期刊文献+
共找到488篇文章
< 1 2 25 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Fire Detection Method Based on Depthwise Separable Convolution and YOLOv3 被引量:6
2
作者 Yue-Yan Qin Jiang-Tao Cao Xiao-Fei Ji 《International Journal of Automation and computing》 EI CSCD 2021年第2期300-310,共11页
Recently,video-based fire detection technology has become an important research topic in the field of machine vision.This paper proposes a method of combining the classification model and target detection model in dee... Recently,video-based fire detection technology has become an important research topic in the field of machine vision.This paper proposes a method of combining the classification model and target detection model in deep learning for fire detection.Firstly,the depthwise separable convolution is used to classify fire images,which saves a lot of detection time under the premise of ensuring detection accuracy.Secondly,You Only Look Once version 3(YOLOv3)target regression function is used to output the fire position information for the images whose classification result is fire,which avoids the problem that the accuracy of detection cannot be guaranteed by using YOLOv3 for target classification and position regression.At the same time,the detection time of target regression for images without fire is greatly reduced saved.The experiments were tested using a network public database.The detection accuracy reached 98%and the detection rate reached 38fps.This method not only saves the workload of manually extracting flame characteristics,reduces the calculation cost,and reduces the amount of parameters,but also improves the detection accuracy and detection rate. 展开更多
关键词 Fire detection depthwise separable convolution fire classification You Only Look Once version 3(YOLOv3) target regression
原文传递
PokerNet:Expanding Features Cheaply via Depthwise Convolutions 被引量:1
3
作者 Wei Tang Yan Huang Liang Wang 《International Journal of Automation and computing》 EI CSCD 2021年第3期432-442,共11页
Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel P... Pointwise convolution is usually utilized to expand or squeeze features in modern lightweight deep models.However,it takes up most of the overall computational cost(usually more than 90%).This paper proposes a novel Poker module to expand features by taking advantage of cheap depthwise convolution.As a result,the