Understanding spatial heterogeneity in groundwater responses to multiple factors is critical for water resource management in coastal cities.Daily groundwater depth(GWD)data from 43 wells(2018-2022)were collected in t...Understanding spatial heterogeneity in groundwater responses to multiple factors is critical for water resource management in coastal cities.Daily groundwater depth(GWD)data from 43 wells(2018-2022)were collected in three coastal cities in Jiangsu Province,China.Seasonal and Trend decomposition using Loess(STL)together with wavelet analysis and empirical mode decomposition were applied to identify tide-influenced wells while remaining wells were grouped by hierarchical clustering analysis(HCA).Machine learning models were developed to predict GWD,then their response to natural conditions and human activities was assessed by the Shapley Additive exPlanations(SHAP)method.Results showed that eXtreme Gradient Boosting(XGB)was superior to other models in terms of prediction performance and computational efficiency(R^(2)>0.95).GWD in Yancheng and southern Lianyungang were greater than those in Nantong,exhibiting larger fluctuations.Groundwater within 5 km of the coastline was affected by tides,with more pronounced effects in agricultural areas compared to urban areas.Shallow groundwater(3-7 m depth)responded immediately(0-1 day)to rainfall,primarily influenced by farmland and topography(slope and distance from rivers).Rainfall recharge to groundwater peaked at 50%farmland coverage,but this effect was suppressed by high temperatures(>30℃)which intensified as distance from rivers increased,especially in forest and grassland.Deep groundwater(>10 m)showed delayed responses to rainfall(1-4 days)and temperature(10-15 days),with GDP as the primary influence,followed by agricultural irrigation and population density.Farmland helped to maintain stable GWD in low population density regions,while excessive farmland coverage(>90%)led to overexploitation.In the early stages of GDP development,increased industrial and agricultural water demand led to GWD decline,but as GDP levels significantly improved,groundwater consumption pressure gradually eased.This methodological framework is applicable not only to coastal cities in China but also could be extended to coastal regions worldwide.展开更多
Variations in ocean mixed layer depth(MLD)show a significant impact on energy balance in the global climate systems and marine ecosystems.At present,the accuracy of modeling MLD,especially in the region with complex o...Variations in ocean mixed layer depth(MLD)show a significant impact on energy balance in the global climate systems and marine ecosystems.At present,the accuracy of modeling MLD,especially in the region with complex ocean dynamics,remains a challenge,thus calling for an emergency using artificial intelligence approach to improve the assessment of the MLD.A novel convolutional neural network model was developed based on a dual-attention module(DA-CNN)to estimate the MLD in the Bay of Bengal(BoB)by integrating multi-source remote sensing data and Argo gridded data.Compared with the original CNN model,the DA-CNN model exhibits superior performance with notable improvements in the annual average root mean square error(RMSE)and R2 values by 13.0%and 8.4%,respectively,while more accurately capturing the seasonal variations in MLD.Moreover,the results using the DA-CNN model show minimum RMSE and maximum R2 values,in comparison to the calculation by the random forest,artificial neural network model,and the hybrid coordinate ocean model.Accordingly,our findings suggest that the newly developed DA-CNN model provides an effective advantage in studying the MLD and the associated ocean processes.展开更多
An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a...An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a period of weak trends.The MLD deepening trend difference between the two periods were mainly distributed in the western areas in the Drake Passage,the areas north to Victoria Land and Wilkes Land,and the central parts of the South Indian sector.The newly formed ocean current shear due to the meridional shift of the ACC flow axis between the two periods is the dominant driver for the MLD trends shift distributed in the western areas in the Drake Passage and the central parts of the South Indian sector.The saltier trends in the regions north to Victoria Land and Wilkes Land could be responsible for the strengthening mixing processes in this region.展开更多
The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to reso...The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and three- dimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.展开更多
In this paper,a methodology for designing mooring system deployment for vessels at varying water depths is proposed.The Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is combined with a self-dependently developed ...In this paper,a methodology for designing mooring system deployment for vessels at varying water depths is proposed.The Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is combined with a self-dependently developed vessel-mooring coupled program to find the optimal mooring system deployment considering both station-keeping requirements and the safety of the mooring system.Two case studies are presented to demonstrate the methodology by designing the mooring system deployments for a very large floating structure(VLFS)module and a semi-submersible platform respectively at three different water depths.It can be concluded from the obtained results that the mooring system can achieve a better station-keeping ability with relatively shorter mooring line when deployed in the shallow water.The safety factor of mooring line is mainly dominated by the maximum instantaneous tension increment in the shallow water,while the pre-tension has a decisive influence on the safety factor of the mooring line in the deep water.展开更多
