期刊文献+
共找到5,892篇文章
< 1 2 250 >
每页显示 20 50 100
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
1
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
Review of online quality control for laser directed energy deposition(LDED)additive manufacturing
2
作者 Long Ye Hao Xue +6 位作者 Zhaosheng Li Yichang Zhou Guangyu Chen Fangda Xu Ruslan Melentiev Stephen Newman Nan Yu 《International Journal of Extreme Manufacturing》 2025年第6期152-196,共45页
Laser directed energy deposition(LDED)is an emerging branch of metal-based additive manufacturing(AM)processes,offering unprecedented capabilities for high-performance fabrication with complex geometries and near-net ... Laser directed energy deposition(LDED)is an emerging branch of metal-based additive manufacturing(AM)processes,offering unprecedented capabilities for high-performance fabrication with complex geometries and near-net shapes.This technology is gathering increasing attention from industries such as biomedical,automotive,and aerospace.However,achieving consistent part quality and desired material properties is challenging due to intricate processing parameters and potential process defects such as dynamic melt-pool behavior and localized heat accumulation.This paper reviews recent advances in on-line quality control,focusing on in-situ measurement and closed-loop control for efficient assurance of LDED-fabricated parts.The quality principles,encompassing accuracy and material performance,are summarized to lay a foundation for understanding the mechanisms of quality defects and influencing factors.This review explores and thoroughly compares advancements in indirect process measurements,such as optical,thermal,and acoustic monitoring with direct quality measurements,including laser-line scanning and operando synchrotron X-ray imaging.Depending on the sensing techniques,this paper highlights a hierarchical control strategy for adaptive parameter regulation on intra-layer and inter-layer scales.The requirements and performance of various state-of-the-art controllers are critically compared to indicate their suitable applications.The importance of machine learning in detecting process anomalies and predicting build quality based on sensory signals is also outlined.Future directions are proposed towards adaptive,automated,and intelligent quality control,with a focus on multi-modal monitoring,physics-informed neural networks for interpretable analysis,and multi-objective control applications. 展开更多
关键词 additive manufacturing directed energy deposition laser deposition process monitoring quality defects quality control machine learning
在线阅读 下载PDF
Stepwise zinc deposition for high-capacity and long-life anode in aqueous zinc-ion batteries
3
作者 Weili Xie Kaiyue Zhu +2 位作者 Weikang Jiang Hanmiao Yang Weishen Yang 《Journal of Energy Chemistry》 2025年第7期427-437,共11页
Rechargeable aqueous zinc-ion batteries(AZIBs)are widely studied for energy storage because of their high safety,low cost and high energy/power density.However,the practical application of AZIBs is limited by dendrite... Rechargeable aqueous zinc-ion batteries(AZIBs)are widely studied for energy storage because of their high safety,low cost and high energy/power density.However,the practical application of AZIBs is limited by dendrite formation at the zinc anode under high-depth deposition,which results in reduced cycle life and overall performance.Herein,we propose an effective and scalable stepwise deposition approach that integrates uniform nucleation and dense growth through the construction of ultrathin ZnO nanofiber arrays(ZONAs)on the zinc anode surface,along with the introduction of an anionic surfactant(AS)into the electrolyte.This approach yields a uniform,dense and dendrite-free Zn anode during cycling,maintaining stable cycling for 2100 h under a high deposition depth of 10 mAh cm^(-2)at an extremely high current density of 10 m A cm^(-2).Additionally,full cells using MnO_(2)cathodes exhibit stable cycling for 6000cycles at 5 A g^(-1),with a capacity retention of 75%.Furthermore,the pouch-type cell with an area of90 cm2delivers a capacity of 60 m Ah and maintains stable cycling for 540 cycles at 200 mA,highlighting its strong potential for scalability. 展开更多
关键词 Stepwise deposition Zinc oxide nanofiber arrays Anionic surfactant Dendrite-free anode High deposition capacity
在线阅读 下载PDF
