides a systematic and detailed overview of their recent progress in the field.The goal of this review is to offer insights into the future design of photothermal materials and to propose strategies for their practical application in disinfection processes. 展开更多
关键词 Photothermal antimicrobial material Composite material Water disinfection DESALINATION Water purification
原文传递
The recent progress of transition metal dichalcogenides-based photothermal materials for solar water generation
13
作者 Chen Gu Huacao Ji +5 位作者 Keyu Xu Jianmei Chen Kang Chen Junan Pan Ning Sun Longlu Wang 《Chinese Chemical Letters》 2025年第8期7-17,共11页
At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenid... At present,many parts of the world are seriously short of water resources.Photothermal seawater desalination has been considered to be an efficient and clean way to solve water shortages.Transition metal dichalcogenides(TMDs)has excellent photothermal properties and plays a key role in photothermal seawater desalination.In recent years,a lot of progress has been made regarding TMDs in photothermal seawater desalination,so it is necessary to review the progress of TMDs structure regulation in improving photothermal properties to further enhance the development of this filed.In this review,firstly,various structural regulation methods of TMDs to optimize its properties and improve the performance of photothermal seawater desalination are comprehensively summarized.Secondly,the relationship between unique structure and its photothermal properties of TMDs is further detailedly discussed.Last but not least,we have provided some suggestions in the solar desalination applying TMDs in future.This review would provide a very important reference for the research of structure regulation of TMDs for effective photothermal seawater desalination. 展开更多
关键词 Transition metal dichalcogenides Photothermal seawater desalination Structureregulation Composite material Saltdeposition
原文传递
Nature-Inspired Upward Hanging Evaporator with Photothermal 3D Spacer Fabric for Zero-Liquid-Discharge Desalination
14
作者 Ye Peng Yang Shao +3 位作者 Longqing Zheng Haoxuan Li Meifang Zhu Zhigang Chen 《Nano-Micro Letters》 2026年第1期545-561,共17页
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa... While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination. 展开更多
关键词 DESALINATION Solar interfacial evaporation Biomimetic design Zero liquid discharge Thermal management
在线阅读 下载PDF
Corrosion resistance of modified carbon steel in thermal membrane coupling desalination system
15
作者 Li-yun Wu Zhong Zheng +3 位作者 Zhang-fu Yuan Liang Liao Yan-gang Zhang Lin-fei Zhao 《Journal of Iron and Steel Research International》 2025年第5期1413-1426,共14页
A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated ... A hydrophobic composite coating was obtained on the carbon steel surface through electrochemical deposition of a copper coating in a sulfate solution and chemical vapor deposition of a carbon fiber film.It alleviated the serious corrosion problem of carbon steel on the evaporator of hot film coupled seawater desalination system in harsh marine environment.The morphologies and compositions of the coatings were analyzed,revealing the influence of electrodeposition time on their performance.The micro-nano copper structure formed by electrodeposition significantly improved the deposition effect of carbon layer.Additionally,experiments with seawater solution contact angle tests indicated that electrodeposition transformed the surface properties from hydrophilic to hydrophobic,effectively inhibiting the diffusion of corrosive medium into the interior of the substrate.Through polarization curves,electrochemical impedance spectroscopy,and other analyses,it was demonstrated that the hydrophobic coating significantly improves the corrosion resistance of carbon steel substrates in seawater environments,surpassing the performance of traditional duplex steel. 展开更多
关键词 Carbon steel Chemical vapor deposition Corrosion Thermal membrane coupling Seawater desalination
原文传递
Multiscale Biomimetic Evaporators Based on Liquid Metal/Polyacrylonitrile Composite Fibers for Highly Efficient Solar Steam Generation
16
作者 Yuxuan Sun Dan Liu +3 位作者 Fei Zhang Xiaobo Gao Jie Xue Qingbin Zheng 《Nano-Micro Letters》 2025年第6期93-111,共19页
Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency sola... Solar steam generation(SSG)offers a cost-effective solution for producing clean water by utilizing solar energy.However,integrating effective thermal management and water transportation to develop high-efficiency solar evaporators remains a significant challenge.Here,inspired by the hierarchical structure of the stem of bird of paradise,a three-dimensional multiscale liquid metal/polyacrylonitrile(LM/PAN)evaporator is fabricated by assembling LM/PAN fibers.The strong localized surface plasmon resonance of LM particles and porous structure of LM/PAN fibers with interconnected channels lead to efficient light absorption up to 90.9%.Consequently,the multiscale biomimetic LM/PAN evaporator achieves an outstanding water evaporation rate of 2.66 kg m^(-2)h^(-1)with a solar energy efficiency of 96.5%under one sun irradiation and an exceptional water rate of 2.58 kg m^(-2)h^(-1)in brine.Additionally,the LM/PAN evaporator demonstrates a superior purification performance for seawater,with the concentration of Na^(+),Mg^(2+),K^(+)and Ca^(2+)in real seawater dramatically decreased by three orders to less than 7 mg L^(-1) after desalination under light irradiation.The multiscale LM/PAN evaporator with hierarchical structure regulates the water transportation as well as thermal management for highly effective solar-driven evaporation,providing valuable insight into the structural design principles for advanced SSG systems. 展开更多
关键词 Liquid metal POLYACRYLONITRILE Composite fibers Solar steam generation Seawater desalination
在线阅读 下载PDF
Bioinspired oxygen-locking property electrocatalysts enable highly efficient electrochemical ozone production for sea sand desalination
17
作者 Zhaoyu Chen Ben Zhang +8 位作者 Shuyan Lu Guanfeng Xue Qianzhi Gou Jiacheng Wang Ruduan Yuan Juanxiu Xiao Li Li John Wang Meng Li 《Journal of Energy Chemistry》 2025年第8期929-938,共10页
Electrochemical ozone(O_(3))production(EOP)faces a critical challenge due to the competitive oxygen evolution reaction(OER),which severely limits ozone yields.Inspired by the oxygen-binding mechanism of heme,we design... Electrochemical ozone(O_(3))production(EOP)faces a critical challenge due to the competitive oxygen evolution reaction(OER),which severely limits ozone yields.Inspired by the oxygen-binding mechanism of heme,we designed a biomimetic catalyst,FePP@SnO_(2)@CA,by electrodepositing iron porphyrin(FePP)onto SnO_(2)@CA nanosheets,endowing it with an“oxygen-locking property”to suppress competing OER.This catalyst demonstrates exceptional EOP performance,achieving an ozone production rate of 8.9 mmol cm^(−2)h^(−1)and a Faraday efficiency(FE)of 20.46%±1.6%.DFT calculations confirm that Fe–O_(2)interactions stabilize O_(2)*intermediates,redirecting the reaction pathway from OER to ozone generation and reducing the O–O coupling energy barrier,thereby enabling thermodynamic selectivity control.In addition,when FePP@SnO_(2)@CA is used as a dual-functional material for sea sand desalination,the chlorine removal efficiency can reach 52.7%.This work provides a novel bioinspired strategy for EOP catalyst design and broadens the application potential of FePP@SnO_(2)@CA in sustainable technologies. 展开更多
关键词 EOP Oxygen-locking property Sea sand desalination DFT
在线阅读 下载PDF
Conjugated Polymer Hydrogel:A Highly Efficient Material of Solar Water Purification
18
作者 Hanyi Zou Xinye Xu +1 位作者 Mutian Yao Baoyang Lu 《Journal of Polymer Materials》 2025年第2期339-358,共20页
The global scarcity of clean water is an escalating issue due to climate change,population growth,and pollution.Traditional water purification technologies,while effective,often require significant energy input and co... The global scarcity of clean water is an escalating issue due to climate change,population growth,and pollution.Traditional water purification technologies,while effective,often require significant energy input and complex infrastructure,limiting their accessibility.This review explores the use of conjugated polymer hydrogels as a promising solution for solar water purification.Conjugated polymer hydrogels offer unique advantages,including high photothermal conversion efficiency,effective heat management,and rapid water transport,which are crucial for efficient solar-driven water evaporation.By leveraging the properties of these hydrogels,it is possible to significantly reduce the energy required for water evaporation,making them a cost-effective and scalable option for producing potable water from seawater or wastewater.This review discusses the principles of solar water purification using conjugated polymer hydrogels,strategies to enhance their performance through material and structural design,and their applications in pollutant removal and desalination.Additionally,it addresses the advantages and limitations of these materials,providing insights into their potential future development and applications in sustainable water purification technologies. 展开更多