Aftershocks of the 2011 Tohoku-Oki great earthquake have a wide range of focal depths and fault plane mechanisms. We constrain the focal depths and focal mechanisms of 69 aftershocks with Mw 〉 5.4 by modeling the wav...Aftershocks of the 2011 Tohoku-Oki great earthquake have a wide range of focal depths and fault plane mechanisms. We constrain the focal depths and focal mechanisms of 69 aftershocks with Mw 〉 5.4 by modeling the waveforms of teleseismic P and its trailing near-surface reflections pP and sP. We find that the "thrust events" are within 10 krn from the plate interface. The dip angles of these thrust events increase with depth from ~ 5~ to ~ 25~. The "non-thrust events" vary from 60 km above to 40 km below the plate interface. Normal and strike-slip events within the overriding plate point to redistribution of stress following the primary great earthquake; however, due to the spatially variable stress change in the Tohoku-Oki earthquake, an understanding of how the mainshock affected the stresses that led to the aftershocks requires accurate knowledge of the aftershock location.展开更多
1 Introduction The North China Craton(NCC)has experienced lithospheric destruction in Mesozoic accompanied with crustal exhumation.Fission track or(U-Th)/He dating of zircon and apatite for the Mesozoic granitoids in the
In this paper, the background, evolution, basic meaning, clinical application and the detail operating procedures of the differential insertion depth in filiform needle acupuncture were discussed based on the classica...In this paper, the background, evolution, basic meaning, clinical application and the detail operating procedures of the differential insertion depth in filiform needle acupuncture were discussed based on the classical expositions of the Yellow Emperor’s Canon of Medicine. It is believed that the differential insertion depth reflects the basic idea of expelling the evil Qi from the body in the application of traditional acupuncture. Since the site of evil invasion has different shades, the position of evil Qi and correct differentiation has become the operation key points of needle insertion. Apart from this, the Yellow Emperor’s Canon of Medicine has further associated the clinical application of filiform needle insertion depth with the seasonal change of Yin and Yang, the body built of the patients, the nature of the diseases, the heat or cold pathogenic factors of the illness, the excess and deficiency of the patient, and the reinforcing and reducing function of acupuncture. These elaborations have greatly enriched the basic content of acupuncture and laid a systematic theoretical foundation of filiform needle operation. The differential insertion depth in acupuncture has its specific meaning, the emphasis of insertion depth of filiform needle with its differentiated clinical implication exemplifies the perceptual thinking features of traditional acupuncture and typical reveals the uniqueness of Chinese civilization.展开更多
We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary curre...We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.展开更多
Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effec...Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effects of different fertilization treatments on total N and P concentrations of surface runoff in a Chinese chestnut (Castanea mollissima Blume) orchard in Dongyuan County,Guangdong Province,China.In such orchards,fertilizer was typically applied in two short furrows or pits on either side of each tree.Treatments included three application depths (surface,10cm and 20 cm),and three application rates (low,median and high).Results showed that 90.5% of the runoff water samples had a total N concentration higher than 0.35 mgL^(-1) and 54.2% had a total P concentration higher than 0.1 mgL^(-1).Fertilizer application at all depths and at all but the lowest rate significantly increased total N and P concentrations in runoff water.Fertilization with chemical compound fertilizer at a soil depth of 20cm produced significantly lower (P<0.05) total N concentration in runoff than both surface and 10-cm depth fertilization,and significantly lower (P<0.05) total P concentration in runoff than surface fertilization.Total N and P concentrations in runoff significantly increased with the application rate of organic fertilizers.With the exception of total P concentrations,which were not significantly different between the control and fertilization at a rate of 119 kg P ha-1 in organic form,all the other fertilization treatments produced significantly higher total N and total P concentrations in runoff than the control.A fertilization depth≥20cm and an application rate≤72 kg N ha^(-1) or 119 kg P ha^(-1) for compound organic fertilizer was suggested to substantially reduce N and P runoff losses from hillslope orchards and to protect receiving waters in South China.展开更多