Study on the Characteristics of Atmospheric Dry and Wet Deposition in the Upper Reaches of Baiyangdian
4
作者 Ye LI Hongbo LI +2 位作者 Qi ZHAO Ning LUO Xinyong CHEN 《Meteorological and Environmental Research》 CAS 2022年第1期63-66,共4页
To study the characteristics of atmospheric dry and wet deposition in the upper reaches of Baiyangdian,two sampling sites in Baoding City were monitored for 1 year from September 2018 to August 2019.The results showed... To study the characteristics of atmospheric dry and wet deposition in the upper reaches of Baiyangdian,two sampling sites in Baoding City were monitored for 1 year from September 2018 to August 2019.The results showed that the dry and wet deposition fluxes of total nitrogen(TN)during the monitoring period were 6.87 and 6.46 kg/(hm^(2)·a),respectively.The ratio of wet to dry deposition of TN was approximately 1∶1,with wet deposition being dominated by ammonium nitrogen deposition.The dry and wet deposition fluxes of total phosphorus(TP)were 0.228 and 0.125 kg/(hm^(2)·a),and it was dominated by dry deposition.The average concentration of TN in wet deposition exceeded the standard threshold for eutrophic waters,and its ecological effects on the Baiyangdian basin should be concerned.Wet deposition fluxes of nitrogen and phosphorus had a significantly positive correlation with rainfall,while their deposition concentrations were negatively correlated with rainfall.The dry deposition of atmospheric nitrogen and phosphorus was influenced by the amount of dustfall and climatic factors such as rainfall,temperature,and humidity,which mainly occurred from April to August. 展开更多
关键词 Atmospheric deposition Dry and wet deposition Nitrogen deposition Phosphorus deposition deposition flux
在线阅读 下载PDF
Enhanced atmospheric phosphorus deposition in Asia and Europe in the past two decades 被引量:15
5
作者 Yuepeng Pan Bowen Liu +3 位作者 Jing Cao Jin Liu Shili Tian Enzai Du 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第5期8-12,共5页
There is increasing interest in understanding atmospheric phosphorus(P)deposition and its impacts on plant pro-ductivity and carbon sinks in ecosystems.However,the global pattern of P deposition remains poorly underst... There is increasing interest in understanding atmospheric phosphorus(P)deposition and its impacts on plant pro-ductivity and carbon sinks in ecosystems.However,the global pattern of P deposition remains poorly understood,primarily due to the sparseness of data in Asia.In this study,the authors compiled 396 published observations of atmospheric P deposition from 1959 to 2020 on the global scale.The results gave a geometric mean bulk P deposition value of 0.32 kg ha−1 yr−1,or a global P budget of 4.4 Tg yr−1.Compared with the period 1959-2000,the authors found an elevated P deposition in Europe and Asia during 2001-2020,likely due to the increas-ing agricultural emissions and fossil fuel combustion-related sources in addition to dust emissions.The findings highlight the need to quantify the impacts of elevated P deposition from anthropogenic emissions on long-term ecosystem development in the context of carbon neutrality and clean-air actions. 展开更多
关键词 Atmospheric phosphorus deposition Wet deposition Dry deposition Bulk deposition Air pollution
在线阅读 下载PDF
Association between intra-pancreatic fat deposition and diseases of the exocrine pancreas: A narrative review 被引量:1
6
作者 Jing Ye Jian-Guo Wang +2 位作者 Rong-Qiang Liu Qiao Shi Wei-Xing Wang 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期27-41,共15页
Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological me... Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological mechanisms underlying IPFD remain unclear,with several potential contributing factors,including oxida-tive stress,alterations in the gut microbiota,and hormonal imbalances.IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pan-creatic diseases.Although imaging techniques remain the primary diagnostic approach for IPFD,an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes.Currently,effective treatments for IPFD are not available;however,existing medications,such as glucagon-like peptide-1 receptor agonists,and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease.This paper reviews the pathogenesis of IPFD,its association with exocrine pancreatic disea-ses,and recent advancements in its diagnosis and treatment,emphasizing the significant clinical relevance of IPFD. 展开更多
