期刊文献+
共找到93,439篇文章
< 1 2 250 >
每页显示 20 50 100
Coupled Dissolution-Precipitation Mineralized Process in Bailongshan Li Deposit,West Kunlun(NW China),Evidenced by the Mineralogy of Cassiterite,Columbite-Group Minerals and Elbaite
1
作者 Tao Hong ZhangZhang +2 位作者 Zeli Jiang Mingxi Hu Pengli Jiao 《Journal of Earth Science》 2025年第3期1033-1050,共18页
Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases a... Coupled dissolution-precipitation is one of the critical processes influencing the mineralogical and geochemical evolution of pegmatites.This mechanism involves the simultaneous dissolution of primary mineral phases and the precipitation of secondary phases,driven by changes in the chemical environment,often mediated by hydrothermal fluids.The Bailongshan Li deposit,located in the West Kunlun region of northwest China,is a significant geological formation known for its rich lithium content and associated rare metals such as tantalum,niobium,and tin.This study investigates the coupled dissolution-precipitation processes that have played a crucial role in the mineralization of this deposit,focusing on key minerals,including cassiterite(Cst),columbite-group minerals(CGM),and elbaite(Elb).Using a combination of petrographic analysis,back-scattered electron(BSE)imaging,cathodoluminescence(CL)imaging,and micro X-ray fluorescence(XRF)mapping,we examined the textural and chemical characteristics of these minerals.Our findings reveal intricate patchy zoning patterns and element distributions(indicated by the Nb,Ta,W,Mn,Fe,Hf,Ti for CGM;Hf,Ti Rb,W,Nb,Ta for Cst;Ti,Zn,Fe,W,Hf,Mn,K for Elb)that indicate multiple stages of mineral alteration driven by fluid-mediated processes.The coupled dissolution-precipitation mechanisms observed in the Bailongshan deposit have resulted in significant redistribution and enrichment of economically valuable elements.The study highlights the importance of hydrothermal fluids in altering primary mineral phases and precipitating secondary phases with distinct compositions.These processes not only modified the mineralogical makeup of the pegmatite but also enhanced its economic potential by concentrating rare metals.Signatures of coupled dissolutionprecipitation processes can serve as an essential tool for mineral exploration,guiding the search for high-grade zones within similar pegmatitic formations. 展开更多
关键词 coupled dissolution-precipitation mineralized process West Kunlun MINERALOGY pegmatite Li deposit ore deposits
原文传递
Association between intra-pancreatic fat deposition and diseases of the exocrine pancreas: A narrative review 被引量:1
2
作者 Jing Ye Jian-Guo Wang +2 位作者 Rong-Qiang Liu Qiao Shi Wei-Xing Wang 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期27-41,共15页
Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological me... Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological mechanisms underlying IPFD remain unclear,with several potential contributing factors,including oxida-tive stress,alterations in the gut microbiota,and hormonal imbalances.IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pan-creatic diseases.Although imaging techniques remain the primary diagnostic approach for IPFD,an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes.Currently,effective treatments for IPFD are not available;however,existing medications,such as glucagon-like peptide-1 receptor agonists,and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease.This paper reviews the pathogenesis of IPFD,its association with exocrine pancreatic disea-ses,and recent advancements in its diagnosis and treatment,emphasizing the significant clinical relevance of IPFD. 展开更多
关键词 Intrapancreatic fat deposition Pancreatic steatosis Nonalcoholic fatty pancreas disease PANCREATITIS Pancreatic cancer
暂未订购
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
3
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
High-inclination WO_(3)Deposition Enabled Fast-response Aqueous Zinc-ion Electrochromism 被引量:1
4
作者 CHEN Shuo XING Kaixiao +6 位作者 LYU Ying YAO Xinxin LI Pan GUO Xiaoyang WANG Tienan LI Xiaotian LIU Xingyuan 《发光学报》 北大核心 2025年第6期1082-1094,共13页
Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t... Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices. 展开更多
关键词 electrochromic WO_(3) aqueous Zn^(2+)electrolyte ordered nanowires glancing angle deposition
在线阅读 下载PDF
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
