A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited o...A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability.展开更多
With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of mag...With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.展开更多
For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconduc...For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconducting layer in a working magnet can cause transverse tensile stress, which would result in delamination behavior. Therefore many research groups have designed experiments to measure the delamination strength and dedicate to improving that. However, the reason of the discrete distribution of measured data has still not get quantitatively studied, besides, there are lack of investigations on the method of changing depositing conditions to improve the delamination strength except by adding an additional metal layer. In this work, we adopt an anvil test device and obtain delamination strengths as 29.6 MPa of YBa2Cu3O7-x (YBCO)/buffer and 114.6 MPa of buffer/substrate by combing energy disperse spectroscopy (EDS) detection. The reason of discretized measurement data on the delamination strength is explained. Moreover, we find that different temperatures during Ag deposition determine the bonding force of Ag and YBCO layer. The Delamination strength between Ag and YBCO layer increases from 4.4 MPa to larger than 114.6 MPa with temperature elevated from 30℃ to 100℃. Hence we present a novel method for improving the delamination strength of YBCO CCs by setting an optimal temperature of Ag deposition.展开更多
A CO 2 laser with continuous wave was employed to deposite an alumina coating with a Ti Al transition coating on two kinds of steel substrates,i.e. steel Q235 and steel 45. Ti and Al could react with C in steel 45 ...A CO 2 laser with continuous wave was employed to deposite an alumina coating with a Ti Al transition coating on two kinds of steel substrates,i.e. steel Q235 and steel 45. Ti and Al could react with C in steel 45 substrate under the condition of laser depositing and form a thin reacting transition coating between the substrate and alumina coating,but the reaction did not occur on steel Q235 substrate because of its low carbon content.The quality and performance of the former were superior to that of the latter. The results were verified by SEM, XRD and Microhardness Tester.展开更多
The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositi...The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.展开更多
Ni-W-P matrix composite coatings reinforced by CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by double pulse electrodeposition and the deposition mechanism was discussed.The results showed ...Ni-W-P matrix composite coatings reinforced by CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by double pulse electrodeposition and the deposition mechanism was discussed.The results showed that the composite coatings with amorphous structure were obtained as-deposited.The initial growth behavior had alternatives and the nucleation was inhomogeneous because of obvious composition fluctuation.With the pulse deposition time increasing,some pearlite microstructures of the substrate were covered by some deposits and the composition fluctuation disappeared.Forward pulse currents promoted to form a great number of atomic beams composed of Ni,W and P atoms or CeO2 and SiO2 nano-particles as the core,which inhabited the growth of atomic beams.Reverse pulse currents eliminated concentration polarization and dissolved some surface boss of atomic beams.The solution of W and P atoms within Ni grains and embedding of CeO2 and SiO2 nano-particles within Ni-W-P matrix metal made atomic arrangement disordered.Finally,the atomic beams grew to amorphous small particles.展开更多
The in-flight and deposition properties of three types of WC-17 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF) thermal spray process were investigated. Three types of powder ex...The in-flight and deposition properties of three types of WC-17 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF) thermal spray process were investigated. Three types of powder exhibited similar velocity upon impact on the substrate surface. The powder with the lower particle density exhibited a higher temperature upon impingement process, resulting in the generation of a higher flattening ratio. Thus, the coating derived from the powder with the lower particle density possessed superior micro-hardness, porosity and surface roughness. However, the coating with the lowest particle density showed the poorest fracture toughness because of the generation of the largest amount of amorphous phase.展开更多
Taking Ni45 bar as electrode,a strengthened layer of thickness up to 50μm was built up on BT20 titanium alloy matrix by means of electrospark deposition.Results of phase analysis by using of X-ray diffraction confirm...Taking Ni45 bar as electrode,a strengthened layer of thickness up to 50μm was built up on BT20 titanium alloy matrix by means of electrospark deposition.Results of phase analysis by using of X-ray diffraction confirmed that the deposition layer was composed mostly of three phases,NiTi,NiTi2 and Ti.The surface microhardness of the deposition layer was up to 910 HV0.05,about 2.7 times as high as that of the matrix.The hardness at the cross-section of the entire deposition layer showed a gradient distribution.The effects of capacitance and deposition time on thickness of deposition layer were also studied,and results showed that with relatively low capacity and short deposition time the deposition layer without cracks can be obtained.展开更多
Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processi...Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.展开更多
By carbothermal reduction of Mg O with black carbon as reduction agent at a high temperature,Mg O was deposited on the surface of Mg O- Ca O clinker( as coating) to improve the clinker 's hydration resistance. In t...By carbothermal reduction of Mg O with black carbon as reduction agent at a high temperature,Mg O was deposited on the surface of Mg O- Ca O clinker( as coating) to improve the clinker 's hydration resistance. In the paper,effect of deposition temperature and holding time on the hydration resistance of the treated Mg O-Ca O,the deposition mechanism and Mg O coating kinetics were investigated with hydration resistance test,X-ray diffractometry( XRD) and scanning electronic microscope( SEM). Results showed Mg O coating grew in a2D mode on the surface of Mg O- Ca O particles; the Mg O coating improved the hydration resistance of the coated Mg O- Ca O clinker,and the coated clinker would become stronger when coated at higher deposition temperature and longer holding time. The measurements also found that Mg O deposition process varied with the deposition temperature: it was mainly a chemical-controlled process at temperatures between 1 400- 1 500 ℃,with an apparent activation energy( AAE) of 97. 8kJ·mol^(-1); it would change into a diffusion-controlled process when the temperature rising to 1 500- 1 600 ℃,with apparent activation energy of 19. 2kJ·mol^(-1).展开更多
The ultrafine platinum nanoparticles deposited on the surfaces of carbonnanotubes (Pt/CNTs) were prepared by a chemical precipitation method and used as the catalyst ofproton exchange membrane fuel cell. The depositin...The ultrafine platinum nanoparticles deposited on the surfaces of carbonnanotubes (Pt/CNTs) were prepared by a chemical precipitation method and used as the catalyst ofproton exchange membrane fuel cell. The depositing process parameters such as the solution pH value,Pt content and treatment temperature were analyzed. The experimental results show that the optimumprocess parameters to prepare Pt/CNTs are the solution pH value of 7.0, the theoretical Pt contentof 25 percent (mass fraction) and the heating temperature of 500 deg C, under the conditions thebest performance of the proton exchange membrane fuel cell can be obtained and its voltage can reach580 mV at a current density of 500 mA/cm^2.展开更多
The effects of a film cooling configuration and mainstream temperature on the depositing of particles are experimentally studied by using plate models. The particles are generated by melting wax and atomizing it. One ...The effects of a film cooling configuration and mainstream temperature on the depositing of particles are experimentally studied by using plate models. The particles are generated by melting wax and atomizing it. One model has a film cooling configuration and the other does not. The experimental results show that the film cooling configuration does not influence the depositing on the leading edge of the model very significantly. However, the film cooling configuration could increase the depositing on the upper surface of the model dramatically since the flow structure on the upper surface is changed due to the film cooling configuration. The effect of the mainstream temperature on the depositing is studied by using the model with film cooling configuration. The lower and higher mainstream temperature both could reduce the depositing. However, the mechanisms are different. The lower mainstream temperature could make more molten particles become solid particles, which could rebound from the surface of the model, reducing the depositing. The higher mainstream temperature could make all particles remain molten with higher temperature. In this case, more particles could splash from the surface of the model. Therefore, there may be a mainstream temperature at which the depositing mass is maximum.展开更多
The Qinghai Lake is the biggest plateau brackish water lake in China. In 1981, the average water level is 3193.92 m, the maximum depth is 27 m, and the area is 4340 km^2. Several million years ago, the lake deposited ...The Qinghai Lake is the biggest plateau brackish water lake in China. In 1981, the average water level is 3193.92 m, the maximum depth is 27 m, and the area is 4340 km^2. Several million years ago, the lake deposited continuously, which is profitable for the study of paleoclimate evolution since the Late Pleistocene. On the basis of previous studies,展开更多
Alzheimer’s disease,a devastating neurodegenerative disorder,is characterized by progressive cognitive decline,primarily due to amyloid-beta protein deposition and tau protein phosphorylation.Effectively reducing the...Alzheimer’s disease,a devastating neurodegenerative disorder,is characterized by progressive cognitive decline,primarily due to amyloid-beta protein deposition and tau protein phosphorylation.Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer’s disease.Conventional drugs,such as donepezil,can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline.Currently,active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer’s disease and other transgenic animal models,attracting considerable attention.However,the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab.This review first discusses the advancements in the pathogenesis of Alzheimer’s disease and active and passive immunotherapies targeting amyloid-beta and tau proteins.Furthermore,it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects.Although some antibodies have shown promise in patients with mild Alzheimer’s disease,substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer’s disease.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen ba...Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.展开更多