关键词 Intrapancreatic fat deposition Pancreatic steatosis Nonalcoholic fatty pancreas disease PANCREATITIS Pancreatic cancer
暂未订购
High-inclination WO_(3)Deposition Enabled Fast-response Aqueous Zinc-ion Electrochromism 被引量:1
7
作者 CHEN Shuo XING Kaixiao +6 位作者 LYU Ying YAO Xinxin LI Pan GUO Xiaoyang WANG Tienan LI Xiaotian LIU Xingyuan 《发光学报》 北大核心 2025年第6期1082-1094,共13页
Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t... Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices. 展开更多
关键词 electrochromic WO_(3) aqueous Zn^(2+)electrolyte ordered nanowires glancing angle deposition
在线阅读 下载PDF
Heterogeneous interfaces of aluminum bronze/Inconel 718 dissimilar alloys under different wire arc directed energy deposition sequences 被引量:1
8
作者 Tianxing Chang Xuewei Fang +4 位作者 You Zhou Hongkai Zhang Naiyuan Xi Shahid Ghafoor Ke Huang 《International Journal of Extreme Manufacturing》 2025年第1期368-381,共14页
The layer-by-layer deposition strategy of additive manufacturing makes it ideal to fabricate dissimilar alloy components with varying functionality,which has promising application potential in a large number of indust... The layer-by-layer deposition strategy of additive manufacturing makes it ideal to fabricate dissimilar alloy components with varying functionality,which has promising application potential in a large number of industrial areas.In this study,two components composed of ERCuAl-A2 aluminum bronze(CuAl9)and Inconel 718 nickel-based superalloy were fabricated with different deposition orders by wire-arc directed energy deposition.Subject to changes in heat input and thermophysical properties of the substrate,the transition region of the deposited Cu-Ni component with the bottom half of CuAl9 and the top half of Inconel 718 is narrow and serrated.This region features a laminated intermetallic compound layer due to the convection and rapid cooling in the molten pool.In contrast,the Ni-Cu component deposited in the opposite order exhibits a 2 mm gradient transition zone.Within this region,a large number of diverse precipitates were found as well as regional variations in grain size due to the multi-layer partial remelting.Both two components show strong bonds and their tensile specimens tested along the vertical direction always fracture at the softer CuAl9 side.Excellent tensile properties along the horizontal direction were obtained for Cu-Ni(Ultimate tensile strength:573 MPa,yield stress:302 MPa,elongation:22%),while those of Ni-Cu are much lower due to the existence of the solidification cracks in the transition zone.The results from this study provide a reference for the additive manufacturing of Cu/Ni dissimilar alloy components,as well as their microstructure and mechanical properties control. 展开更多
关键词 wire-arc directed energy deposition dissimilar alloys microstructure aluminum bronze nickel-based super-alloy
在线阅读 下载PDF
Laser-directed energy deposition of high-strength Ti6Al4V with equiaxed grain via multi-alloying CoCrMoSi 被引量:1
9
作者 Li Zhao Chao-Lin Tan +3 位作者 Tong-Shuai Zhao Chang-Jun Qiu Xiao-Ming Wang Hong-Mei Zhu 《Rare Metals》 2025年第7期5061-5077,共17页
The wide application of additive-manufactured Ti alloys is impeded by coarse columnar grains along the building direction and thus the severe anisotropy of mechanical properties.To address this issue,a novel multiallo... The wide application of additive-manufactured Ti alloys is impeded by coarse columnar grains along the building direction and thus the severe anisotropy of mechanical properties.To address this issue,a novel multialloying CoCrMoSi strategy has been developed to produce near-equiaxed grains of a modified Ti6Al4V(TC4)alloy for laser-directed energy deposition(LDED)based on computational thermodynamic and experimental approaches.The results show that the microstructure of the TC4alloy consists of large columnar β grains and α/α'laths with a high aspect ratio of 5.73,exhibiting a strong anisotropy of tensile properties.In contrast,the TC4-1.5%CoCrMoSi alloy is characterized by mixed columnarequiaxed β grains and near-equiaxed β grains with increased CoCrMoSi additions to 4.5%.Additionally,the α/α'laths are successively refined with the increase of CoCrMoSi content,showing an aspect ratio of smaller than4.31.However,an excess addition of CoCrMoSi leads to the formation of micro voids.After