5
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag dissolution kinetics
原文传递
Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery 被引量:1
6
作者 Wei-li Cheng Xu-bang Hao +4 位作者 Jin-hui Wang Hui Yu Li-fei Wang Ze-qin Cui Cheng Chang 《Journal of Magnesium and Alloys》 2025年第3期1020-1033,共14页
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci... The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment. 展开更多
关键词 Mg-air batteries ANODE Residual strain distribution dissolution mode Discharge mechanism
在线阅读 下载PDF
Heterophase interfacial strengthening mechanism in CrNiCux medium-entropy alloys fabricated by laser-directed energy deposition 被引量:1
7
作者 Wei Feng Zhixin Xia +5 位作者 Jixin Hou Tao Jiang Zhonghan Liu Zhenxuan Xie Chaohui Zhu Yunhe Yu 《Journal of Materials Science & Technology》 2025年第3期269-281,共13页
The unique structure and formation mechanism of medium-entropy alloys(MEAs)generally result in bet-ter comprehensive properties than traditional alloys.However,the strength-ductility trade-offremains a bottleneck,whic... The unique structure and formation mechanism of medium-entropy alloys(MEAs)generally result in bet-ter comprehensive properties than traditional alloys.However,the strength-ductility trade-offremains a bottleneck,which limits their applications.In this study,we designed novel high-performance CrNiCu x MEAs with a heterophase composition by incorporating a Cu-rich phase,and they were fabricated using laser-directed energy deposition(LDED).The results show that synergistic strengthening from multiple phases significantly improved the mechanical properties of the alloys,resulting in a tensile strength of 675 MPa and a ductility of 34.4%,demonstrating an excellent combination of high tensile strength and ductility.The improved mechanical properties of the CrNiCu x medium-entropy alloys are primarily due to the heterophase interfacial strengthening mechanism.In the alloy,numerous semi-coherent and coher-ent interfaces formed between the Cr-rich phase,Cu-rich phase,and the matrix,creating extensive lattice distortions at the interfaces.An increase in the Cu-rich phase content promoted the interaction between phases,enhancing the strain energy of the alloy and the barrier strength of the interfaces.The calcu-latedτint values,ranging from approximately 5.92-6.69 GPa,are significantly higher than those found in traditional alloys,providing a benchmark for designing new high-performance medium-entropy alloys. 展开更多
关键词 Laser-directed energy deposition CrNiCu x Mechanical properties Heterophase interfacial strengthening
原文传递
Heterogeneous interfaces of aluminum bronze/Inconel 718 dissimilar alloys under different wire arc directed energy deposition sequences 被引量:1
8
作者 Tianxing Chang Xuewei Fang +4 位作者 You Zhou Hongkai Zhang Naiyuan Xi Shahid Ghafoor Ke Huang 《International Journal of Extreme Manufacturing》 2025年第1期368-381,共14页
The layer-by-layer deposition strategy of additive manufacturing makes it ideal to fabricate dissimilar alloy components with varying functionality,which has promising application potential in a large number of indust... The layer-by-layer deposition strategy of additive manufacturing makes it ideal to fabricate dissimilar alloy components with varying functionality,which has promising application potential in a large number of industrial areas.In this study,two components composed of ERCuAl-A2 aluminum bronze(CuAl9)and Inconel 718 nickel-based superalloy were fabricated with different deposition orders by wire-arc directed energy deposition.Subject to changes in heat input and thermophysical properties of the substrate,the transition region of the deposited Cu-Ni component with the bottom half of CuAl9 and the top half of Inconel 718 is narrow and serrated.This region features a laminated intermetallic compound layer due to the convection and rapid cooling in the molten pool.In contrast,the Ni-Cu component deposited in the opposite order exhibits a 2 mm gradient transition zone.Within this region,a large number of diverse precipitates were found as well as regional variations in grain size due to the multi-layer partial remelting.Both two components show strong bonds and their tensile specimens tested along the vertical direction always fracture at the softer CuAl9 side.Excellent tensile properties along the horizontal direction were obtained for Cu-Ni(Ultimate tensile strength:573 MPa,yield stress:302 MPa,elongation:22%),while those of Ni-Cu are much lower due to the existence of the solidification cracks in the transition zone.The results from this study provide a reference for the additive manufacturing of Cu/Ni dissimilar alloy components,as well as their microstructure and mechanical properties control. 展开更多