Poker module can greatly reduce the computational cost,and meanwhile generate a large number of effective features to guarantee the performance.The proposed module is standardized and can be employed wherever the feature expansion is needed.By varying the stride and the number of channels,different kinds of bottlenecks are designed to plug the proposed Poker module into the network.Thus,a lightweight model can be easily assembled.Experiments conducted on benchmarks reveal the effectiveness of our proposed Poker module.And our Poker Net models can reduce the computational cost by 7.1%-15.6%.Poker Net models achieve comparable or even higher recognition accuracy than previous state-of-the-art(SOTA)models on the Image Net ILSVRC2012 classification dataset.Code is available at https://github.com/diaomin/pokernet. 展开更多
关键词 Deep learning depthwise convolution lightweight deep model model compression model acceleration
原文传递
基于改进YOLOv5s的自动导引运输车托盘孔位视觉定位方法
4
作者 崔升 唐芳丽 +2 位作者 郑亮宇 曾伟理 曲伟伟 《食品与机械》 北大核心 2026年第1期79-85,共7页
[目的]自动导引运输车在搬运过程中,需定位的托盘孔位中存在的细小、形变、低对比度孔位的视觉定位不准的问题。因此,提出一种基于改进YOLOv5s的自动导引运输车托盘孔位视觉定位方法。[方法]结合ShuffleNetV2的通道混洗操作改进和CBAM... [目的]自动导引运输车在搬运过程中,需定位的托盘孔位中存在的细小、形变、低对比度孔位的视觉定位不准的问题。因此,提出一种基于改进YOLOv5s的自动导引运输车托盘孔位视觉定位方法。[方法]结合ShuffleNetV2的通道混洗操作改进和CBAM注意力机制改进,对基本YOLOv5s框架进行改进,使其聚焦于形变关键区域中亚像素级边界模糊的孔位区域;基于SloU损失函数关注微小孔位,并计算托盘孔位在相机坐标系下的空间三维坐标,得到相机坐标系到孔位区域坐标系的变换关系,采用改进的YOLOv5s框架输出AGV机械臂坐标系下的托盘孔位三维坐标。[结果]试验方法可有效捕捉亚像素级定位精度边界,绝对误差<0.03 cm,相对误差<0.83%;F1分数、mAP指标分别为95.2%、94.8%;浮点运算次数、参数量和模型体积分别为4.8 G、2.6 M、4.28 MB。[结论]试验方法有效解决了需定位托盘孔位中存在的细小、形变、低对比度孔位的视觉定位难题,提升了自动导引运输车托盘搬运效率。 展开更多
关键词 YOLOv5s 自动导引运输车 托盘孔位定位 深度可分离卷积 CBAM注意力
在线阅读 下载PDF
基于扩散先验的脑部MRI超分辨率重建
5
作者 熊承义 曹雨轩 高志荣 《中南民族大学学报(自然科学版)》 2026年第2期202-211,共10页
现有基于Transformer的MRI超分辨率方法虽具有良好的全局建模能力,但忽略了深度先验约束建模的重要性.为此,提出了一种基于扩散先验的脑部MRI超分辨率方法,利用潜在扩散模型生成的先验来引导Transformer进行超分辨率重建,以提升MRI细节... 现有基于Transformer的MRI超分辨率方法虽具有良好的全局建模能力,但忽略了深度先验约束建模的重要性.为此,提出了一种基于扩散先验的脑部MRI超分辨率方法,利用潜在扩散模型生成的先验来引导Transformer进行超分辨率重建,以提升MRI细节重建能力.具体而言,采用两阶段协同训练策略:第一阶段通过真实图像潜编码构建内容先验;第二阶段引入扩散模型重构先验,并联合优化去噪与重建过程,实现无监督条件下的图像超分辨率.此外,采用深度可分离卷积与置换自注意力机制,实现编码器的高效建模与感受野扩展.在IXI多模态MRI数据集上的4倍超分辨率实验表明:所提出方法在提升重建图像主客观质量与重建效率方面优于已有方法 . 展开更多
关键词 MRI超分辨率 扩散先验 置换自注意力 深度可分离卷积
在线阅读 下载PDF
融合最大池化的Conformer中文语音识别
6
作者 胡从刚 杨立鹏 +2 位作者 孙永奇 陈华龙 韩可可 《计算机工程》 北大核心 2026年第1期105-115,共11页