multi-alloyingCoCrMoSi,the number density of twins increases remarkably with a substantially reduced width,because of the increased lattice distortion and dislocation density together with the reducedβ→αphase transformation temperature.The anisotropy of the tensile properties can be effectively eliminated by adding 3 wt%CoCrMoSi with an exemplary strength-ductility combination,superior to the LDEDed-modified TC4 alloy in the literature reporting the tensile properties along both horizontal(X)and vertical(Z)directions.The underlaying mechanisms for the evolution of the microstructure and the tensile properties induced by multi-alloying CoCrMoSi were discussed in detail. 展开更多
关键词 Laser-directed energy deposition Equiaxed titanium alloy MULTI-ALLOYING Microstructural evolution Strengthening mechanism
原文传递
Metastable core-shell precipitation strengthened high-entropy alloys fabricated by direct energy deposition with multi-stage terrace-like slip wave toughening 被引量:1
10
作者 Jian Liang Xiaochang Xie +4 位作者 Yongkun Mu Ping Yang Zhibin Wu Yandong Jia Gang Wang 《Journal of Materials Science & Technology》 2025年第7期40-57,共18页
This study investigates the development of novel high-entropy alloys(HEAs)with enhanced mechanical properties through an innovative fabrication method of direct energy deposition(DED).The focus is on the creation of m... This study investigates the development of novel high-entropy alloys(HEAs)with enhanced mechanical properties through an innovative fabrication method of direct energy deposition(DED).The focus is on the creation of metastable core-shell precipitation-strengthened HEAs that exhibit a unique multi-stage terrace-like slip wave toughening mechanism,a novel approach to improving both strength and ductility simultaneously.Mechanical testing reveals that the developed HEAs exhibit superior mechanical proper-ties,including high yield strength,ultimate tensile strength,and exceptional ductility.The improvement in these properties is attributed to the multi-stage terrace-like slip wave toughening mechanism activated by the unique microstructural features.This toughening mechanism involves the sequential activation of slip systems,facilitated by the stress concentration around the core-shell precipitates and the subsequent propagation of slip waves across the material.The terrace-like pattern of these slip waves enhances the material's ability to deform plastically,providing a significant toughening effect while maintaining high strength levels.Furthermore,the study delves into the fundamental interactions between the microstruc-tural elements and the deformation mechanisms.It elucidates how the core-shell precipitates and the matrix cooperate to distribute stress uniformly,delay the onset of necking,and prevent premature failure.This synergistic interaction between the microstructural features and the slip wave toughening mecha-nism is central to the remarkable balance of strength and ductility achieved in the HEAs.The introduction of a multi-stage terrace-like slip wave toughening mechanism offers a new pathway to designing HEAs with an exceptional amalgamation of strength and ductility. 展开更多
关键词 High-entropy alloys Direct energy deposition Core-shell precipitates Metastable phases Slip wave toughening mechanism
原文传递
Heterophase interfacial strengthening mechanism in CrNiCux medium-entropy alloys fabricated by laser-directed energy deposition 被引量:1
11
作者 Wei Feng Zhixin Xia +5 位作者 Jixin Hou Tao Jiang Zhonghan Liu Zhenxuan Xie Chaohui Zhu Yunhe Yu 《Journal of Materials Science & Technology》 2025年第3期269-281,共13页
The unique structure and formation mechanism of medium-entropy alloys(MEAs)generally result in bet-ter comprehensive properties than traditional alloys.However,the strength-ductility trade-offremains a bottleneck,whic... The unique structure and formation mechanism of medium-entropy alloys(MEAs)generally result in bet-ter comprehensive properties than traditional alloys.However,the strength-ductility trade-offremains a bottleneck,which limits their applications.In this study,we designed novel high-performance CrNiCu x MEAs with a heterophase composition by incorporating a Cu-rich phase,and they were fabricated using laser-directed energy deposition(LDED).The results show that synergistic strengthening from multiple phases significantly improved the mechanical properties of the