During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the...During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the depth of damage is a critical aspect for the design of permeability sensitive excavations, such as a deep geological repository(DGR) for nuclear waste. Review of literature regarding the depth of excavation damage zones(EDZs) indicates three zones are common and typically related to stress induced damage. Based on past developments related to brittle damage prediction using continuum modelling, the depth of the EDZs has been examined numerically. One method to capture stress induced damage in conventional engineering software is the damage initiation and spalling limit(DISL) approach. The variability of depths predicted using the DISL approach has been evaluated and guidelines are suggested for determining the depth of the EDZs around circular excavations in brittle rock masses. Of the inputs evaluated, it was found that the tensile strength produces the greatest variation in the depth of the EDZs. The results were evaluated statistically to determine the best fit relation between the model inputs and the depth of the EDZs. The best correlation and least variation were found for the outer EDZ and the highly damaged zone(HDZ) showed the greatest variation. Predictive equations for different EDZs have been suggested and the maximum numerical EDZ depths, represented by the 68% prediction interval, agreed well with the empirical evidence. This suggests that the numerical limits can be used for preliminary depth prediction of the EDZs in brittle rock for circular excavations.展开更多
Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- t...Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.展开更多
Submersible fish cages can be submerged under the water to mitigate the negative effects that arise from severe sea conditions and improve the growing environment for the farmed fish. Thus they are increasingly applie...Submersible fish cages can be submerged under the water to mitigate the negative effects that arise from severe sea conditions and improve the growing environment for the farmed fish. Thus they are increasingly applied in offshore aquaculture. To ensure both safety and economic efficiency of submersible fish cages, it is important to determine the optimum submergence depth. In this study, a series of physical model experiments were conducted to investigate the hydrodynamic performance of a submersible fish cage at various submergence depths(1/6, 1/4, 1/3, and 1/2 of the water depth as well as the floating condition for reference) with a model scale of 1:20. The results of the physical model experiment for the different depths were compared to analyze the effects of submergence depths on the mooring line tension and the movement of the floating collar. The results showed that the mooring line tension and the floating collar movement significantly attenuated with increasing submergence depth. However, the attenuation tendency became stable when the fish cage reached a certain depth. According to the results, 1/3 of water depth was determined as the optimal submergence depth of the fish cages. Deeper submergence depths showed no significant advantage from a perspective of the hydrodynamic characteristics of the fish cage. The determination of the optimum submergence depth is beneficial for the structural design and operation safety of submersible net cages.展开更多
Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to invest...Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.展开更多
Frozen ground degradation plays an important role in vegetation growth and activity in high-altitude cold regions.This study estimated the spatiotemporal variations in the active layer thickness(ALT)of the permafrost ...Frozen ground degradation plays an important role in vegetation growth and activity in high-altitude cold regions.This study estimated the spatiotemporal variations in the active layer thickness(ALT)of the permafrost region and the soil freeze depth(SFD)in the seasonally frozen ground region across the Three Rivers Source Region(TRSR)from 1980 to 2014 using the Stefan equation,and differentiated the effects of these variations on alpine vegetation in these two regions.The results showed that the average ALT from 1980 to 2014 increased by23.01 cm/10 a,while the average SFD decreased by 3.41 cm/10 a,and both changed intensively in the transitional zone between the seasonally frozen ground and permafrost.From 1982-2014,the increase in the normalized difference vegetation index(NDVI)and the advancement of the start of the vegetation growing season(SOS)in the seasonally frozen ground region(0.0078/10 a,1.83 d/10 a)were greater than those in the permafrost region(0.0057/10 a,0.39 d/10 a).The results of the correlation analysis indicated that increases in the ALT and decreases in the SFD in the TRSR could lead to increases in the NDVI and advancement of the SOS.Surface soil moisture played a critical role in vegetation growth in association with the increasing ALT and decreasing SFD.The NDVI for all vegetation types in the TRSR except for alpine vegetation showed an increasing trend that was significantly related to the SFD and ALT.During the study period,the general frozen ground conditions were favorable to vegetation growth,while the average contributions of ALT and SFD to the interannual variation in the NDVI were greater than that of precipitation but less than that of temperature.展开更多