语音识别旨在通过先进的算法与信号处理技术,赋予机器理解人类语音的能力,使得人与机器之间的交流更加便捷、顺畅。目前,大多数端到端语音识别的研究工作主要围绕Conformer模型进行优化。针对Conformer编码器对语音细粒度局部特征提取... 语音识别旨在通过先进的算法与信号处理技术,赋予机器理解人类语音的能力,使得人与机器之间的交流更加便捷、顺畅。目前,大多数端到端语音识别的研究工作主要围绕Conformer模型进行优化。针对Conformer编码器对语音细粒度局部特征提取能力不足的问题,提出一种融合最大池化(MP)的Conformer中文语音识别模型。首先,将编码器卷积模块中门控线性单元的输出在时间维度上进行MP,以提取多帧语音信号对应一个字符的细粒度局部特征。然后,将池化后的特征与逐通道卷积(DWC)提取的粗粒度局部特征以逐元素相加的方式进行融合,以增加语音局部特征的信息量,从而提高Conformer模型的语音识别准确率。最后,在公开的中文数据集Aishell-1上的实验结果表明:采用贪心搜索方式进行解码,所提模型可以将基线模型的字错误率(CER)从5.58%降低至5.32%;采用注意力重打分方式进行解码,所提模型可以将基线模型的CER从5.06%降低至4.92%。 展开更多
关键词 语音识别 细粒度局部特征 Conformer模型 最大池化 逐通道卷积
在线阅读 下载PDF
一种基于FL-TransCNN神经网络的水声智能频谱感知算法
7
作者 李玉芳 王锴 +2 位作者 张力良 徐凌伟 Thomas Aaron Gulliver 《电讯技术》 北大核心 2026年第1期11-20,共10页
为了提高频谱利用率,提出了一种基于联邦学习(Federated Learning,FL)、Transformer和卷积神经网络(Convolutional Neural Network,CNN)的水声智能频谱感知算法。首先,基于FL实现数据隔离状态下的信息共享,并应用Paillier加密技术进行... 为了提高频谱利用率,提出了一种基于联邦学习(Federated Learning,FL)、Transformer和卷积神经网络(Convolutional Neural Network,CNN)的水声智能频谱感知算法。首先,基于FL实现数据隔离状态下的信息共享,并应用Paillier加密技术进行权重加密保障;其次,本地感知数据经连续小波变换构建为时频谱图;最后,融合CNN与Transformer构建了TransCNN感知器,通过并行分支实现了高精度感知。在信噪比-18~0 dB范围内,与RepVGG、Swin-Transformer、YOLOv7、MobileNet算法相比,所提的水声智能频谱感知算法的平均检测概率提升了4%~10%,平均虚警概率降低了2%~9%。 展开更多
关键词 海洋物联网 智能频谱感知 联邦学习 连续小波变换 深度可分离卷积
在线阅读 下载PDF
基于自适应时频增强框架的电能质量扰动识别研究
8
作者 张欣语 《现代信息科技》 2026年第1期1-6,12,共7页
为解决传统电能质量扰动信号识别模型中特征融合固定和计算复杂度高的问题,文章提出了一种自适应格拉姆时间频率增强网络(Adaptive Gramian Time Frequency Enhancement Network,AGTFENet)。首先引入基于格拉姆矩阵的降噪策略处理一维... 为解决传统电能质量扰动信号识别模型中特征融合固定和计算复杂度高的问题,文章提出了一种自适应格拉姆时间频率增强网络(Adaptive Gramian Time Frequency Enhancement Network,AGTFENet)。首先引入基于格拉姆矩阵的降噪策略处理一维输入信号,采用三分支并行架构,分别处理原始信号、格拉姆降噪信号和频谱;其次堆叠多个特征学习模块,通过深度可分离卷积提取各分支特征;最后引入自适应平均池化和自适应权重机制,动态调整各分支特征的贡献度,实现特征的加权融合及扰动信号的分类。仿真实验表明,AGTFENet在不同噪声等级(无噪声、40 dB、30 dB、20 dB)条件下的识别准确率分别为98.9%、98.7%、98.5%和97.8%,优于其他分类模型;且得益于其轻量化设计,在计算复杂度方面表现出色。 展开更多
关键词 电能质量扰动 格拉姆降噪 自适应机制 深度可分离卷积 扰动识别
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
9
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network depthwise Dilated Separable convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
A Framework of Lightweight Deep Cross-Connected Convolution Kernel Mapping Support Vector Machines
10
作者 Qi Wang Zhaoying Liu +3 位作者 Ting Zhang Shanshan Tu Yujian Li Muhammad Waqas 《Journal on Artificial Intelligence》 2022年第1期37-48,共12页
Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classifi... Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification.However,the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters.To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters,this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines(LC-CKMSVM).The framework consists of a feature extraction module and a classification module.The feature extraction module first maps the data from low-dimensional to high-dimensional space by fusing the representations of different dimensional spaces through cross-connections;then,it uses depthwise separable convolution to replace part of the original convolution to reduce the number of parameters in the module;The classification module uses a soft margin support vector machine for classification.The results on 6 different visual datasets show that LC-CKMSVM obtains better classification accuracies on most cases than the other five models. 展开更多
关键词 convolutional neural network cross-connected lightweight framework depthwise separable convolution
在线阅读 下载PDF
基于YOLOv5s的轻量化森林火灾探测算法 被引量:2
11
作者 刘惠临 方琼 +3 位作者 江宇 魏华章 王涛 张树川 《中国安全科学学报》 北大核心 2025年第1期75-83,共9页
为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间... 为解决当前基于深度学习的森林火灾探测算法存在结构复杂、规模庞大,且难以兼顾检测精度和效率的问题,提出一种基于YOLOv5s的轻量化森林火灾探测算法。首先,采用优化的背景差分技术消除背景图像中类火物体的干扰,减少分析图像所需的时间;其次,设计分组混洗策略优化常规卷积,并在特征提取的C3模块中融入高效通道注意力(ECA)机制和深度可分离卷积,增强图像特征提取与融合能力的同时有效降低模型的参数量;然后,采用动态非单调聚焦机制优化Wise-交并比(WIOU)损失函数,减少低质量样本产生的有害梯度;最后,在构建的森林火灾数据集上将所提算法与其他算法做充分的试验对比。结果表明:所提算法在各类场景均展现出良好的泛化性,对火焰目标的检测精度达到86.1%,较标准YOLOv5s检测精度提升2.7%,检测速度提升11.4%,有效降低了火灾误报率,增强了模型的检测性能。 展开更多
关键词 YOLOv5s 轻量化 森林火灾探测 深度可分离卷积 注意力 Wise-交并比(WIOU)
原文传递
基于改进YOLOv4-Tiny的交通标志图像识别算法研究 被引量:2
12
作者 孙海明 付世超 《计算机应用与软件》 北大核心 2025年第5期164-170,190,共8页
为实现无人驾驶汽车对交通标志的精准识别,提出基于改进YOLOv4-Tiny的交通标志图像识别算法YOLO-slim。在原算法中加入卷积注意力网络并在特征金字塔网络中引入浅层特征,提高算法对不同层间特征信息的利用率。使用深度可分离卷积替换标... 为实现无人驾驶汽车对交通标志的精准识别,提出基于改进YOLOv4-Tiny的交通标志图像识别算法YOLO-slim。在原算法中加入卷积注意力网络并在特征金字塔网络中引入浅层特征,提高算法对不同层间特征信息的利用率。使用深度可分离卷积替换标准卷积减少网络参数量压缩模型权重文件。在模型训练中使用Focus loss损失函数平衡难易样本。实验结果表明,YOLO-slim的平均准确率为94.41%,权重文件为4.49 MB,检测速度为8.0 ms。改进后的算法准确率更高、权重文件更小,更适合部署在车载计算单元上。 展开更多
关键词 交通标志 算法 注意力机制 深度可分离卷积
在线阅读 下载PDF
基于二次分解时频图和SE-DSMC-BSA的轻量化有载分接开关机械故障识别方法 被引量:1
13
作者 李思奇 夏卯 +4 位作者 鲁思兆 毕贵红 黄一超 阮彦俊 李良创 《振动与冲击》 北大核心 2025年第11期268-279,308,共13页
