This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Generation of a depth-map from 2D video is the kernel of DIBR (Depth Image Based Rendering) in 2D-3D video conversion systems. However it occupies over most of the system resource where the motion search module takes ...Generation of a depth-map from 2D video is the kernel of DIBR (Depth Image Based Rendering) in 2D-3D video conversion systems. However it occupies over most of the system resource where the motion search module takes up 90% time-consuming in typical motion estimation-based depth-map generation algorithms. In order to reduce the computational complexity, in this paper a new fast depth-map generation algorithm based on motion search is developed, in which a fast diamond search algorithm is adopted to decide whether a 16x16 or 4x4 block size is used based on Sobel operator in the motion search module to obtain a sub-depth-map. Then the sub-depth-map will be fused with the sub-depth-maps gotten from depth from color component Cr and depth from linear perspective modules to compensate and refine detail of the depth-map, finally obtain a better depth-map. The simulation results demonstrate that the new approach can greatly reduce over 50% computational complexity compared to other existing methods.展开更多
This paper introduces the general process of the search algorithm Structure through the knight problem. According to the characteristics of the problem, we detailed discuss the DFS(Depth First Search) algorithm and ...This paper introduces the general process of the search algorithm Structure through the knight problem. According to the characteristics of the problem, we detailed discuss the DFS(Depth First Search) algorithm and BFS(Breadth First Search) algorithm, and combine the two algorithms together to solve the knights coverage problem. This article has a good reference for the mixed-use scenarios which requires a variety of search algorithms.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘Generation of a depth-map from 2D video is the kernel of DIBR (Depth Image Based Rendering) in 2D-3D video conversion systems. However it occupies over most of the system resource where the motion search module takes up 90% time-consuming in typical motion estimation-based depth-map generation algorithms. In order to reduce the computational complexity, in this paper a new fast depth-map generation algorithm based on motion search is developed, in which a fast diamond search algorithm is adopted to decide whether a 16x16 or 4x4 block size is used based on Sobel operator in the motion search module to obtain a sub-depth-map. Then the sub-depth-map will be fused with the sub-depth-maps gotten from depth from color component Cr and depth from linear perspective modules to compensate and refine detail of the depth-map, finally obtain a better depth-map. The simulation results demonstrate that the new approach can greatly reduce over 50% computational complexity compared to other existing methods.
文摘This paper introduces the general process of the search algorithm Structure through the knight problem. According to the characteristics of the problem, we detailed discuss the DFS(Depth First Search) algorithm and BFS(Breadth First Search) algorithm, and combine the two algorithms together to solve the knights coverage problem. This article has a good reference for the mixed-use scenarios which requires a variety of search algorithms.