In order to study hydrodynamic performance of a propeller in the free surface, the numerical simulation and open-water experiments are carried out with varying shaft depths of propeller. The influences of shaft depths...In order to study hydrodynamic performance of a propeller in the free surface, the numerical simulation and open-water experiments are carried out with varying shaft depths of propeller. The influences of shaft depths of a propeller on thrust and torque coefficient in calm water are mainly studied. Meanwhile, this paper also studies the propeller air-ingestion under special working conditions by experiment and theoretical calculation method, and compares the calculation results and experimental results. The results prove that the theoretical calculation model used in this paper can imitate the propeller air-ingestion successfully. The successful phenomenon simulation provides an essential theoretical basis to understand the physical essence of the propeller air-ingestion.展开更多
This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculat...This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.展开更多
The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing ...The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing seismic data in the study area is sparse due to the lack of earthquake activities.Because of the limited source energy and poor coverage of seismic data,the knowledge of deep structures in the area,including the spatial distribution of deep faults,is incomplete.Contrarily,satellite gravity data cover the entire study area and can reveal the spatial distribution of faults.Based on the wavelet multi-scale decomposition method,the Bouguer gravity field in the Ying-Qiong Basin was decomposed and reconstructed to obtain the detailed images of the first-to sixth-order gravitational fields.By incorporating the known geological features,the gravitational field responses of the main faults in the Ying-Qiong Basin were identified in the detailed fields,and the power spectrum analysis yielded the depths of 1.4,8,15,26.5,and 39 km for the average burial depths of the bottom surfaces from the first-to fifth-order detailed fields,respectively.The four main faults in the Yinggehai Basin all have a large active depth range:fault A(No.1)is between 5 and 39 km,fault B is between 26.5 and 39 km,and faults C and D are between 15 and 39 km.However,the depth of active faults in the Qiongdongnan Basin is relatively shallow,mainly between 8 and 26.5 km.展开更多
In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other ...In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size.展开更多
Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season ...Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 μm/d) and 20 m (236.9 μm/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 μm/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.展开更多
基金supported by the Natural Science Foundation of Jiangsu province,China(BK20240937)the Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention(2022491411,2021491811)the Basal Research Fund of Central Public Welfare Scientific Institution of Nanjing Hydraulic Research Institute(Y223006).
文摘Understanding spatial heterogeneity in groundwater responses to multiple factors is critical for water resource management in coastal cities.Daily groundwater depth(GWD)data from 43 wells(2018-2022)were collected in three coastal cities in Jiangsu Province,China.Seasonal and Trend decomposition using Loess(STL)together with wavelet analysis and empirical mode decomposition were applied to identify tide-influenced wells while remaining wells were grouped by hierarchical clustering analysis(HCA).Machine learning models were developed to predict GWD,then their response to natural conditions and human activities was assessed by the Shapley Additive exPlanations(SHAP)method.Results showed that eXtreme Gradient Boosting(XGB)was superior to other models in terms of prediction performance and computational efficiency(R^(2)>0.95).GWD in Yancheng and southern Lianyungang were greater than those in Nantong,exhibiting larger fluctuations.Groundwater within 5 km of the coastline was affected by tides,with more pronounced effects in agricultural areas compared to urban areas.Shallow groundwater(3-7 m depth)responded immediately(0-1 day)to rainfall,primarily influenced by farmland and topography(slope and distance from rivers).Rainfall recharge to groundwater peaked at 50%farmland coverage,but this effect was suppressed by high temperatures(>30℃)which intensified as distance from rivers increased,especially in forest and grassland.Deep groundwater(>10 m)showed delayed responses to rainfall(1-4 days)and temperature(10-15 days),with GDP as the primary influence,followed by agricultural irrigation and population density.Farmland helped to maintain stable GWD in low population density regions,while excessive farmland coverage(>90%)led to overexploitation.In the early stages of GDP development,increased industrial and agricultural water demand led to GWD decline,but as GDP levels significantly improved,groundwater consumption pressure gradually eased.This methodological framework is applicable not only to coastal cities in China but also could be extended to coastal regions worldwide.
