Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide ra...Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide range of imaging applications for enhanced visualization of structures,target identification,etc.One commonly used tool for depolarizing discrimination is the so-called depolarizing spaces.In this article,we exploit the combined use of two depolarizing spaces,the indices of polarization purity(IPP)and polarizance–reflection–transformation(PRT)spaces,to improve the capability of optical systems to identify polarization–anisotropy depolarizers.The potential of these spaces to discriminate among different depolarizers is first studied from a series of simulations by incoherently adding diattenuations or retarders,with some control parameters emulating samples in nature.The simulated results demonstrate that the proposed methods are capable of increasing differences among depolarizers beyond other well-known techniques.Experimentally,validation is provided by conducting diverse phantom experiments of easy interpretation and mimicking the stated simulations.As a useful application of our approach,we developed a model able to retrieve intrinsic microscopic information of samples from macroscopic polarimetric measurements.The proposed methods enable non-invasive,straightforward,macroscopic characterization of depolarizing samples,and may be of interest for enhanced visualization of samples in multiple imaging scenarios.展开更多
Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ...Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.展开更多
Asan emerging poserful tool to provide structural informstion af tissue specimens label-freely,Mueller matrix(MM)polarimetry has garnered extensive attention in biomedical studies and pathological diagnois.However,for...Asan emerging poserful tool to provide structural informstion af tissue specimens label-freely,Mueller matrix(MM)polarimetry has garnered extensive attention in biomedical studies and pathological diagnois.However,for the commonly used constant-step rotating MM polarimetricsystem,beam drift induæd by the rotation of polarization eements can lead to distortions in messurement results,severely affect ing MM imaging accuracy.Here,based on our previous study,we prоровe an optimizad self-registration method to mitigate the psæudo-depolarization effects introduced by image artifacts in constant-step rotatin g MM polarimetry.By addresing the prevalent issue of beam drift and image distortions in such polarimetric imaging systems,the effectivenes of the proposed method is experimentally validated using tissue samples.The result.s demonstrate a significant enhanæment in the accuIrsсy of depolarization parameter estimation after applying the optimized self-registration method.Furthermore,the method enhances the coarseness and contrsst of MM-derived parameters images,thereby bolstering their capacity to characterize tissuestructures.The optimized self-registration method proposed in this study can provide an innovstive spproach for quantitative tissue polarimetry bssæd on constant-step ro tating MM messurement,and contribute to the advanæment of polarimetric imaging technology in biomedical applications.展开更多
Herein, the electrochemical behaviors of Sr on inert W electrode and reactive Zn/Al electrodes were systematically investig-ated in LiCl–KCl–SrCl2molten salts at 773 K using various electrochemical methods. The chem...Herein, the electrochemical behaviors of Sr on inert W electrode and reactive Zn/Al electrodes were systematically investig-ated in LiCl–KCl–SrCl2molten salts at 773 K using various electrochemical methods. The chemical reaction potentials of Li and Sr on re-active Zn/Al electrodes were determined. We observed that Sr could be extracted by decreasing the activity of the deposited metal Sr onthe reactive electrode, although the standard reduction potential of Sr(II)/Sr was more negative than that of Li(I)/Li. The electrochemicalextraction products of Sr on reactive Zn and Al electrodes were Zn13Sr and Al4Sr, respectively, with no codeposition of Li observed.Based on the density functional theory calculations, both Zn13Sr and Al4Sr were identified as stable intermetallic compounds with Zn-/Al-rich phases. In LiCl–KCl molten salt containing 3wt% SrCl2, the coulombic efficiency of Sr in the Zn electrode was ~54%. The depolar-ization values for Sr on Zn and Al electrodes were 0.864 and 0.485 V, respectively, exhibiting a stronger chemical interaction between Znand Sr than between Al and Sr. This study suggests that using reactive electrodes can facilitate extraction of Sr accumulated while elec-trorefining molten salts, thereby enabling the purification and reuse of the salt and decreasing the volume of the nuclear waste.展开更多
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical...Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.展开更多