关键词 wire-arc directed energy deposition dissimilar alloys microstructure aluminum bronze nickel-based super-alloy
在线阅读 下载PDF
Microstructure evolution of laser directed energy deposition process prepared CNTs/WE43 composites during solution and aging treatment 被引量:1
9
作者 Lyuyuan Wang Zhaodian Wang +3 位作者 Lei Zhao Yuan Chen Yangfan Fu Dongsheng Wu 《Journal of Magnesium and Alloys》 2025年第7期3357-3372,共16页
Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in thi... Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in this study.The microstructure of the WE43 and CNTs/WE43 layers was systematically compared.The dissolution of divorced eutectics at the grain boundaries was retarded by CNTs during solution treatment.The spot segregation composed of Mg_(24)Y_(5),CNTs,and Zr cores in the solution treated CNTs/WE43 layer presented a slight decreasing in Y content.The grain growth of both types of layers underwent three stages:slow,rapid,and steady-state.The significant inhibitory effect of CNTs on the grain growth of the LDED WE43 matrix was more pronounced than the promoting effect of temperature,resulting in a 47%increase at 510℃ and a 35%increase at 540℃ in the grain growth exponent compared to the WE43 layers at 510℃.During the subsequent aging treatment at 225℃,the precipitation sequences from plate-shaped β″to plate-shaped and globular β′ were observed in both types of layers.CNTs can facilitate an increase in the nucleation rate of precipitates,but without accelerating precipitation hardening rate.The long and short diameters of the precipitates in peak-aged state were decreased by 48.5%and 43.1%by addition of CNTs,respectively.The wear resistance of both the WE43 and CNTs/WE43 layers can be significantly enhanced through solution and aging treatment.The enhancement in wear resistance for the CNTs/WE43 layers is considerably greater than that of the WE43 layers. 展开更多
关键词 Laser directed energy deposition Cnts-reinforced we43 composite Heat treatment Microstructure evolution
暂未订购
Impact of Pollutant Concentration and Particle Deposition on the Radiative Flow of Casson-Micropolar Fluid between Parallel Plates
10
作者 Ghaliah Alhamzi Badr Saad T.Alkahtani +2 位作者 Ravi Shanker Dubey Vinutha Kalleshachar Neelima Nizampatnam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期665-690,共26页
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po... Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters. 展开更多
关键词 Micropolar fluid thermal radiation porous medium thermophoretic particle deposition waste discharge concentration
在线阅读 下载PDF
Rare Earth Oxide Surface Modification of Porous SiO_(2) Film Prepared by Atomic Layer Deposition
11
作者 JIN Jianfei LÜLin +3 位作者 LI Ying YAN Lu CAO Yunzhen LI Wei 《无机材料学报》 北大核心 2025年第9期1029-1036,I0003,共9页
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si... Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability. 展开更多
关键词 porous SiO_(2) rare earth oxide atomic layer deposition anti-reflective SELF-CLEANING
在线阅读 下载PDF
The dilemma of Luhuitou fringing reefs:net dissolution in winter and enhanced acidification in summer
12
作者 Junxiao ZHANG Hui HUANG +4 位作者 Xiangcheng YUAN Yong LUO Haorui LIANG Peixi LIANG Xin XU 《Journal of Oceanology and Limnology》 2025年第3期785-802,共18页
Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status an... Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status and their responses to the impacts of climate change and human activities.Winter and summer surveys in 2019 found that the ecological community of the Luhuitou coral reef flat was dominated by macroalgae and corals,respectively,contrasting with the conditions 10 years ago.The Luhuitou fringing reefs were sources of atmospheric CO_(2) in both seasons.In winter,the daily variation range of dissolved inorganic carbon(DIC)in Luhuitou coral reefs was up to 450μmol/kg,while that of total alkalinity(TA)was only 68μmol/kg.This indicated that the organic production was significantly higher than the calcification process during this period.The TA/DIC was approximately 0.15,which