基金Supported by the Ministry of Science and Technology of the People’s Republic of China(No.2019 YFE 0125000)the National Natural Science Foundation of China(No.42376032)。
文摘Variations in ocean mixed layer depth(MLD)show a significant impact on energy balance in the global climate systems and marine ecosystems.At present,the accuracy of modeling MLD,especially in the region with complex ocean dynamics,remains a challenge,thus calling for an emergency using artificial intelligence approach to improve the assessment of the MLD.A novel convolutional neural network model was developed based on a dual-attention module(DA-CNN)to estimate the MLD in the Bay of Bengal(BoB)by integrating multi-source remote sensing data and Argo gridded data.Compared with the original CNN model,the DA-CNN model exhibits superior performance with notable improvements in the annual average root mean square error(RMSE)and R2 values by 13.0%and 8.4%,respectively,while more accurately capturing the seasonal variations in MLD.Moreover,the results using the DA-CNN model show minimum RMSE and maximum R2 values,in comparison to the calculation by the random forest,artificial neural network model,and the hybrid coordinate ocean model.Accordingly,our findings suggest that the newly developed DA-CNN model provides an effective advantage in studying the MLD and the associated ocean processes.
基金The National Natural Science Foundation of China under contract No.41605052。
文摘An obvious trend shift in the annual mean and winter mixed layer depth(MLD)in the Antarctic Circumpolar Current(ACC)region was detected during the 1960–2021 period.Shallowing trends stopped in mid-1980s,followed by a period of weak trends.The MLD deepening trend difference between the two periods were mainly distributed in the western areas in the Drake Passage,the areas north to Victoria Land and Wilkes Land,and the central parts of the South Indian sector.The newly formed ocean current shear due to the meridional shift of the ACC flow axis between the two periods is the dominant driver for the MLD trends shift distributed in the western areas in the Drake Passage and the central parts of the South Indian sector.The saltier trends in the regions north to Victoria Land and Wilkes Land could be responsible for the strengthening mixing processes in this region.
基金supported by National Natural Science Foundation of China(No.41504098 and 41504054)Natural Program on Key Basic Research Project(No.2015CB453002)
文摘The tilt-depth method can be used to make fast estimation of the top depth of magnetic bodies. However, it is unable to estimate bottom depths and its every inversion point only has a single solution. In order to resolve such weaknesses, this paper presents an improved tilt-depth method based on the magnetic anomaly expression of vertical contact with a finite depth extent, which can simultaneously estimate top and bottom depths of magnetic bodies. In addition, multiple characteristic points are selected on the tilt angle map for joint computation to improve reliability of inversion solutions. Two- and three- dimensional model tests show that this improved tilt-depth method is effective in inverting buried depths of top and bottom bodies, and has a higher inversion precision for top depths than the conventional method. The improved method is then used to process aeromagnetic data over the Changling Fault Depression in the Songliao Basin, and inversion results of top depths are found to be more accurate for actual top depths of volcanic rocks in two nearby drilled wells than those using the conventional tilt-depth method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Mooring position technology:floating support platform engineering(II))the Shanghai Sailing Program(Grant No.17YF1409700)
文摘In this paper,a methodology for designing mooring system deployment for vessels at varying water depths is proposed.The Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is combined with a self-dependently developed vessel-mooring coupled program to find the optimal mooring system deployment considering both station-keeping requirements and the safety of the mooring system.Two case studies are presented to demonstrate the methodology by designing the mooring system deployments for a very large floating structure(VLFS)module and a semi-submersible platform respectively at three different water depths.It can be concluded from the obtained results that the mooring system can achieve a better station-keeping ability with relatively shorter mooring line when deployed in the shallow water.The safety factor of mooring line is mainly dominated by the maximum instantaneous tension increment in the shallow water,while the pre-tension has a decisive influence on the safety factor of the mooring line in the deep water.
基金funded by the grants of National Natural Science Foundation of China (41274086) to LB and JR, and a University of Michigan Rackham Merit Fellowship to LML
文摘Aftershocks of the 2011 Tohoku-Oki great earthquake have a wide range of focal depths and fault plane mechanisms. We constrain the focal depths and focal mechanisms of 69 aftershocks with Mw 〉 5.4 by modeling the waveforms of teleseismic P and its trailing near-surface reflections pP and sP. We find that the "thrust events" are within 10 krn from the plate interface. The dip angles of these thrust events increase with depth from ~ 5~ to ~ 25~. The "non-thrust events" vary from 60 km above to 40 km below the plate interface. Normal and strike-slip events within the overriding plate point to redistribution of stress following the primary great earthquake; however, due to the spatially variable stress change in the Tohoku-Oki earthquake, an understanding of how the mainshock affected the stresses that led to the aftershocks requires accurate knowledge of the aftershock location.