有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convo... 有载分接开关(on-load tap-changer,OLTC)是有载调压变压器中唯一可动的部件,其频繁切换易导致机械故障。为了实现OLTC机械状态的在线监测,文中提出一种结合二次分解时频图、深度可分离多尺度卷积(depthwise separable multiscale convolution,DSMC)、挤压-激励(squeeze-excitation,SE)注意力机制和广播自注意力(broadcast self-attention,BSA)机制的轻量化OLTC故障识别方法。首先,建立OLTC故障模拟试验平台获取振动信号。在此基础上,引入二次分解和Hilbert变换,将两次分解的分量全部转换为时频图。然后,利用SE-DSMC对时频图进行多尺度的特征提取,并进行通道特征增强。最后,引入BSA对全局特征进行提取,以提升故障识别的准确率。与现有方法相比,该方法特别是在小样本情况下具有识别速度快、准确率高和轻量化等优势。 展开更多
关键词 有载分接开关(OLTC) 故障识别 二次分解 挤压-激励(SE) 深度可分离多尺度卷积(DSMC) 广播自注意力(BSA) 轻量化
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割 被引量:2
14
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
基于深度可分离卷积混合网络模型的地浸采铀注液量预测研究 被引量:2
15
作者 刘志锋 唐俊贤 +1 位作者 林芝宁 周义朋 《铀矿冶》 2025年第1期9-17,共9页
地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内... 地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内存消耗大。本研究提出深度可分离卷积混合模型,通过动态序列分割模块降低固定分割带来的语义破坏,通过深度可分离卷积混合模块降低模型运行时间并捕获局部和全局特征。结果表明,深度可分离卷积混合网络模型的均方误差(Mean Square Error,MSE)与平均绝对误差(Mean Absolute Error,MAE)相较于时间序列分块自注意力模型(Patch Time Series Transformer,PatchTST)分别降低了1.04%和4.13%,提出的动态序列分割模块的MSE与MAE相较于原有模型分别降低了7.32%和5.03%;在性能对比分析上,深度可分离卷积混合模型的训练速度相较于趋势季节分解线性模型(Decomposition Linear,DLinear)提高了59.91%。建立的模型能够准确预测采区生产运行中硫酸注液量的变化趋势,改善了现有预测模型针对地浸铀矿数据集存在的运行时间长、运行内存大、数据拟合差的问题,可为地浸铀矿生产决策提供理论和实践参考。 展开更多
关键词 地浸采铀 注液量预测 深度可分离卷积 预测模型
在线阅读 下载PDF
提示学习与门控前馈网络的多尺度图像去模糊 被引量:1
16
作者 谢斌 黎彦先 +1 位作者 邵祥 戴邦强 《中国图象图形学报》 北大核心 2025年第3期755-768,共14页
目的针对传统基于深度学习的去模糊方法存在的伪影明显、细节模糊和噪声残留等问题,提出一种基于提示学习的多尺度图像去模糊新方法。方法首先,在详细分析传统去模糊方法的基础上,引入基于提示学习的特定退化信息编码模块,利用退化信息... 目的针对传统基于深度学习的去模糊方法存在的伪影明显、细节模糊和噪声残留等问题,提出一种基于提示学习的多尺度图像去模糊新方法。方法首先,在详细分析传统去模糊方法的基础上,引入基于提示学习的特定退化信息编码模块,利用退化信息中包含的上下文信息来动态地引导深度网络以更有效地完成去模糊任务。其次,设计了新的门控前馈网络,通过控制各个层级的信息流动构建更为丰富和更具层次结构的特征表示,从而进一步提高对复杂数据的理解和处理能力,以更好地保持结果图像的几何结构。另外,新方法引入了经典的总变差正则来抑制去模糊过程中的噪声残留,以提高结果图像的视觉表现。结果基于GoPro和REDS(the realistic and diverse scenes)数据集的大量实验结果表明,与其他先进的基于深度学习的去模糊方法相比,本文方法在图像去模糊方面取得了更好的效果。在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)指标上,本文方法在GoPro数据集上分别达到33.04 dB和0.962的最优结果。在REDS数据集上分别达到28.70 dB和0.859的结果。并且,相比SAM-deblur(segment anything model-deblur)方法,PSNR提升了1.77 dB。结论相较于其他的去模糊方法,本文方法不仅能够较好地保持结果图像的细节信息,而且还能够有效地克服伪影明显和噪声残留的问题,所得结果图像在PSNR和SSIM等客观评价指标方面均有更好的表现。 展开更多
关键词 图像去模糊 提示学习 多尺度 门控前馈网络(GFFN) 深度卷积
原文传递
一种基于ASPPUnet的道路裂缝检测模型 被引量:1
17
作者 曹一冰 张江水 +1 位作者 张政 赵鑫科 《测绘科学技术学报》 2025年第1期49-56,共8页
为了更加精确高效地对道路裂缝进行分割提取,提出一种基于多尺度特征与上下文信息融合的ASPPUnet道路裂缝检测模型。ASPPUnet通过U形编码解码器进行多尺度特征的提取,通过引入ASPP模块进行不同范围上下文信息的融合;同时模型还引入了深... 为了更加精确高效地对道路裂缝进行分割提取,提出一种基于多尺度特征与上下文信息融合的ASPPUnet道路裂缝检测模型。ASPPUnet通过U形编码解码器进行多尺度特征的提取,通过引入ASPP模块进行不同范围上下文信息的融合;同时模型还引入了深度可分离卷积模块,用以实现模型的轻量化;采用融合Dice和交叉熵的损失函数,均衡模型的查全率和查准率;采用动态数据集增广方法,使得模型在小数据集上也能实现良好的检测效果。通过与Unet等模型的实验对比可以看出,ASPPUnet拥有更好的检测效果和可塑性,具有较好的应用价值。 展开更多