was less than half of that in healthy coral reefs;hence,photosynthesis-respiration processes were the most important factors controlling daily changes in the seawater carbonate system.The net community production(NCP)of the Luhuitou coral reef ecosystem in winter was as high as 47.65 mmol C/(m^(2)·h).While the net community calcification(NCC)was approximately 3.35 and-4.15 mmol CaCO_(3)/(m^(2)·h)during the daytime and nighttime respectively.Therefore,the NCC for the entire day was-21.9 mmol CaCO_(3)/(m^(2)·d),indicating a net autotrophic dissolved state.In summer,the acidification was enhanced by thunderstorms and heavy rain with the highest seawater partial pressure of CO_(2)(p CO_(2))and lowest pH T.Over the past 10 years,the increase rate of seawater p CO_(2) in Luhuitou reef was approximately 13.3μatm/a***,six times that of the open ocean,while the decrease rate of pH was approximately 0.0083/a,being five times that of the global ocean.These findings underscore the importance of protecting and restoring Luhuitou fringing reef,as well as similar reefs worldwide. 展开更多
关键词 Luhuitou coral reef carbonate system ACIDIFICATION CALCIFICATION dissolution
在线阅读 下载PDF
The low-temperature deposition of a zincophilic carbon layer on the Zn foil for long-life zinc metal batteries
13
作者 LI Chun-yu ZHANG Ming-hui +2 位作者 LANG Xin-yue CHEN Ye DONG Yan-feng 《新型炭材料(中英文)》 北大核心 2025年第1期178-187,共10页
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq... Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anodes Low-temperature deposition Zincophilic carbon layer High performance
在线阅读 下载PDF
Stepwise zinc deposition for high-capacity and long-life anode in aqueous zinc-ion batteries
14
作者 Weili Xie Kaiyue Zhu +2 位作者 Weikang Jiang Hanmiao Yang Weishen Yang 《Journal of Energy Chemistry》 2025年第7期427-437,共11页
Rechargeable aqueous zinc-ion batteries(AZIBs)are widely studied for energy storage because of their high safety,low cost and high energy/power density.However,the practical application of AZIBs is limited by dendrite... Rechargeable aqueous zinc-ion batteries(AZIBs)are widely studied for energy storage because of their high safety,low cost and high energy/power density.However,the practical application of AZIBs is limited by dendrite formation at the zinc anode under high-depth deposition,which results in reduced cycle life and overall performance.Herein,we propose an effective and scalable stepwise deposition approach that integrates uniform nucleation and dense growth through the construction of ultrathin ZnO nanofiber arrays(ZONAs)on the zinc anode surface,along with the introduction of an anionic surfactant(AS)into the electrolyte.This approach yields a uniform,dense and dendrite-free Zn anode during cycling,maintaining stable cycling for 2100 h under a high deposition depth of 10 mAh cm^(-2)at an extremely high current density of 10 m A cm^(-2).Additionally,full cells using MnO_(2)cathodes exhibit stable cycling for 6000cycles at 5 A g^(-1),with a capacity retention of 75%.Furthermore,the pouch-type cell with an area of90 cm2delivers a capacity of 60 m Ah and maintains stable cycling for 540 cycles at 200 mA,highlighting its strong potential for scalability. 展开更多
关键词 Stepwise deposition Zinc oxide nanofiber arrays Anionic surfactant Dendrite-free anode High deposition capacity
在线阅读 下载PDF
Impact of dissolution and precipitation on pore structure in CO_(2)sequestration within tight sandstone reservoirs
15
作者 Hui Gao Kai-Qing Luo +6 位作者 Chen Wang Teng Li Zhi-Lin Cheng Liang-Bin Dou Kai Zhao Nan Zhang Yue-Liang Liu 《Petroleum Science》 2025年第2期868-883,共16页
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens... Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs. 展开更多
关键词 dissolution PRECIPITATION Pore structure CO_(2)sequestration Unconventional reservoirs
原文传递
Meteorological effects on sources and future projection of nitrogen deposition to lakes in China
16
作者 Cheng Shi Hao Guo +3 位作者 Xue Qiao Jingsi Gao Ying Chen Hongliang Zhang 《Journal of Environmental Sciences》 2025年第5期100-112,共13页