基金supported by the National Natural Science Foundation of China (Grant No. 41230311)National Key Research and Development Program of China (Grant No. 2016YFC0600106)
文摘1 Introduction The North China Craton(NCC)has experienced lithospheric destruction in Mesozoic accompanied with crustal exhumation.Fission track or(U-Th)/He dating of zircon and apatite for the Mesozoic granitoids in the
文摘In this paper, the background, evolution, basic meaning, clinical application and the detail operating procedures of the differential insertion depth in filiform needle acupuncture were discussed based on the classical expositions of the Yellow Emperor’s Canon of Medicine. It is believed that the differential insertion depth reflects the basic idea of expelling the evil Qi from the body in the application of traditional acupuncture. Since the site of evil invasion has different shades, the position of evil Qi and correct differentiation has become the operation key points of needle insertion. Apart from this, the Yellow Emperor’s Canon of Medicine has further associated the clinical application of filiform needle insertion depth with the seasonal change of Yin and Yang, the body built of the patients, the nature of the diseases, the heat or cold pathogenic factors of the illness, the excess and deficiency of the patient, and the reinforcing and reducing function of acupuncture. These elaborations have greatly enriched the basic content of acupuncture and laid a systematic theoretical foundation of filiform needle operation. The differential insertion depth in acupuncture has its specific meaning, the emphasis of insertion depth of filiform needle with its differentiated clinical implication exemplifies the perceptual thinking features of traditional acupuncture and typical reveals the uniqueness of Chinese civilization.
文摘We present a theoretic model to calculate skin depths and eddy-current power losses for a magnetic position sensor. Eddy-current, arised from the operation of an alternating-current excitation, induces secondary currents and fields between magnetic material and magnetic position sensor. In this paper, a magnetic position sensor system is simplified to be an outer-winding coil along the axial direction of a low carbon steel bar. The analytical model is derived from basic field and circuit theory considering a linear approximation for a nonlinear permeability. Thus the skin depths and eddy-current power losses from the model in eddy-current modeling techniques at various frequencies of an excited current source can be calculated. The proposed configuration is capable of predicting the skin depths and eddy-current power losses for a magnetic position sensor and has a consistence with experiments.
基金Project supported by the Science and Technology Department of Guangdong Province,China (No.2004B33301007)the Rockefeller Brothers Fund,America.
文摘Fertilizers are heavily applied in orchards of the hilly and mountainous topography of South China and may increase nutrient loadings to receiving waters.A simple runoff collecting system was used to measure the effects of different fertilization treatments on total N and P concentrations of surface runoff in a Chinese chestnut (Castanea mollissima Blume) orchard in Dongyuan County,Guangdong Province,China.In such orchards,fertilizer was typically applied in two short furrows or pits on either side of each tree.Treatments included three application depths (surface,10cm and 20 cm),and three application rates (low,median and high).Results showed that 90.5% of the runoff water samples had a total N concentration higher than 0.35 mgL^(-1) and 54.2% had a total P concentration higher than 0.1 mgL^(-1).Fertilizer application at all depths and at all but the lowest rate significantly increased total N and P concentrations in runoff water.Fertilization with chemical compound fertilizer at a soil depth of 20cm produced significantly lower (P<0.05) total N concentration in runoff than both surface and 10-cm depth fertilization,and significantly lower (P<0.05) total P concentration in runoff than surface fertilization.Total N and P concentrations in runoff significantly increased with the application rate of organic fertilizers.With the exception of total P concentrations,which were not significantly different between the control and fertilization at a rate of 119 kg P ha-1 in organic form,all the other fertilization treatments produced significantly higher total N and total P concentrations in runoff than the control.A fertilization depth≥20cm and an application rate≤72 kg N ha^(-1) or 119 kg P ha^(-1) for compound organic fertilizer was suggested to substantially reduce N and P runoff losses from hillslope orchards and to protect receiving waters in South China.