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a...Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.展开更多
Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating n...Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue,oxidative stress,and inflammation,which matches the mechanism of action via voltage-gated calcium channels.In this review,we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids.We systematically summarize the preclinical and clinical research on gabapentinoids in stroke,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,seizures after stro ke,cortical spreading depolarization after stroke,pain after stroke,and nerve regeneration after stro ke.This review also discusses the potential to rgets of gabapentinoids in stroke;however,the existing results are still unce rtain regarding the effect of gabapentinoids on stroke and related diseases.Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke.Therefore,gabapentinoids have both opportunities and challenges in the treatment of stroke.展开更多
Lead-free Bi_(_(0.5))Na_(_(0.5))TiO_(3)(BNT)piezoelectric ceramics have the advantages of large coercive fields and high Curie temperatures.But the improvement of piezoelectric coefficient(d 33)is usually accompanied ...Lead-free Bi_(_(0.5))Na_(_(0.5))TiO_(3)(BNT)piezoelectric ceramics have the advantages of large coercive fields and high Curie temperatures.But the improvement of piezoelectric coefficient(d 33)is usually accompanied by a huge sacrifice of depolarization temperature(T d).In this work,a well-balanced performance of d 33 and T d is achieved in MnO_(2)-doped 0.79(Bi_(_(0.5))Na_(_(0.5))TiO_(3))-0.14(Bi_(0.5)K_(0.5)TiO_(3))-0.07BaTiO_(3)ternary ceramics.The in-corporation of 0.25 mol%MnO_(2)enhances the d 33 by more than 40%,while T d remains almost unchanged(i.e.,d 33=181 pC/N,T d=184℃).X-ray diffraction(XRD)shows that an appropriate fraction of the small axis-ratio ferroelectric phase(pseudo-cubic,P c)coexists with the long-range ferroelectric phase(tetrag-onal,T)under this MnO_(2)doping.Piezoelectric force microscopy(PFM)has revealed a special domain configuration,namely large striped and layered macro domains embedded with small nanodomains.This study provides a distinctive avenue to design BNT-based piezoelectric ceramics with high piezoelectric performance and temperature stability.展开更多
Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applic...Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.展开更多
Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that thes...Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.展开更多
During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membra...During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia.展开更多
Temporal lobe epilepsy(TLE) is a common type of epilepsy and is not well controlled by current treatments.The frequent failure to treat TLE may be due to our lack of precise cellular/circuit mechanisms underlying TLE....Temporal lobe epilepsy(TLE) is a common type of epilepsy and is not well controlled by current treatments.The frequent failure to treat TLE may be due to our lack of precise cellular/circuit mechanisms underlying TLE.The early series of our studies have proved the success of low-frequency stimulation treatment for epilepsy,which was mainly depending on the stimulation target,the stimulation frequency and stimulation time(the therapeutic-window phenomenon).Now,by using optogenetics,viral tracing,multiple-channel EEG analysis,imaging,electrophysiology and pharmacology strategies,we are continued to investigate the circuit mechanism of therapeutic deep brain stimulation,and found that entorhinal principal neurons mediate antiepileptic ″ glutamatergic-GABAergic″ neuronal circuit for brain stimulation treatments of epilepsy.Meanwhile,we are currently focusing on the interplay of inhibitory and excitatory network in the key input/output regions of the hippocampus that related to the generation of in TLE.Specially,we found that depolarized GABAergic signaling in subicular microcircuit mediates generalized seizures in TLE and a direct septal cholinergic circuit attenuates TLE through driving hippocampal somatostatin inhibition.These findings may be of therapeutic interest in understanding the pathological neuronal circuitry in TLE and further the development of novel therapeutic approaches or drug targets.展开更多