alloys,resulting in a tensile strength of 675 MPa and a ductility of 34.4%,demonstrating an excellent combination of high tensile strength and ductility.The improved mechanical properties of the CrNiCu x medium-entropy alloys are primarily due to the heterophase interfacial strengthening mechanism.In the alloy,numerous semi-coherent and coher-ent interfaces formed between the Cr-rich phase,Cu-rich phase,and the matrix,creating extensive lattice distortions at the interfaces.An increase in the Cu-rich phase content promoted the interaction between phases,enhancing the strain energy of the alloy and the barrier strength of the interfaces.The calcu-latedτint values,ranging from approximately 5.92-6.69 GPa,are significantly higher than those found in traditional alloys,providing a benchmark for designing new high-performance medium-entropy alloys. 展开更多
关键词 Laser-directed energy deposition CrNiCu x Mechanical properties Heterophase interfacial strengthening
原文传递
Enhanced electrochemical corrosion resistance of 316L stainless steel manufactured by ultrasonic rolling assisted laser directed energy deposition 被引量:1
12
作者 Guan Liu Yi-gui Su +3 位作者 Xu-yu Pi Dong-xu Wen De-fu Liu Yong-cheng Lin 《China Foundry》 2025年第2期182-194,共13页
Under the laser directed energy deposition(LDED)process,the rapid melting and solidification usually lead to the emergence of pores and coarse columnar dendrites,which in turn compromise the properties of the deposite... Under the laser directed energy deposition(LDED)process,the rapid melting and solidification usually lead to the emergence of pores and coarse columnar dendrites,which in turn compromise the properties of the deposited alloys.This study introduced in-situ ultrasonic rolling(UR)as an innovative method to enhance the corrosion resistance of LDED specimens,and the microstructural characteristics and their correlation with corrosion resistance were deeply investigated.The findings reveal that the LDED-UR specimen exhibits a reduction in both the fraction and size of pores.Under the influence of severe plastic deformation generated by LDED-UR process,fully equiaxed grains appear with a reduced average size of 28.61μm(compared to63.98μm for the LDED specimen with columnar grains).The electrochemical corrosion resistance of the LDED-UR specimen is significantly enhanced compared to the LDED specimen.This enhanced corrosion resistance can be attributed to the low fraction of small-sized pores,the fine and uniformly distributed Cr-enriched ferrite phase,and the formation of a compact and thick passive film due to dense grain boundaries.The insight of the correlation between microstructure and corrosion behavior opens up a new pathway to enhance the corrosion resistance of LDED specimens. 展开更多
关键词 laser directed energy deposition ultrasonic rolling 316L stainless steel microstructure electrochemical corrosion resistance
在线阅读 下载PDF
Laser melting deposition of in-situ (TiB+TiC) hybrid reinforced TC4 composites: Preparation, microstructure and room/high-temperature corrosion behaviour 被引量:1
13
作者 Yang Zheng Ruize Xiong +7 位作者 Zihao Zhao Cenya Zhao ZhiFang Wang Wei Niu Hui Xue Fang Cheng Wei Liu Songbo Wei 《Journal of Materials Science & Technology》 2025年第25期137-154,共18页
To enhance the anti-corrosion performance of TC4 alloy across a wide temperature range for modern aircrafts operating in increasingly harsh environments, the (TiB+TiC) hybrid reinforced TC4 composites were prepared by... To enhance the anti-corrosion performance of TC4 alloy across a wide temperature range for modern aircrafts operating in increasingly harsh environments, the (TiB+TiC) hybrid reinforced TC4 composites were prepared by laser melting deposition (LMD) via the in-situ reaction between B_(4)C reinforcement and molten TC4 alloy. The effect of B_(4)C content (0, 0.5, 1.5, wt%) on the microstructure and room/high-temperature corrosion behaviour of the composites was investigated. Microstructural analysis revealed that the microstructure of the composites was significantly influenced by the B_(4)C content. The composite containing 0.5 wt% B_(4)C exhibited an optimal microstructure characterized by refined grains, equiaxed α-Ti transformed from lath-shaped α-Ti, well-distributed (TiB+TiC) phases with a proper amount and reduced pore/dislocation defects. This composite also demonstrated the best corrosion resistance at both room temperature (25 ℃) and high temperature (800 ℃), which was primarily attributed to its comprehensive advantages including a favorable microstructure, a uniform dispersion of thermally stable (TiB+TiC) phases and a stable passivation film. 展开更多