On SrTiO3 single crystal substrate,by using the pulsed electron deposition tech-nique,the high-quality electron doped Nd1.85Ce0.15CuO4?δ superconducting film was successfully fabricated. After careful study on the R-...On SrTiO3 single crystal substrate,by using the pulsed electron deposition tech-nique,the high-quality electron doped Nd1.85Ce0.15CuO4?δ superconducting film was successfully fabricated. After careful study on the R-T curves of the obtained sam-ples deposited with different substrate temperatures,thicknesses,annealing methods and pulse frequencies,the effects of them on the superconductivity of the films were found,and the reasons were also analyzed. Additionally,by using the same model of the pulsed laser deposition technique,the relation between the target-to-substrate distance and the deposition pressure was drawn out as a quantitative one.展开更多
Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological me...Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological mechanisms underlying IPFD remain unclear,with several potential contributing factors,including oxida-tive stress,alterations in the gut microbiota,and hormonal imbalances.IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pan-creatic diseases.Although imaging techniques remain the primary diagnostic approach for IPFD,an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes.Currently,effective treatments for IPFD are not available;however,existing medications,such as glucagon-like peptide-1 receptor agonists,and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease.This paper reviews the pathogenesis of IPFD,its association with exocrine pancreatic disea-ses,and recent advancements in its diagnosis and treatment,emphasizing the significant clinical relevance of IPFD.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t...Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.展开更多
基金Project(S2012010010417)supported by the Guangdong Natural Science Foundation,ChinaProject(20130172110008)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘A facile route for preparation of gradient wettability surface on copper substrate with contact angle changing from 90.3°to4.2°was developed.The Cu(OH)2 nanoribbon arrays were electrochemically deposited on copper foil via a modified anodization technology,and the growth degree and density of the Cu(OH)2 arrays may be controlled varying with position along the substrate by slowly adding aqueous solution of KOH into the two-electrode cell of an anodization system to form the gradient surface.The prepared surface was water resistant and thermal stable,which could keep its gradient wetting property after being immersed in water bath at 100℃ for 10 h.The results of scanning electron microscopy(SEM),X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) demonstrate that the distribution of Cu(OH)2 nanoribbon arrays on copper surface are responsible for the gradient wettability.
基金Science foundation of Shanxi province, China (20041065)
文摘With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.
基金supported by the National Natural Science Foundation of China(Grants 11622217 and 11872196)the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(Grants lzujbky-2017-ot18,lzujbky-2017-k18,and lzujbky-2018-9)
文摘For the application of second generation high temperature superconducting coated conductors (CCs) with layered structures, thermal mismatch between different components and electromagnetic force exerted in superconducting layer in a working magnet can cause transverse tensile stress, which would result in delamination behavior. Therefore many research groups have designed experiments to measure the delamination strength and dedicate to improving that. However, the reason of the discrete distribution of measured data has still not get quantitatively studied, besides, there are lack of investigations on the method of changing depositing conditions to improve the delamination strength except by adding an additional metal layer. In this work, we adopt an anvil test device and obtain delamination strengths as 29.6 MPa of YBa2Cu3O7-x (YBCO)/buffer and 114.6 MPa of buffer/substrate by combing energy disperse spectroscopy (EDS) detection. The reason of discretized measurement data on the delamination strength is explained. Moreover, we find that different temperatures during Ag deposition determine the bonding force of Ag and YBCO layer. The Delamination strength between Ag and YBCO layer increases from 4.4 MPa to larger than 114.6 MPa with temperature elevated from 30℃ to 100℃. Hence we present a novel method for improving the delamination strength of YBCO CCs by setting an optimal temperature of Ag deposition.
文摘A CO 2 laser with continuous wave was employed to deposite an alumina coating with a Ti Al transition coating on two kinds of steel substrates,i.e. steel Q235 and steel 45. Ti and Al could react with C in steel 45 substrate under the condition of laser depositing and form a thin reacting transition coating between the substrate and alumina coating,but the reaction did not occur on steel Q235 substrate because of its low carbon content.The quality and performance of the former were superior to that of the latter. The results were verified by SEM, XRD and Microhardness Tester.
文摘The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.