The interaction between monosaccharides exhibits an important role in the assembly of monosaccharide-containing molecules. In this work, three common monosaccharides, glucose, galactose and mannose, are employed to in...The interaction between monosaccharides exhibits an important role in the assembly of monosaccharide-containing molecules. In this work, three common monosaccharides, glucose, galactose and mannose, are employed to investigate the effect of monosaccharide on the self-assembly of benzenetricarboxamide(BTA) core-containing molecules. In the presence of monosaccharides, three benzenetricarboxamide derivatives aggregate into different ordered structures. When alanine linkers are introduced to these molecules between the core and the monosacchride, morphologies of three types of monosaccharide BTAs turned to disordered, meanwhile their structures become similar with the increase of the length of alanine linkers, indicating the disappearance of the monosaccharide effects.展开更多
The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The p...The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The polymer shows the transition temperatures K52N79I in degreesC, The H-v scattering intensity T(q,t) during the transition I (at 80.2degreesC)-->N (at 75.8degreesC) shows that T(q) is independent of q for all t, and during the initial stage (in 6 s) T(t) increases exponentially with t. In the later stage of the transition T(t) approaches a saturation value in 2 min. This experimental result indicates that the I-->N transition of a liquid crystalline polymer is a spinodal type of phase transition mediated by orientation fluctuation.展开更多
The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are pr...The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.展开更多
Ti-bearing slag(TiO2>20 wt%)is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is conside...Ti-bearing slag(TiO2>20 wt%)is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is considered as a promising method,silicon will be preferentially electroreduced compared to titanium due to low theoretical decomposition voltage.In this work,a liquid copper cathode is used to selectively extract titanium from molten Al2O3-MgO-CaO-TiO2-SiO2 electrolyte.It is found that comparing to silicon,titanium can be preferentially reduced by one-step electron transfer due to the enhanced depolarization effect on a liquid copper cathode.So,Ti-Cu alloys are firstly obtained from molten Ti-bearing slag,and then Ti-Si alloys are co-electrodeposited in the molten oxide electrolyte with low TiO2 content.It may be ascribed to the larger binding force between titanium and copper than that between silicon and copper.It provides an effective strategy for the separation of titanium from of Ti-bearing slag.展开更多
Dexmedetomidine is a selective α2-adrenoceptor agonist that is used because of its sedative,anxiolytic,and analgesic effects.Dexketoprofen,which is used as an analgesic,is a nonselective nonsteroidal anti-inflammator...Dexmedetomidine is a selective α2-adrenoceptor agonist that is used because of its sedative,anxiolytic,and analgesic effects.Dexketoprofen,which is used as an analgesic,is a nonselective nonsteroidal anti-inflammatory drug (NSAID).The use of dexmedetomidine and dexketoprofen as adjuvants to local anesthetics for the peripheral nerve is gradually increasing.In this study,we aimed to investigate the effects of different doses of dexmedetomidine and dexketoprofen on conduction block of rat sciatic nerve.The isolated sciatic nerve from adult rats was transferred to a nerve chamber.The compound action potentials (CAPs) were recorded from stimulated nerve with electrophysiological methods.Dexmedetomidine (n = 8) and dexketoprofen (n = 8) were administered in the chamber with cumulative concentrations of 10–9 to 10–5 M,and the CAPs were recorded for 5 and 10 minutes.The CAP parameters were calculated.Both dexmedetomidine and dexketoprofen significantly depressed all CAP parameters in a dose-dependent manner compared with the control group,i.e.,the group in which rats did not receive treatment.CAP parameters showed there was no significant difference in nerve conduction inhibition between dexmedetomidine and dexketoprofen.Higher doses of dexmedetomidine suppressed the conduction in the fast-conducting fibers;however,dexketoprofen was found to suppress the conduction in the slow-conducting fibers in a time-dependent manner and suppress the conduction in the medium- and slow-conducting fibers in a dose-dependent manner.These findings suggest that dexmedetomidine and dexketoprofen exhibit better anesthetic effects on peripheral nerve through different ways of action.The experimental procedures were approved by the Necmettin Erbakan University on January 30,2013 (approval No.2013-024).展开更多
Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. However, the und...Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. However, the underlying mechanism for this phenomenon remains relatively unclear. To date, numerous issues exist regarding the experimental model used to precondition the brain with cortical spreading depression, such as the administration route, concentration of potassium chloride, induction time, duration of the protection provided by the treatment, the regional distribution of the protective effect, and the types of neurons responsible for the greater tolerance. In this review, we focus on the mechanisms underlying cor- tical spreading depression-induced tolerance in the brain, considering excitatory neurotransmission and metabolism, nitric oxide, genomic reprogramming, inflammation, neurotropic factors, and cellular stress response. Specifically, we clarify the procedures and detailed information regarding cortical spreading depression-induced preconditioning and build a foundation for more comprehensive investigations in the field of neural regeneration and clinical application in the future.展开更多
It was ascertained that when a RE element was added in bath,the sample was improved on the anti-corrosion power of the coating because of the increasing of covering rate of formless crystal Zn2Fe(PO4) 2·4H2O(mark...It was ascertained that when a RE element was added in bath,the sample was improved on the anti-corrosion power of the coating because of the increasing of covering rate of formless crystal Zn2Fe(PO4) 2·4H2O(marked P) crystals and the ratio of P/(P+H) (H was the mark of Zn3(PO4) 2 crystal) in the coating,combination of which with components parsing by EDS indicated that the sequence of contribution elements P and Zn to erosion resistance of coatings was P】Zn. And the correlative mechanism was discussed,which made it clear that owing to the particularity of the outer-shell electron structure and larger ionic radius,RE was so easy to be polarized and metamorphosed itself that it adsorbed lightly on the basic body to pose gels. They efficiently reduced the activation energy which was required for formation of a new solid phase of phosphates and made it also possible to engender effectively active nucleation regions of cathode and anode under low temperature phosphating condition,which was propitious to formation,densification and uniformization of the phosphate crystal nucleus and growth of the crystallite and coating buildup. Thus it could be seen that REN played the role of surface regulator and accelerant,which speeded up the phosphating,as well as bids amount of porosity of the coating fall to improve the corrosion resistance of the coating.展开更多
Sudden cardiac death (SCD) affects approximately 800,000 individuals per annum globally. It is most frequently due to cardiac tachy-arrhythmias, which include mono-morphic or polymorphic ventricular tachycardia (VT...Sudden cardiac death (SCD) affects approximately 800,000 individuals per annum globally. It is most frequently due to cardiac tachy-arrhythmias, which include mono-morphic or polymorphic ventricular tachycardia (VT), torsade de pointes and ventricular fibrillation (VF). Risk stratification for SCD remains a challenging problem in clinical practice.展开更多
基金supported by the China Scholarship Council(Grant No.202306690024)the Ministerio de Ciencia e Innovación and Fondos FEDER(Grant Nos.PID2021-562126509OB-C21 and PDC2022-133332-C21)+1 种基金the Generalitat de Catalunya(Grant No.2021SGR00138)the Beatriu de Pinós Fellowship(Grant No.2021-BP-00206).
文摘Depolarizing behavior is commonly observed in most natural samples.For this reason,optical tools measuring the differences in depolarization response among spatially separated structures are highly useful in a wide range of imaging applications for enhanced visualization of structures,target identification,etc.One commonly used tool for depolarizing discrimination is the so-called depolarizing spaces.In this article,we exploit the combined use of two depolarizing spaces,the indices of polarization purity(IPP)and polarizance–reflection–transformation(PRT)spaces,to improve the capability of optical systems to identify polarization–anisotropy depolarizers.The potential of these spaces to discriminate among different depolarizers is first studied from a series of simulations by incoherently adding diattenuations or retarders,with some control parameters emulating samples in nature.The simulated results demonstrate that the proposed methods are capable of increasing differences among depolarizers beyond other well-known techniques.Experimentally,validation is provided by conducting diverse phantom experiments of easy interpretation and mimicking the stated simulations.As a useful application of our approach,we developed a model able to retrieve intrinsic microscopic information of samples from macroscopic polarimetric measurements.The proposed methods enable non-invasive,straightforward,macroscopic characterization of depolarizing samples,and may be of interest for enhanced visualization of samples in multiple imaging scenarios.
文摘Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.
基金funded by the National Natural Science Foundation of China(NSFC)under Grant No.62335007.