基金funded by the Natural Sciences and Engineering Research Council of Canadaby the Nuclear Waste Management Organization(NWMO)of Canada
文摘During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the depth of damage is a critical aspect for the design of permeability sensitive excavations, such as a deep geological repository(DGR) for nuclear waste. Review of literature regarding the depth of excavation damage zones(EDZs) indicates three zones are common and typically related to stress induced damage. Based on past developments related to brittle damage prediction using continuum modelling, the depth of the EDZs has been examined numerically. One method to capture stress induced damage in conventional engineering software is the damage initiation and spalling limit(DISL) approach. The variability of depths predicted using the DISL approach has been evaluated and guidelines are suggested for determining the depth of the EDZs around circular excavations in brittle rock masses. Of the inputs evaluated, it was found that the tensile strength produces the greatest variation in the depth of the EDZs. The results were evaluated statistically to determine the best fit relation between the model inputs and the depth of the EDZs. The best correlation and least variation were found for the outer EDZ and the highly damaged zone(HDZ) showed the greatest variation. Predictive equations for different EDZs have been suggested and the maximum numerical EDZ depths, represented by the 68% prediction interval, agreed well with the empirical evidence. This suggests that the numerical limits can be used for preliminary depth prediction of the EDZs in brittle rock for circular excavations.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-316)the National Natural Science Foundation of China (31070477,30870471)the West Light Foundation of the Chinese Academy of Sciences (XBBS201105)
文摘Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments.
基金financially supported by the National Natural Science Foundation of China (Nos. 51579037, 51609035, 51822901, 31872610)China Postdoctoral Science Foundation (Nos. 2017T100176, 2016M590224)the Science and Technology Development Plan Project of Shandong Province (No. 2014GHY115023)
文摘Submersible fish cages can be submerged under the water to mitigate the negative effects that arise from severe sea conditions and improve the growing environment for the farmed fish. Thus they are increasingly applied in offshore aquaculture. To ensure both safety and economic efficiency of submersible fish cages, it is important to determine the optimum submergence depth. In this study, a series of physical model experiments were conducted to investigate the hydrodynamic performance of a submersible fish cage at various submergence depths(1/6, 1/4, 1/3, and 1/2 of the water depth as well as the floating condition for reference) with a model scale of 1:20. The results of the physical model experiment for the different depths were compared to analyze the effects of submergence depths on the mooring line tension and the movement of the floating collar. The results showed that the mooring line tension and the floating collar movement significantly attenuated with increasing submergence depth. However, the attenuation tendency became stable when the fish cage reached a certain depth. According to the results, 1/3 of water depth was determined as the optimal submergence depth of the fish cages. Deeper submergence depths showed no significant advantage from a perspective of the hydrodynamic characteristics of the fish cage. The determination of the optimum submergence depth is beneficial for the structural design and operation safety of submersible net cages.
基金supported by the National Natural Science Foundation of China(50979065,51109154 and 51249002)the Natural Science Foundation of Shanxi Province,China(2012021026-2)+2 种基金the Program for Science and Technology Development of Shanxi Province,China(20110311018-1)the Specialized Research Fund for the Doctoral Program of Higher Education,China(20111402120006,20121402110009)the Program for Graduate Student Education and Innovation of Shanxi Province,China(2015BY27)
文摘Crop root system plays an important role in the water cycle of the soil-plant-atmosphere continuum. In this study, com- bined isotope techniques, root length density and root cell activity analysis were used to investigate the root water uptake mechanisms of winter wheat (Triticum aesfivum L.) under different irrigation depths in the North China Plain. Both direct inference approach and multisource linear mixing model were applied to estimate the distribution of water uptake with depth in six growing stages. Results showed that winter wheat under land surface irrigation treatment (Ts) mainly absorbed water from 10-20 cm soil layers in the wintering and green stages (66.9 and 72.0%, respectively); 0-20 cm (57.0%) in the jointing stage; 0-40 (15.3%) and 80-180 cm (58.1%) in the heading stage; 60-80 (13.2%) and 180-220 cm (35.5%) in the filling stage; and 0-40 (46.8%) and 80-100 cm (31.0%) in the ripening stage. Winter wheat under whole soil layers irrigation treatment (Tw) absorbed more water from deep soil layer than Ts in heading, filling and ripening stages. Moreover, root cell activity and root length density of winter wheat under TW were significantly greater than that of Ts in the three stages. We concluded that distribution of water uptake with depth was affected by the availability of water sources, the root length density and root cell activity. Implementation of the whole soil layers irrigation method can affect root system distribution and thereby increase water use from deeper soil and enhance water use efficiency.