关键词 Laser melting deposition Ti matrix composites B_(4)C reinforcement MICROSTRUCTURE Corrosion behaviour
原文传递
Microstructure evolution of laser directed energy deposition process prepared CNTs/WE43 composites during solution and aging treatment 被引量:1
14
作者 Lyuyuan Wang Zhaodian Wang +3 位作者 Lei Zhao Yuan Chen Yangfan Fu Dongsheng Wu 《Journal of Magnesium and Alloys》 2025年第7期3357-3372,共16页
Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in thi... Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in this study.The microstructure of the WE43 and CNTs/WE43 layers was systematically compared.The dissolution of divorced eutectics at the grain boundaries was retarded by CNTs during solution treatment.The spot segregation composed of Mg_(24)Y_(5),CNTs,and Zr cores in the solution treated CNTs/WE43 layer presented a slight decreasing in Y content.The grain growth of both types of layers underwent three stages:slow,rapid,and steady-state.The significant inhibitory effect of CNTs on the grain growth of the LDED WE43 matrix was more pronounced than the promoting effect of temperature,resulting in a 47%increase at 510℃ and a 35%increase at 540℃ in the grain growth exponent compared to the WE43 layers at 510℃.During the subsequent aging treatment at 225℃,the precipitation sequences from plate-shaped β″to plate-shaped and globular β′ were observed in both types of layers.CNTs can facilitate an increase in the nucleation rate of precipitates,but without accelerating precipitation hardening rate.The long and short diameters of the precipitates in peak-aged state were decreased by 48.5%and 43.1%by addition of CNTs,respectively.The wear resistance of both the WE43 and CNTs/WE43 layers can be significantly enhanced through solution and aging treatment.The enhancement in wear resistance for the CNTs/WE43 layers is considerably greater than that of the WE43 layers. 展开更多
关键词 Laser directed energy deposition Cnts-reinforced we43 composite Heat treatment Microstructure evolution
暂未订购
High-Precision and Ultraspeed Monitoring of Melt-Pool Morphology in Laser-Directed Energy Deposition Using Deep Learning 被引量:1
15
作者 Jiayu Yang Guan Liu +4 位作者 Wei Zhu Yingjie Zhang Wenbin Zhou Defu Liu Yongcheng Lin 《Additive Manufacturing Frontiers》 2025年第2期81-89,共9页
Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessit... Laser-directed energy deposition(L-DED)is an advanced additive manufacturing technology primarily adopted in metal three-dimensional printing systems.The L-DED process is characterized by various defects,thus necessitating the extensive use of in-situ monitoring to enable real-time adjustments of process parameters by detecting molten-pool features.To address the challenge of accurately extracting the molten-pool morphology from an undetached spatter,an innovative monitoring method based on the U-Net(U-shaped network)is proposed herein.A lightweight architecture accelerates the processing speed,whereas an enhanced loss function incorporating weight maps augments the segmentation precision.The model performance is evaluated by comparing its segmentation accuracy and processing speed with those of the conventional U-Net,using the mean intersection over union(MIoU)as the segmentation metric.The improved model demonstrates superior segmentation accuracy at the interface between the molten pool and spatter,with a peak MIoU of 0.9798 achieved on the test set.Furthermore,this model processes each image in an extremely short time of 17.9 ms.Using this segmentation algorithm,the error in extracting the molten-pool width from single-track experiments is within 0.1 mm.The proposed method for monitoring the molten-pool morphology is suitable for deployment in online monitoring systems,thus providing a foundation for subsequent process-parameter regulation. 展开更多
关键词 Laser-directed energy deposition Molten-pool morphology Semantic segmentation Mean intersection over union(MIoU)
在线阅读 下载PDF
Impact of Pollutant Concentration and Particle Deposition on the Radiative Flow of Casson-Micropolar Fluid between Parallel Plates
16