文摘Asan emerging poserful tool to provide structural informstion af tissue specimens label-freely,Mueller matrix(MM)polarimetry has garnered extensive attention in biomedical studies and pathological diagnois.However,for the commonly used constant-step rotating MM polarimetricsystem,beam drift induæd by the rotation of polarization eements can lead to distortions in messurement results,severely affect ing MM imaging accuracy.Here,based on our previous study,we prоровe an optimizad self-registration method to mitigate the psæudo-depolarization effects introduced by image artifacts in constant-step rotatin g MM polarimetry.By addresing the prevalent issue of beam drift and image distortions in such polarimetric imaging systems,the effectivenes of the proposed method is experimentally validated using tissue samples.The result.s demonstrate a significant enhanæment in the accuIrsсy of depolarization parameter estimation after applying the optimized self-registration method.Furthermore,the method enhances the coarseness and contrsst of MM-derived parameters images,thereby bolstering their capacity to characterize tissuestructures.The optimized self-registration method proposed in this study can provide an innovstive spproach for quantitative tissue polarimetry bssæd on constant-step ro tating MM messurement,and contribute to the advanæment of polarimetric imaging technology in biomedical applications.
基金financially supported by the National Postdoctoral Program for Innovative Talents, China (No. BX2021327)the National Natural Science Foundation of China (Nos. 22206194 and U2267222)+1 种基金the Ningbo Natural Science Foundation of China (No. 2023J337)the Yongjiang Talent Introduction Programme, China (No. 2 021A-161-G)。
文摘Herein, the electrochemical behaviors of Sr on inert W electrode and reactive Zn/Al electrodes were systematically investig-ated in LiCl–KCl–SrCl2molten salts at 773 K using various electrochemical methods. The chemical reaction potentials of Li and Sr on re-active Zn/Al electrodes were determined. We observed that Sr could be extracted by decreasing the activity of the deposited metal Sr onthe reactive electrode, although the standard reduction potential of Sr(II)/Sr was more negative than that of Li(I)/Li. The electrochemicalextraction products of Sr on reactive Zn and Al electrodes were Zn13Sr and Al4Sr, respectively, with no codeposition of Li observed.Based on the density functional theory calculations, both Zn13Sr and Al4Sr were identified as stable intermetallic compounds with Zn-/Al-rich phases. In LiCl–KCl molten salt containing 3wt% SrCl2, the coulombic efficiency of Sr in the Zn electrode was ~54%. The depolar-ization values for Sr on Zn and Al electrodes were 0.864 and 0.485 V, respectively, exhibiting a stronger chemical interaction between Znand Sr than between Al and Sr. This study suggests that using reactive electrodes can facilitate extraction of Sr accumulated while elec-trorefining molten salts, thereby enabling the purification and reuse of the salt and decreasing the volume of the nuclear waste.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]the Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]the National Key Research and Development Program of China[Grant No.2023YFF1205700].
文摘Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.
基金funded by the National Research Developm ent and Innovation Office (NKFIH-K1468 73) (to BP)。
文摘Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
基金supported by the National Key R&D Program of China,No.2020YFC2008302the National Natural Science Foundation of China,No.81673631the Science and Technology Program of Sichuan Province,No.2020YFH0059 (all to YL)。
文摘Gabapentinoid drugs(pregabalin and gabapentin) have been successfully used in the treatment of neuro pathic pain and in focal seizure prevention.Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue,oxidative stress,and inflammation,which matches the mechanism of action via voltage-gated calcium channels.In this review,we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids.We systematically summarize the preclinical and clinical research on gabapentinoids in stroke,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,seizures after stro ke,cortical spreading depolarization after stroke,pain after stroke,and nerve regeneration after stro ke.This review also discusses the potential to rgets of gabapentinoids in stroke;however,the existing results are still unce rtain regarding the effect of gabapentinoids on stroke and related diseases.Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke.Therefore,gabapentinoids have both opportunities and challenges in the treatment of stroke.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021A012).