Lake ecosystems are extremely sensitive to nitrogen growth,which leads to water quality degradation and ecosystem health decline.Nitrogen depositions,as one of the main sources of nitrogen in water,are expected to cha... Lake ecosystems are extremely sensitive to nitrogen growth,which leads to water quality degradation and ecosystem health decline.Nitrogen depositions,as one of the main sources of nitrogen in water,are expected to change under future climate change scenarios.However,it remains not clear how nitrogen deposition to lakes respond to future meteorological conditions.In this study,a source-oriented version of Community Multiscale Air Quality(CMAQ)Model was used to estimate nitrogen deposition to 263 lakes in 2013 and under three RCP scenarios(4.5,6.0 and 8.5)in 2046.Annual total deposition of 58.2 Gg nitrogen was predicted for all lakes,with 23.3 Gg N by wet deposition and 34.9 Gg N by dry deposition.Nitrate and ammonium in aerosol phase are the major forms of wet deposition,while NH3 and HNO_(3)in gas phase are the major forms of dry deposition.Agriculture emissions contribute to 57%of wet deposition and 44%of dry deposition.Under future meteorological conditions,wet deposition is predicted to increase by 5.5%to 16.4%,while dry deposition would decrease by 0.3%to 13.0%.Changes in wind speed,temperature,relative humidity(RH),and precipitation rates are correlated with dry and wet deposition changes.The predicted changes in deposition to lakes driven by meteorological changes can lead to significant changes in aquatic chemistry and ecosystem functions.Apart from future emission scenarios,different climate scenarios should be considered in future ecosystem health evaluation in response to nitrogen deposition. 展开更多
关键词 deposition Nitrogen LAKES CMAQ Meteorological variations
原文传递
Effect of Diagenetic Processes and Depositional Facies on Reservoir Quality of the Eocene Carbonate Sequence(Sakesar Limestone)in the Central Salt Range,Pakistan
17
作者 Naveed Rehman Shu Jiang +2 位作者 Syed Haroon Ali Asim Falak Naz Muhammad Tariq 《Journal of Earth Science》 2025年第3期1129-1148,共20页
The effect of depositional facies and diagenesis on the reservoir potential of the Sakesar limestone has been assessed through core plug porosity and permeability data,scanning electron microscope(SEM),and petrographi... The effect of depositional facies and diagenesis on the reservoir potential of the Sakesar limestone has been assessed through core plug porosity and permeability data,scanning electron microscope(SEM),and petrographic study in three stratigraphic sections(Karuli,Badshah Pur,and Sardhai)of Central Salt Range.Field observations reveal three lithofacies:thin-bedded limestone with shale intercalation,thick-bedded nodular limestone,and highly fractured limestone.Based on a petrographic study,six microfacies have been identified:bioclastic mudstone facies(SKF-1),Lockhartia-nummulitic wackestone facies(SKF-2),Assilina-Alveolina packstone facies(SKF-3),Lockhartia-nummulitic packstone facies(SKF-4),Alveolina grainstone facies(SKF-5),and nummulitic grainstone facies(SKF-6).The Sakesar limestone shows various diagenetic changes such as compaction,dissolution,dolomitization,cementation,and fracturing,resulting in different types of pores.Two reservoir zones are identified in the Sakesar limestone:a mud-dominated reservoir in an outer ramp setting with interparticle and micropores and a bioclastic grain-dominated facies in an inner ramp setting with intraskeletal and fracture porosity.The porosity and permeability of grain-dominated facies(8%-30%and 0.8-8 mD)are higher than mud-dominated facies(4%-15%and 0.5-4 mD)due to intraskeletal/intraparticle pores and dolomitization. 展开更多
关键词 porosity permeability DIAGENESIS DOLOMITIZATION MICROFACIES STRATIGRAPHY petroleum deposits
原文传递
Rapid lime dissolution for efficient dephosphorization by self-disintegrating effect of core–shell structured lime in converter slag
18
作者 Jia-xin Zhang Yu-feng Tian +1 位作者 Guang-qiang Li Yu Liu 《Journal of Iron and Steel Research International》 2025年第9期3089-3095,共7页
The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is m... The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is mainly attributed to the calcium silicate layer at the lime/slag interface.CO_(2)generated by CaCO_(3)decomposition can destroy the calcium silicate layer,and thus accelerates the dissolution of limestone and core–shell structured lime.However,in the initial stage,a large amount of CO_(2)emission generated by limestone decomposition results in the poor contact between molten slag and limestone,and the dissolution rate is slower in the test of limestone than that of lime.For core–shell structured lime,the initial dissolution rate is not affected due to the lime surface,and is accelerated by the appropriate CO_(2)emission.Rapid CaO pickup in molten slag by fast dissolution of the lime sample can remarkably accelerate the dephosphorization reaction.Because of the fastest dissolution rate,the core–shell structured lime slagging mode shows the most promising prospects for the efficient dephosphorization. 展开更多