作者 Ghaliah Alhamzi Badr Saad T.Alkahtani +2 位作者 Ravi Shanker Dubey Vinutha Kalleshachar Neelima Nizampatnam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期665-690,共26页
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po... Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters. 展开更多
关键词 Micropolar fluid thermal radiation porous medium thermophoretic particle deposition waste discharge concentration
在线阅读 下载PDF
Effects of Acetylene Gas on Mechanical Properties of DLC Film Prepared by Plasma-Enhanced Chemical Vapor Deposition
17
作者 Li Tong Chang Yixiang +3 位作者 Zhang Tong Zhang Yi Yin Yansheng Lu Jinlin 《稀有金属材料与工程》 北大核心 2025年第12期3048-3053,共6页
To improve the mechanical properties of 2024 aluminum alloy,a kind of diamond-like carbon(DLC)film was deposited on the surface of 2024 aluminum alloy by plasma-enhanced chemical vapor deposition technique.The effects... To improve the mechanical properties of 2024 aluminum alloy,a kind of diamond-like carbon(DLC)film was deposited on the surface of 2024 aluminum alloy by plasma-enhanced chemical vapor deposition technique.The effects of acetylene gas on the microstructure,hardness,wear resistance,and adhesion of DLC film were investigated by field emission scanning electron microscope,nano-indentation tester,and friction-wear tester.The results indicate that the thickness of the DLC film increases gradually with increasing the proportion of acetylene.There is an obvious transition layer between the DLC film and matrix.When the ratio of argon to acetylene is 1:3,the hardness of DLC film is enhanced significantly because of the content changes of sp^(3) and sp^(2) bonds within the film.At the same time,the friction coefficient of DLC film is reduced. 展开更多
关键词 plasma-enhanced chemical vapor deposition DLC film aluminum alloy wear resistance HARDNESS
原文传递
Rare Earth Oxide Surface Modification of Porous SiO_(2) Film Prepared by Atomic Layer Deposition
18
作者 JIN Jianfei LÜLin +3 位作者 LI Ying YAN Lu CAO Yunzhen LI Wei 《无机材料学报》 北大核心 2025年第9期1029-1036,I0003,共9页
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si... Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability. 展开更多
关键词 porous SiO_(2) rare earth oxide atomic layer deposition anti-reflective SELF-CLEANING
在线阅读 下载PDF
The low-temperature deposition of a zincophilic carbon layer on the Zn foil for long-life zinc metal batteries
19
作者 LI Chun-yu ZHANG Ming-hui +2 位作者 LANG Xin-yue CHEN Ye DONG Yan-feng 《新型炭材料(中英文)》 北大核心 2025年第1期178-187,共10页
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq... Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anodes Low-temperature deposition Zincophilic carbon layer High performance
在线阅读 下载PDF
Temperature Prediction of Laser Directed Energy Deposition Based on ASSFOA-GRNN Model
20
作者 Li Dianqi Chai Yuanxin +1 位作者 Miao Liguo Tang Jinghu 《稀有金属材料与工程》 北大核心 2025年第10期2470-2482,共13页
To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical s... To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical simulation was proposed to predict the temperature during LDED.A finite element(FE)thermal analysis model was established.The model's accuracy was verified through in-situ monitoring experiments,and a basic database for the predictive model was obtained based on FE simulations.Temperature prediction was performed using a generalized regression neural network(GRNN).To reduce dependence on human experience during GRNN parameter tuning and to enhance model prediction performance,an improved adaptive step-size fruit fly optimization algorithm(ASSFOA)was introduced.Finally,the prediction performance of ASSFOA-GRNN model was compared with that of back-propagation neural network model,GRNN model,and fruit fly optimization algorithm(FOA)-GRNN model.The evaluation metrics included the root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R^(2)),training time,and prediction time.Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE,MAE,and R^(2) indexes.Although its prediction efficiency is slightly lower than that of the FOA-GRNN model,its prediction accuracy is significantly better than that of the other models.This proposed method can be used for temperature prediction in LDED process and also provide a reference for similar methods. 展开更多
关键词 laser directed energy deposition temperature prediction FE simulation generalized regression neural network fruit fly optimization algorithm
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部