文摘Lead-free Bi_(_(0.5))Na_(_(0.5))TiO_(3)(BNT)piezoelectric ceramics have the advantages of large coercive fields and high Curie temperatures.But the improvement of piezoelectric coefficient(d 33)is usually accompanied by a huge sacrifice of depolarization temperature(T d).In this work,a well-balanced performance of d 33 and T d is achieved in MnO_(2)-doped 0.79(Bi_(_(0.5))Na_(_(0.5))TiO_(3))-0.14(Bi_(0.5)K_(0.5)TiO_(3))-0.07BaTiO_(3)ternary ceramics.The in-corporation of 0.25 mol%MnO_(2)enhances the d 33 by more than 40%,while T d remains almost unchanged(i.e.,d 33=181 pC/N,T d=184℃).X-ray diffraction(XRD)shows that an appropriate fraction of the small axis-ratio ferroelectric phase(pseudo-cubic,P c)coexists with the long-range ferroelectric phase(tetrag-onal,T)under this MnO_(2)doping.Piezoelectric force microscopy(PFM)has revealed a special domain configuration,namely large striped and layered macro domains embedded with small nanodomains.This study provides a distinctive avenue to design BNT-based piezoelectric ceramics with high piezoelectric performance and temperature stability.
基金financial support from the National Natural Science Foundation of China(Nos.52072092 and 51922083)the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
文摘Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.
基金Z.Y.acknowledges the National Natural Science Foundation of China(Grant No.42074211).
文摘Magnetic reconnection and dipolarization are crucial processes driving magnetospheric dynamics,including particle energization,mass circulation,and auroral processes,among others.Recent studies have revealed that these processes at Saturn and Jupiter are fundamentally different from the ones at Earth.The reconnection and dipolarization processes are far more important than previously expected in the dayside magnetodisc of Saturn and potentially Jupiter.Dayside magnetodisc reconnection was directly identified by using Cassini measurements(Guo RL et al.,2018b)and was found to be drizzle-like and rotating in the magnetosphere of Saturn(Delamere et al.,2015b;Yao ZH et al.,2017a;Guo RL et al.,2019).Moreover,magnetic dipolarization could also exist at Saturn’s dayside(Yao ZH et al.,2018),which is fundamentally different from the terrestrial situation.These new results significantly improve our understanding of giant planetary magnetospheric dynamics and provide key insights revealing the physics of planetary aurorae.Here,we briefly review these recent advances and their potential implications for future investigations.
基金supported by University of Florence RICATEN 2023 to EC.Grant/Award Numbers 58514_InternazionalizzazioneUniversity of Florence,to EC.Parkinson’s UK,Grant/Award Number:H-0902 to AJGWellcome Trust,Grant/Award Number:0926/Z/10/Z to AJG。
文摘During brain ischemia,excitotoxicity and peri-infarct depolarization injuries occur and cause cerebral tissue damage.Indeed,anoxic depolarization,consisting of massive neuronal depolarization due to the loss of membrane ion gradients,occurs in vivo or in vitro during an energy failure.The neuromodulator adenosine is released in huge amounts during cerebral ischemia and exerts its effects by activating specific metabotropic receptors,namely:A_(1),A_(2A),A_(2B),and A_(3).The A_(2A)receptor subtype is highly expressed in striatal medium spiny neurons,which are particularly susceptible to ischemic damage.Evidence indicates that the A2Areceptors are upregulated in the rat striatum after stroke and the selective antagonist SCH58261 protects from exaggerated glutamate release within the first 4 hours from the insult and alleviates neurological impairment and histological injury in the following 24 hours.We recently added new knowledge to the mechanisms by which the adenosine A2Areceptor subtype participates in ischemia-induced neuronal death by performing patch-clamp recordings from medium spiny neurons in rat striatal brain slices exposed to oxygen and glucose deprivation.We demonstrated that the selective block of A2Areceptors by SCH58261 significantly reduced ionic imbalance and delayed the anoxic depolarization in medium spiny neurons during oxygen and glucose deprivation and that the mechanism involves voltage-gated K+channel modulation and a presynaptic inhibition of glutamate release by the A2Areceptor antagonist.The present review summarizes the latest findings in the literature about the possibility of developing selective ligands of A2Areceptors as advantageous therapeutic tools that may contribute to counteracting neurodegeneration after brain ischemia.
基金National Natural Science Foundation of China(913322028122100381603084).