关键词 裂缝检测 图像分割 深度可分离卷积 损失函数 ASPP模块 Unet模型
在线阅读 下载PDF
基于改进YOLO模型的轻量化脑电图肌电伪影检测方法
18
作者 孙鸽 林卫红 +1 位作者 娄洪伟 韩金波 《中国生物医学工程学报》 北大核心 2025年第1期124-128,共5页
脑电图(EEG)已经成为神经科学领域的重要工具,基于人工智能的脑电图分析在脑神经疾病、运动想象和情绪识别方面有广泛应用。然而,EEG的应用受到低信噪比的限制,特别是癫痫诊断中肌电(EMG)伪影降低了异常放电特征波形的识别准确率,且现... 脑电图(EEG)已经成为神经科学领域的重要工具,基于人工智能的脑电图分析在脑神经疾病、运动想象和情绪识别方面有广泛应用。然而,EEG的应用受到低信噪比的限制,特别是癫痫诊断中肌电(EMG)伪影降低了异常放电特征波形的识别准确率,且现有算法难以实现快速且准确的伪影检测。本研究对YOLO算法进行改进,以深度可分离卷积作为骨干网络,对网络的输入数据、结果矩阵和损失函数进行调整,以适应多导联的EEG数据,提出了一种基于改进YOLO模型的轻量化脑电图肌电伪影检测方法。利用临床采集和公开数据集的伪影标注数据(共4711条)对模型进行训练和测试,其mAP@0.5和mAP@0.5:0.95分别达到了93.7%和79.8%,检测速度为31.0 ms/帧。结果显示,该方法在检测精度和推理速度上优于传统YOLO模型和其他先进算法。同时提升了EEG信号的信噪比,从而可有效改善EEG在临床判读和智能识别过程中的应用效率和准确性。 展开更多
关键词 脑电图 肌电伪影 YOLO 深度可分离卷积
暂未订购
WiLCount:一种适用于无线感知场景的轻量级人数识别模型
19
作者 段鹏松 张伊航 +2 位作者 方焘 曹仰杰 王超 《计算机科学》 北大核心 2025年第10期317-327,共11页
针对CSI中空间特征缺失导致人数识别模型精度有限且计算复杂度较高的问题,提出了一种基于幅相融合的轻量级人数识别模型WiLCount。首先,针对原始相位信息中存在载波频率偏移和采样频率偏移而无法直接使用的问题,使用线性变换方法对相位... 针对CSI中空间特征缺失导致人数识别模型精度有限且计算复杂度较高的问题,提出了一种基于幅相融合的轻量级人数识别模型WiLCount。首先,针对原始相位信息中存在载波频率偏移和采样频率偏移而无法直接使用的问题,使用线性变换方法对相位信息进行校准;其次,将幅相数据重构为二维图像,以充分利用CSI信息中蕴含的人数空间映射特征;最后,融合深度可分离卷积与多分支结构技术,设计了一种轻量级的人数识别模型WiLCount。目前,在Wi-Fi感知人数领域暂无公开数据集,为此精心构建了一个在人数规模、行为种类均处于业界领先水平的自采数据集,并已公开。实验结果表明,WiLCount在自采数据集上的识别准确率高达99.58%,参数规模仅为同类模型的4%,相比现有方法有显著提升,且具有较好的鲁棒性。 展开更多
关键词 Wi-Fi感知 信道状态信息 人数识别 幅相融合 深度可分离卷积
在线阅读 下载PDF
基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别
20
作者 毛清华 杨帆 +4 位作者 王超 仝旭耀 童军伟 张旭辉 薛旭升 《工矿自动化》 北大核心 2025年第4期100-106,152,共8页
针对矿用提升钢丝绳表面油污覆盖引发背景干扰、绳股间隙较大导致特征混淆及小目标损伤识别难度大等问题,提出了一种基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别方法。在YOLOv8n主干网络中引入多尺度注意力模块(MSAM),通过增强损... 针对矿用提升钢丝绳表面油污覆盖引发背景干扰、绳股间隙较大导致特征混淆及小目标损伤识别难度大等问题,提出了一种基于改进YOLOv8n的矿用提升钢丝绳表面损伤图像识别方法。在YOLOv8n主干网络中引入多尺度注意力模块(MSAM),通过增强损伤特征与油污背景的空间特征区分能力,提升模型抗干扰能力;将YOLOv8n原有的3个检测头替换为4个轻量化小目标检测头,强化对小目标损伤的识别能力;采用深度可分离卷积(DSConv)替代标准卷积,减少了计算量,提高了识别速度。实验结果表明:改进YOLOv8n模型的平均精度均值(mAP)、识别精度和推理速度分别达92.6%,89.7%和43.5帧/s,相比YOLOv8n模型分别提高了3.1%,4.9%,34.7%;与Faster-RCNN,YOLOv5s,YOLOv8n,YOLOv10m,TWRD-Net,YOLOv5-TPH等主流模型相比,改进YOLOv8n模型对小目标损伤识别精度最高,同时保证了较高的实时性;在煤矿现场油污覆盖、绳股间隙较大的复杂场景中,改进YOLOv8n模型未出现漏检情况,且误检情况较少,平均识别准确率达90%。 展开更多
关键词 矿用提升钢丝绳 损伤图像识别 YOLOv8n 多尺度注意力模块 小目标检测 深度可分离卷积
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部