基金funded by the National Natural Science Foundation of China (41807061)Postdoctoral Science Foundation of China (2018M633454)+2 种基金Fundamental Research Funds for the Central Universities of China (GK201803046)National Science Foundation of China (41930641)National Key Research and Development Plan of China (2017YFC0504702)
文摘Frozen ground degradation plays an important role in vegetation growth and activity in high-altitude cold regions.This study estimated the spatiotemporal variations in the active layer thickness(ALT)of the permafrost region and the soil freeze depth(SFD)in the seasonally frozen ground region across the Three Rivers Source Region(TRSR)from 1980 to 2014 using the Stefan equation,and differentiated the effects of these variations on alpine vegetation in these two regions.The results showed that the average ALT from 1980 to 2014 increased by23.01 cm/10 a,while the average SFD decreased by 3.41 cm/10 a,and both changed intensively in the transitional zone between the seasonally frozen ground and permafrost.From 1982-2014,the increase in the normalized difference vegetation index(NDVI)and the advancement of the start of the vegetation growing season(SOS)in the seasonally frozen ground region(0.0078/10 a,1.83 d/10 a)were greater than those in the permafrost region(0.0057/10 a,0.39 d/10 a).The results of the correlation analysis indicated that increases in the ALT and decreases in the SFD in the TRSR could lead to increases in the NDVI and advancement of the SOS.Surface soil moisture played a critical role in vegetation growth in association with the increasing ALT and decreasing SFD.The NDVI for all vegetation types in the TRSR except for alpine vegetation showed an increasing trend that was significantly related to the SFD and ALT.During the study period,the general frozen ground conditions were favorable to vegetation growth,while the average contributions of ALT and SFD to the interannual variation in the NDVI were greater than that of precipitation but less than that of temperature.
基金financially supported by the National Natural Science Foundation of China(Grant No.41176074)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFT1001)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20102304120026)
文摘In order to study hydrodynamic performance of a propeller in the free surface, the numerical simulation and open-water experiments are carried out with varying shaft depths of propeller. The influences of shaft depths of a propeller on thrust and torque coefficient in calm water are mainly studied. Meanwhile, this paper also studies the propeller air-ingestion under special working conditions by experiment and theoretical calculation method, and compares the calculation results and experimental results. The results prove that the theoretical calculation model used in this paper can imitate the propeller air-ingestion successfully. The successful phenomenon simulation provides an essential theoretical basis to understand the physical essence of the propeller air-ingestion.
基金financially supported by the Chinese State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.GKZD010038)
文摘This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.
基金sup-ported by the National Natural Science Foundation of China(Nos.41530963,91858215 and 41906048)the Fundamental Research Funds for the Central Universities(No.201964015)the Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology(No.MMRZZ201801).
文摘The Ying-Qiong Basin is located on the northwestern margin of the South China Sea and at the junction of the South China Block and the Indochina Block.It is characterized by complex geological structures.The existing seismic data in the study area is sparse due to the lack of earthquake activities.Because of the limited source energy and poor coverage of seismic data,the knowledge of deep structures in the area,including the spatial distribution of deep faults,is incomplete.Contrarily,satellite gravity data cover the entire study area and can reveal the spatial distribution of faults.Based on the wavelet multi-scale decomposition method,the Bouguer gravity field in the Ying-Qiong Basin was decomposed and reconstructed to obtain the detailed images of the first-to sixth-order gravitational fields.By incorporating the known geological features,the gravitational field responses of the main faults in the Ying-Qiong Basin were identified in the detailed fields,and the power spectrum analysis yielded the depths of 1.4,8,15,26.5,and 39 km for the average burial depths of the bottom surfaces from the first-to fifth-order detailed fields,respectively.The four main faults in the Yinggehai Basin all have a large active depth range:fault A(No.1)is between 5 and 39 km,fault B is between 26.5 and 39 km,and faults C and D are between 15 and 39 km.However,the depth of active faults in the Qiongdongnan Basin is relatively shallow,mainly between 8 and 26.5 km.
基金supported by the National Nature Science Foundation of China(No.1210050454)the program of Chinese Scholarship Council(No.202106280126)。
文摘In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size.
基金Supported by the National Key Technology R&D Program (No. 2006BAD09A02)the High Technology Research and Development Program of China (863 Program) (Nos. 2006AA100304, 2006AA100307)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-03)
文摘Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 μm/d) and 20 m (236.9 μm/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 μm/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.