基金Projects supported by the National Natural Science Foundation of China (20806035)Back-up Personnel Foundation of Academic and Technology Leaders of Yunnan Province (2009CI026)+3 种基金Opening Project of Key Laboratory of Inorganic Coating Materials,Chinese Academy of Sciences (KKZ6200927001)Applied Basic Research Plans Program of Yunnan Province (2007E187M)Scientific Research Fund of Yunnan Provincial Education Department (08C0025)Training Foundation for Talents and Analysis and Measurement Foundation of KMUST
文摘Ni-W-P matrix composite coatings reinforced by CeO2 and SiO2 nano-particles were prepared on common carbon steel surface by double pulse electrodeposition and the deposition mechanism was discussed.The results showed that the composite coatings with amorphous structure were obtained as-deposited.The initial growth behavior had alternatives and the nucleation was inhomogeneous because of obvious composition fluctuation.With the pulse deposition time increasing,some pearlite microstructures of the substrate were covered by some deposits and the composition fluctuation disappeared.Forward pulse currents promoted to form a great number of atomic beams composed of Ni,W and P atoms or CeO2 and SiO2 nano-particles as the core,which inhabited the growth of atomic beams.Reverse pulse currents eliminated concentration polarization and dissolved some surface boss of atomic beams.The solution of W and P atoms within Ni grains and embedding of CeO2 and SiO2 nano-particles within Ni-W-P matrix metal made atomic arrangement disordered.Finally,the atomic beams grew to amorphous small particles.
文摘The in-flight and deposition properties of three types of WC-17 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF) thermal spray process were investigated. Three types of powder exhibited similar velocity upon impact on the substrate surface. The powder with the lower particle density exhibited a higher temperature upon impingement process, resulting in the generation of a higher flattening ratio. Thus, the coating derived from the powder with the lower particle density possessed superior micro-hardness, porosity and surface roughness. However, the coating with the lowest particle density showed the poorest fracture toughness because of the generation of the largest amount of amorphous phase.
文摘Taking Ni45 bar as electrode,a strengthened layer of thickness up to 50μm was built up on BT20 titanium alloy matrix by means of electrospark deposition.Results of phase analysis by using of X-ray diffraction confirmed that the deposition layer was composed mostly of three phases,NiTi,NiTi2 and Ti.The surface microhardness of the deposition layer was up to 910 HV0.05,about 2.7 times as high as that of the matrix.The hardness at the cross-section of the entire deposition layer showed a gradient distribution.The effects of capacitance and deposition time on thickness of deposition layer were also studied,and results showed that with relatively low capacity and short deposition time the deposition layer without cracks can be obtained.
基金the National Key Technologies Research and Development Program of China(Grant No.2016YFB1100200)。
文摘Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.
基金supported by The Industrial Research Project of Shaanxi Province , China under Grant No. 2012k07-07
文摘By carbothermal reduction of Mg O with black carbon as reduction agent at a high temperature,Mg O was deposited on the surface of Mg O- Ca O clinker( as coating) to improve the clinker 's hydration resistance. In the paper,effect of deposition temperature and holding time on the hydration resistance of the treated Mg O-Ca O,the deposition mechanism and Mg O coating kinetics were investigated with hydration resistance test,X-ray diffractometry( XRD) and scanning electronic microscope( SEM). Results showed Mg O coating grew in a2D mode on the surface of Mg O- Ca O particles; the Mg O coating improved the hydration resistance of the coated Mg O- Ca O clinker,and the coated clinker would become stronger when coated at higher deposition temperature and longer holding time. The measurements also found that Mg O deposition process varied with the deposition temperature: it was mainly a chemical-controlled process at temperatures between 1 400- 1 500 ℃,with an apparent activation energy( AAE) of 97. 8kJ·mol^(-1); it would change into a diffusion-controlled process when the temperature rising to 1 500- 1 600 ℃,with apparent activation energy of 19. 2kJ·mol^(-1).
基金This work was financially supported by the State Key Project for Fundamental Research of the Ministry of Science and Technology (No. G20000264-04)
文摘The ultrafine platinum nanoparticles deposited on the surfaces of carbonnanotubes (Pt/CNTs) were prepared by a chemical precipitation method and used as the catalyst ofproton exchange membrane fuel cell. The depositing process parameters such as the solution pH value,Pt content and treatment temperature were analyzed. The experimental results show that the optimumprocess parameters to prepare Pt/CNTs are the solution pH value of 7.0, the theoretical Pt contentof 25 percent (mass fraction) and the heating temperature of 500 deg C, under the conditions thebest performance of the proton exchange membrane fuel cell can be obtained and its voltage can reach580 mV at a current density of 500 mA/cm^2.
文摘The effects of a film cooling configuration and mainstream temperature on the depositing of particles are experimentally studied by using plate models. The particles are generated by melting wax and atomizing it. One model has a film cooling configuration and the other does not. The experimental results show that the film cooling configuration does not influence the depositing on the leading edge of the model very significantly. However, the film cooling configuration could increase the depositing on the upper surface of the model dramatically since the flow structure on the upper surface is changed due to the film cooling configuration. The effect of the mainstream temperature on the depositing is studied by using the model with film cooling configuration. The lower and higher mainstream temperature both could reduce the depositing. However, the mechanisms are different. The lower mainstream temperature could make more molten particles become solid particles, which could rebound from the surface of the model, reducing the depositing. The higher mainstream temperature could make all particles remain molten with higher temperature. In this case, more particles could splash from the surface of the model. Therefore, there may be a mainstream temperature at which the depositing mass is maximum.