关键词 Lime dissolution DEPHOSPHORIZATION Slag-metal interaction Core-shell structured lime CaCO_(3)decomposition
原文传递
Consecutive wet deposition of nitrogen along half of China's coastal cities induced by Super Typhoon Muifa(2022)with multiple landfalls
19
作者 Ying Zhang Baozhu Ge +5 位作者 Guanghua Chen Duo Wang Feili Li Joshua S.Fu Xuejun Liu Zifa Wang 《Journal of Environmental Sciences》 2025年第10期126-138,共13页
The extraordinary Super Typhoon(STY)Muifa(2022)made landfall four times and had a significant impact on the coastal regions from south to north of China.Although previous studies have demonstrated the‘pumping effect&... The extraordinary Super Typhoon(STY)Muifa(2022)made landfall four times and had a significant impact on the coastal regions from south to north of China.Although previous studies have demonstrated the‘pumping effect'of typhoons on the enhancement of reactive nitrogen(Nr)wet deposition over the ocean,it is uncertain how Nr deposition is influenced by typhoons thatmake prolonged mechanism due tomultiple landfalls.In this study,theNr wet deposition induced by STYMuifawas investigated fromthe perspective of in-and below-cloud processes based on the Nested Air Quality Prediction Modeling System with an online tracer-tagging module.High volume of Nr wet deposition caused by Muifa migrated from south to north,passing over half of China's coastal cities.Compared to the typhoon generated vicinity,both mean values of the oxidized and reduced nitrogen wet deposition over the Typhoon affected regions were increased about 20.4 and 66.1 times after landfall even with the similar rainfall.Emissions from the four landfall areas of China contributed to the majority of Nr wet deposition with significantly enhanced proportion of in-cloud deposition.The strong pumping effect of typhoon to the Nr deposition along the coastal areas and the risk of ecosystem effects requires further researches and higher demands on the control of nitrogen emissions of National Industrial Park,which usually located in China's coastal cities. 展开更多
关键词 Reactive nitrogen Wet deposition Multiple landfalls Super Typhoon
原文传递
Designing cost-performance porous thermoelectric materials by interface engineering through atomic layer deposition
20
作者 Shuankui Li Wenguang Zhao +8 位作者 Xiao-Lei Shi Liangliang Wang Shusheng Pan Guofeng Cheng Wei-Di Liu Meng Li Kai Guo Zhi-Gang Chen Feng Pan 《Journal of Materials Science & Technology》 2025年第11期194-203,共10页
The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-pli... The bismuth-telluride-based alloy is the only thermoelectric material commercialized for the applications of refrigeration and energy harvesting,but its low cost-effectiveness severely restricts its large-scale ap-plication.The introduction of a porous structure in bulk thermoelectric materials has been theoretically proven to effectively reduce thermal conductivity and cost.However,the electrical properties of highly porous materials are considerably suppressed due to the strong carrier scattering at the interface be-tween the matrix and pores,ultimately leading to decreased figure of merit,ZT.Here,we use an atomic layer deposition strategy to introduce some hollow glass bubbles with nano-oxide layers into commercial Bi_(0.5)Sb_(1.5)Te_(3)for preparing high-performance porous thermoelectric materials.Experimental results indi-cate that the nano-oxide layers weaken carrier scattering at the interface between pores and matrix while maintaining high-strength phonon scattering,thereby optimizing carrier/phonon transport behaviors,and effectively increasing the ZT by 23.2%(from 0.99 to 1.22 at 350 K).Besides,our strategy has excellent universality confirmed by its effectiveness in improving the ZT of Bi_(2)Te_(2.7)Se_(0.3),therefore demonstrating great potential for developing low-cost and high-performance thermoelectric materials. 展开更多
关键词 THERMOELECTRIC Bismuth telluride POROSITY Atomic layer deposition INTERFACE PERFORMANCE
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部