文摘Temporal lobe epilepsy(TLE) is a common type of epilepsy and is not well controlled by current treatments.The frequent failure to treat TLE may be due to our lack of precise cellular/circuit mechanisms underlying TLE.The early series of our studies have proved the success of low-frequency stimulation treatment for epilepsy,which was mainly depending on the stimulation target,the stimulation frequency and stimulation time(the therapeutic-window phenomenon).Now,by using optogenetics,viral tracing,multiple-channel EEG analysis,imaging,electrophysiology and pharmacology strategies,we are continued to investigate the circuit mechanism of therapeutic deep brain stimulation,and found that entorhinal principal neurons mediate antiepileptic ″ glutamatergic-GABAergic″ neuronal circuit for brain stimulation treatments of epilepsy.Meanwhile,we are currently focusing on the interplay of inhibitory and excitatory network in the key input/output regions of the hippocampus that related to the generation of in TLE.Specially,we found that depolarized GABAergic signaling in subicular microcircuit mediates generalized seizures in TLE and a direct septal cholinergic circuit attenuates TLE through driving hippocampal somatostatin inhibition.These findings may be of therapeutic interest in understanding the pathological neuronal circuitry in TLE and further the development of novel therapeutic approaches or drug targets.
基金The Ministry of Science and Technology of China and the National Natural Science Foundation of China(Nos.91527305 and 51322306)are acknowledged for their financial support
文摘The interaction between monosaccharides exhibits an important role in the assembly of monosaccharide-containing molecules. In this work, three common monosaccharides, glucose, galactose and mannose, are employed to investigate the effect of monosaccharide on the self-assembly of benzenetricarboxamide(BTA) core-containing molecules. In the presence of monosaccharides, three benzenetricarboxamide derivatives aggregate into different ordered structures. When alanine linkers are introduced to these molecules between the core and the monosacchride, morphologies of three types of monosaccharide BTAs turned to disordered, meanwhile their structures become similar with the increase of the length of alanine linkers, indicating the disappearance of the monosaccharide effects.
基金This work was supported by the National Key Projects for Fundamental Research, "Macromolecular Condensed State" of Ministry of Science and Technology of China.
文摘The kinetics of I-->N transition of a side chain nematic polymethacrylate has been studied by small angle depolarized light scattering intensity measurements using a charge coupled device linear image sensor. The polymer shows the transition temperatures K52N79I in degreesC, The H-v scattering intensity T(q,t) during the transition I (at 80.2degreesC)-->N (at 75.8degreesC) shows that T(q) is independent of q for all t, and during the initial stage (in 6 s) T(t) increases exponentially with t. In the later stage of the transition T(t) approaches a saturation value in 2 min. This experimental result indicates that the I-->N transition of a liquid crystalline polymer is a spinodal type of phase transition mediated by orientation fluctuation.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.20903002, No.21273211, No.9112T042, and No.21373194) and the Anhui Provin- cial Natural Science Foundation (No.1408085MA18), and the National Key Basic Research Special Founda- tion (No.2013CB834602 and No.2010CB923300).
文摘The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.
基金supported by the National Natural Science Foundation of China(51725401)the Fundamental Research Funds for the Central Universities(FRF-TP-18-010B1).
文摘Ti-bearing slag(TiO2>20 wt%)is a valuable titanium secondary resource.The extraction of titanium from the slag is difficult due to the complex composition and structure.Although molten oxide electrolysis is considered as a promising method,silicon will be preferentially electroreduced compared to titanium due to low theoretical decomposition voltage.In this work,a liquid copper cathode is used to selectively extract titanium from molten Al2O3-MgO-CaO-TiO2-SiO2 electrolyte.It is found that comparing to silicon,titanium can be preferentially reduced by one-step electron transfer due to the enhanced depolarization effect on a liquid copper cathode.So,Ti-Cu alloys are firstly obtained from molten Ti-bearing slag,and then Ti-Si alloys are co-electrodeposited in the molten oxide electrolyte with low TiO2 content.It may be ascribed to the larger binding force between titanium and copper than that between silicon and copper.It provides an effective strategy for the separation of titanium from of Ti-bearing slag.