文摘The Qinghai Lake is the biggest plateau brackish water lake in China. In 1981, the average water level is 3193.92 m, the maximum depth is 27 m, and the area is 4340 km^2. Several million years ago, the lake deposited continuously, which is profitable for the study of paleoclimate evolution since the Late Pleistocene. On the basis of previous studies,
基金supported by the Nature Science Foundation of Liaoning Province,Nos.2022-MS-211,2021-MS-064,and 2024-MS-048(all to YC).
文摘Alzheimer’s disease,a devastating neurodegenerative disorder,is characterized by progressive cognitive decline,primarily due to amyloid-beta protein deposition and tau protein phosphorylation.Effectively reducing the cytotoxicity of amyloid-beta42 aggregates and tau oligomers may help slow the progression of Alzheimer’s disease.Conventional drugs,such as donepezil,can only alleviate symptoms and are not able to prevent the underlying pathological processes or cognitive decline.Currently,active and passive immunotherapies targeting amyloid-beta and tau have shown some efficacy in mice with asymptomatic Alzheimer’s disease and other transgenic animal models,attracting considerable attention.However,the clinical application of these immunotherapies demonstrated only limited efficacy before the discovery of lecanemab and donanemab.This review first discusses the advancements in the pathogenesis of Alzheimer’s disease and active and passive immunotherapies targeting amyloid-beta and tau proteins.Furthermore,it reviews the advantages and disadvantages of various immunotherapies and considers their future prospects.Although some antibodies have shown promise in patients with mild Alzheimer’s disease,substantial clinical data are still lacking to validate their effectiveness in individuals with moderate Alzheimer’s disease.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金financially supported by the National Natural Science Foundation of China(U21A20311,U24A2040,52171141,52272117)the Natural Science Foundation of Shandong Province(ZR2022JQ19)+3 种基金the Key Technology Research Project of Shandong Province(2023CXGC010202)the Taishan Industrial Experts Program(TSCX202306142)the Core Facility Sharing Platform of Shandong Universitythe Foundation of Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University。
文摘Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.
基金Supported by the Key Project of Zhejiang Provincial Natural Science Foundation(Grant No.Z605131)the‘100 Talents Project’of Chinese Academy of Sciences,the Creative Research Group of National Natural Science Foundation of China(Grant No.60321001)the National Natural Science Foundation of China(Grant No.60571029)
文摘On SrTiO3 single crystal substrate,by using the pulsed electron deposition tech-nique,the high-quality electron doped Nd1.85Ce0.15CuO4?δ superconducting film was successfully fabricated. After careful study on the R-T curves of the obtained sam-ples deposited with different substrate temperatures,thicknesses,annealing methods and pulse frequencies,the effects of them on the superconductivity of the films were found,and the reasons were also analyzed. Additionally,by using the same model of the pulsed laser deposition technique,the relation between the target-to-substrate distance and the deposition pressure was drawn out as a quantitative one.
基金Supported by National Natural Science Foundation of China,No.82170651and the Research Support Fund of Hubei Microcirculation Society,No.HBWXH2024(1)-1.
文摘Intrapancreatic fat deposition(IPFD)has garnered increasing attention in recent years.The prevalence of IPFD is relatively high and associated with factors such as obesity,age,and sex.However,the pathophysiological mechanisms underlying IPFD remain unclear,with several potential contributing factors,including oxida-tive stress,alterations in the gut microbiota,and hormonal imbalances.IPFD was found to be highly correlated with the occurrence and prognosis of exocrine pan-creatic diseases.Although imaging techniques remain the primary diagnostic approach for IPFD,an expanding array of biomarkers and clinical scoring systems have been identified for screening purposes.Currently,effective treatments for IPFD are not available;however,existing medications,such as glucagon-like peptide-1 receptor agonists,and new therapeutic approaches explored in animal models have shown considerable potential for managing this disease.This paper reviews the pathogenesis of IPFD,its association with exocrine pancreatic disea-ses,and recent advancements in its diagnosis and treatment,emphasizing the significant clinical relevance of IPFD.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金Supported by Jilin Provincial Scientific and Technological Development Program(20230508109RC,20230201051GX,20220201091GX)National Natural Science Foundation of China(62035013,61275235)。
文摘Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.