关键词 Conjugated polymer hydrogel solar water purification photothermal conversion interfacial evaporation DESALINATION
在线阅读 下载PDF
Coal pitch-based nanosheets enhance the electronic and ionic transport of flow electrode capacitive deionization
19
作者 Jincai Ran Zhaoyang Song +1 位作者 Qiongqiong He Zhenyong Miao 《International Journal of Mining Science and Technology》 2025年第5期691-702,共12页
High-salinity wastewater treatment has always been a challenging issue.In this study,coal tar pitch was used as the carbon source and melamine as the nitrogen source to prepare coal tar pitch-based nanosheets(CPN-9)us... High-salinity wastewater treatment has always been a challenging issue.In this study,coal tar pitch was used as the carbon source and melamine as the nitrogen source to prepare coal tar pitch-based nanosheets(CPN-9)using a salt-template method.The desalination performance of CPN-9 was evaluated using flow-electrode capacitive deionization technology.The results showed that CPN-9 has a high specific surface area(466.34 m^(2)/g),a rich pore structure(micro-/meso-pore volume was 0.28),excellent rheological properties,and hydrophilicity(contact angle of 20.44°),thereby accelerating ion transport.Electrochemical results indicated that CPN-9 exhibits a significant double-layer ion storage mechanism,with a specific capacitance of 176.66 F/g at a current density of 0.5 A/g.CPN-9 has a very low charge transfer resistance.The synergistic effect of aromatic carbon and nitrogen doping(the content of pyrrole and pyridine nitrogen was 36.40%and 35.83%,respectively)in coal tar pitch accelerates electron transfer in CPN-9.The good ion diffusion performance and low impedance of CPN-9 accelerate the ion exchange rate,resulting in outstanding desalination performance.At 1.2 V and 3%mass loading,with a CPN-9 to conductive carbon black ratio of 4:1,the average desalination rate,charge efficiency,and energy consumption reached 0.039 mg/(cm^(2)·min),48.47%,and 0.012 kWh/mol,respectively.In summary,this study optimized the structure of CPN-9 from the perspective of electronic and ionic transport,enhancing its desalination performance and providing theoretical support for the deionization of high-salinity wastewater. 展开更多
关键词 Flow electrode capacitor deionization Coal pitch Mine water DESALINATION
在线阅读 下载PDF
Reliability Analysis of a 2D Model of a Solar Still Developed Using Comsol® Multiphysics
20
作者 Manampy Randrianantenaina Tsiry Angelos Andriamanampisoa +3 位作者 Mino Patricia Randrianarison Karl Zimmermann Harry Chaplin Edouard Andrianarison 《Open Journal of Modelling and Simulation》 2025年第1期20-50,共31页
Solar stills represent a promising solution for desalinating saline waters, providing a sustainable alternative in regions with limited access to drinking water. This study evaluates the reliability of a two-dimension... Solar stills represent a promising solution for desalinating saline waters, providing a sustainable alternative in regions with limited access to drinking water. This study evaluates the reliability of a two-dimensional (2D) numerical model of a solar still, developed using COMSOL® Multiphysics software, focusing on a passive cascading device called “Pano Rano.” Two physical prototypes were constructed: one with a standard concrete basin and the other with acrylic plastic. The simulations revealed significant differences in theoretical yield based on the material used. With a radiation of 1200 W/m2, the acrylic prototype displayed an evaporation of 4455.53 mL/m2 and a production of 2925.98 mL/m2 of distilled water, while the concrete model showed an evaporation of 2109.95 mL/m2 and produced 1383.93 mL/m2 of distilled water. The results indicate that evaporation significantly exceeds condensation, highlighting an underutilized evaporation potential. The evaluation of the numerical model’s performance against experimental results was conducted using the mean squared error (MSE) and the coefficient of determination (R2). The best performance was observed in summer (MSE of 16.24;R2 of 0.95), while winter results were less convincing (MSE of 204.77;R2 of −2.78). This variability underscores the model’s limitations and the need for future research. The study also demonstrates that the choice of basin material significantly influences productivity, with acrylic plastic outperforming concrete in terms of thermal efficiency. 展开更多
关键词 Solar Desalination Passive Cascade Solar Still Distilled Water Production Pano Rano
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部