基金Scientific Committee Foundation(No.13102007) of Selcuk University,Konya,Turkey(to HB)
文摘Dexmedetomidine is a selective α2-adrenoceptor agonist that is used because of its sedative,anxiolytic,and analgesic effects.Dexketoprofen,which is used as an analgesic,is a nonselective nonsteroidal anti-inflammatory drug (NSAID).The use of dexmedetomidine and dexketoprofen as adjuvants to local anesthetics for the peripheral nerve is gradually increasing.In this study,we aimed to investigate the effects of different doses of dexmedetomidine and dexketoprofen on conduction block of rat sciatic nerve.The isolated sciatic nerve from adult rats was transferred to a nerve chamber.The compound action potentials (CAPs) were recorded from stimulated nerve with electrophysiological methods.Dexmedetomidine (n = 8) and dexketoprofen (n = 8) were administered in the chamber with cumulative concentrations of 10–9 to 10–5 M,and the CAPs were recorded for 5 and 10 minutes.The CAP parameters were calculated.Both dexmedetomidine and dexketoprofen significantly depressed all CAP parameters in a dose-dependent manner compared with the control group,i.e.,the group in which rats did not receive treatment.CAP parameters showed there was no significant difference in nerve conduction inhibition between dexmedetomidine and dexketoprofen.Higher doses of dexmedetomidine suppressed the conduction in the fast-conducting fibers;however,dexketoprofen was found to suppress the conduction in the slow-conducting fibers in a time-dependent manner and suppress the conduction in the medium- and slow-conducting fibers in a dose-dependent manner.These findings suggest that dexmedetomidine and dexketoprofen exhibit better anesthetic effects on peripheral nerve through different ways of action.The experimental procedures were approved by the Necmettin Erbakan University on January 30,2013 (approval No.2013-024).
基金supported by the National Natural Science Foundation of China,No.H0906-C090201a grant from the National Science and Technology Support Program of China,No.3G013F843428
文摘Cortical spreading depression is a technique used to depolarize neurons. During focal or global ischemia, cortical spreading depression-induced preconditioning can enhance tolerance of further injury. However, the underlying mechanism for this phenomenon remains relatively unclear. To date, numerous issues exist regarding the experimental model used to precondition the brain with cortical spreading depression, such as the administration route, concentration of potassium chloride, induction time, duration of the protection provided by the treatment, the regional distribution of the protective effect, and the types of neurons responsible for the greater tolerance. In this review, we focus on the mechanisms underlying cor- tical spreading depression-induced tolerance in the brain, considering excitatory neurotransmission and metabolism, nitric oxide, genomic reprogramming, inflammation, neurotropic factors, and cellular stress response. Specifically, we clarify the procedures and detailed information regarding cortical spreading depression-induced preconditioning and build a foundation for more comprehensive investigations in the field of neural regeneration and clinical application in the future.
文摘It was ascertained that when a RE element was added in bath,the sample was improved on the anti-corrosion power of the coating because of the increasing of covering rate of formless crystal Zn2Fe(PO4) 2·4H2O(marked P) crystals and the ratio of P/(P+H) (H was the mark of Zn3(PO4) 2 crystal) in the coating,combination of which with components parsing by EDS indicated that the sequence of contribution elements P and Zn to erosion resistance of coatings was P】Zn. And the correlative mechanism was discussed,which made it clear that owing to the particularity of the outer-shell electron structure and larger ionic radius,RE was so easy to be polarized and metamorphosed itself that it adsorbed lightly on the basic body to pose gels. They efficiently reduced the activation energy which was required for formation of a new solid phase of phosphates and made it also possible to engender effectively active nucleation regions of cathode and anode under low temperature phosphating condition,which was propitious to formation,densification and uniformization of the phosphate crystal nucleus and growth of the crystallite and coating buildup. Thus it could be seen that REN played the role of surface regulator and accelerant,which speeded up the phosphating,as well as bids amount of porosity of the coating fall to improve the corrosion resistance of the coating.
文摘Sudden cardiac death (SCD) affects approximately 800,000 individuals per annum globally. It is most frequently due to cardiac tachy-arrhythmias, which include mono-morphic or polymorphic ventricular tachycardia (VT), torsade de pointes and ventricular fibrillation (VF). Risk stratification for SCD remains a challenging problem in clinical practice.