期刊文献+
共找到374篇文章
< 1 2 19 >
每页显示 20 50 100
Passive Seismic Deployments from the Lützow-Holm Bay to Inland Plateau of East Antarctica: The Japanese IPY Contribution to Structure and Seismicity
1
作者 Masaki Kanao Akira Yamada Genti Toyokuni 《International Journal of Geosciences》 2013年第5期837-843,共7页
Deployments of seismic stations in Antarctica are an ambitious project to improve the spatial resolution of the Antarctic Plate and surrounding regions. Several international programs had been conducted in wide area o... Deployments of seismic stations in Antarctica are an ambitious project to improve the spatial resolution of the Antarctic Plate and surrounding regions. Several international programs had been conducted in wide area of the Antarctic continent during the International Polar Year (IPY 2007-2008). The “Antarctica’s GAmburtsev Province (AGAP)”, the “GAmburtsev Mountain SEISmic experiment (GAMSEIS)” as a part of AGAP, and the “Polar Earth Observing Network (POLENET)” were major contributions to the IPY. The AGAP/GAMSEIS was an internationally coordinated deployments of more than few tens of broadband seismographs over the wide area of East Antarctica. Detailed information on crustal thickness and mantle structure provides key constraints on an origin of the Gamburtsev Mountains;and more broad structure and evolution of the East Antarctic craton and sub-glacial environment. From POLENET data obtained, local and regional signals associated with ice movements were recorded together with a significant number of teleseismic events. Moreover, seismic deployments have been carried out in the Lützow-Holm Bay (LHB), East Antarctica, by Japanese activities. The recorded teleseismic and local events are of sufficient quality to image the structure and dynamics of the crust and mantle, such as the studies by receiver functions suggesting a heterogeneous upper mantle. In addition to studies on the shallow part of the Earth, we place emphasis on these seismic deployments’ ability to image the Earth’s deep interior, as viewed from Antarctica, as a large aperture array in the southern high latitude. 展开更多
关键词 PASSIVE SEISMIC deployments Lützow-Holm BAY East Antarctica Mantle STRUCTURE Earth’s Deep INTERIORS
暂未订购
An Analysis of the Influence of Equipment Reliability on M&S Cost in Multi-theater Deployments
2
作者 YAN Sheng-wen GUO Ji-lian 《International Journal of Plant Engineering and Management》 2010年第4期217-221,共5页
This paper theoretically analyzes the influence of weapon reltability on maintenance and support cost ( M&S cost) in multi-theater deployments. Based on the M&S data of typical on-board equipment, it analyzes in d... This paper theoretically analyzes the influence of weapon reltability on maintenance and support cost ( M&S cost) in multi-theater deployments. Based on the M&S data of typical on-board equipment, it analyzes in depth the M&S cost in a three-theater deployment scenario with PRICE software and the influence of reliability on M&S cost. The result shows that under the same hardware parameter index, the M&S cost in multi-theater deployments is much higher than that in one-theater deployments and that the cost of equipment Mean Time Between Failures ( MTBF) is also more sensitive than that in one-theater deployments, particularly when the MTBF is relatively low. As a result, the requirement for equipment reliability is higher in multi-theater deployments. 展开更多
关键词 RELIABILITY maintenance support cost (M&S cost) multi-theater deployments
在线阅读 下载PDF
Artificially designed pathogens – a diagnostic option for future military deployments
3
作者 Andreas E.Zautner Wyclif e O.Masanta +2 位作者 Rebecca Hinz Ralf Matthias Hagen Hagen Frickmann 《Journal of Medical Colleges of PLA(China)》 CAS 2015年第2期110-115,共6页
Background: Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to ... Background: Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to restrictions by the International Air Transport Association. An alternative option might be inactivation and sequencing of the pathogen at the deployment site with subsequent sequence-based revitalization in well-equipped laboratories in the home country for further scientific assessment. Methods: A literature review was written based on a Pub Med search. Results: First described for poliovirus in 2002, de novo synthesis of pathogens based on their sequence information has become a well-established procedure in science. Successful syntheses have been demonstrated for both viruses and prokaryotes. However, the technology is not yet available for routine diagnostic purposes. Conclusions: Due to the potential utility of diagnostic sequencing and sequence-based de novo synthesis of pathogens, it seems worthwhile to establish the technology for diagnostic purposes over the intermediate term. This is particularly true for resource-restricted deployment settings, where safe handling of harmful pathogens cannot always be guaranteed. 展开更多
关键词 DEPLOYMENT SEQUENCING Next generation SEQUENCING DNA SHUFFLING Synthesis Diagnosis Synthetic biology
原文传递
IECC-SAIN:Innovative ECC-Based Approach for Secure Authentication in IoT Networks
4
作者 Younes Lahraoui Jihane Jebrane +2 位作者 Youssef Amal Saiida Lazaar Cheng-Chi Lee 《Computer Modeling in Engineering & Sciences》 2025年第7期615-641,共27页
Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with... Due to their resource constraints,Internet of Things(IoT)devices require authentication mechanisms that are both secure and efficient.Elliptic curve cryptography(ECC)meets these needs by providing strong security with shorter key lengths,which significantly reduces the computational overhead required for authentication algorithms.This paper introduces a novel ECC-based IoT authentication system utilizing our previously proposed efficient mapping and reverse mapping operations on elliptic curves over prime fields.By reducing reliance on costly point multiplication,the proposed algorithm significantly improves execution time,storage requirements,and communication cost across varying security levels.The proposed authentication protocol demonstrates superior performance when benchmarked against relevant ECC-based schemes,achieving reductions of up to 35.83%in communication overhead,62.51%in device-side storage consumption,and 71.96%in computational cost.The security robustness of the scheme is substantiated through formal analysis using the Automated Validation of Internet Security Protocols and Applications(AVISPA)tool and Burrows-Abadir-Needham(BAN)logic,complemented by a comprehensive informal analysis that confirms its resilience against various attack models,including impersonation,replay,and man-in-the-middle attacks.Empirical evaluation under simulated conditions demonstrates notable gains in efficiency and security.While these results indicate the protocol’s strong potential for scalable IoT deployments,further validation on real-world embedded platforms is required to confirm its applicability and robustness at scale. 展开更多
关键词 Industrial IoT Elliptic Curve Cryptography(ECC) National Institute of Standards and Technology(NIST)curves mapping AVISPA BAN logic computational efficiency security scalable IoT deployments
在线阅读 下载PDF
Challenges in the Large-Scale Deployment of CCUS 被引量:2
5
作者 Zhenhua Rui Lianbo Zeng Birol Dindoruk 《Engineering》 2025年第1期17-20,共4页
1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Int... 1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale. 展开更多
关键词 Large-Scale Deployment CCUS CHALLENGES Climate Change Mitigation
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
6
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
Design of Underground Load Haul Dump Hybrid Power System Based on QFD and TRIZ
7
作者 XU Jun QIAO Sha +3 位作者 MA Xiaowen YUAN Kun QI Wenbo LIU Keyi 《有色金属(中英文)》 北大核心 2025年第3期462-473,共12页
As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven ... As the mining industry continues to expand and international oil prices increase,more rigorous demands are being placed on the design of mining equipment.Given this,there is an urgent need to develop new power-driven mining equipment to solve the problems of high energy consumption and insufficient power coupling of current equipment.This study proposed a design of a hybrid power system for underground Load Haul Dump(LHD).The proposed design integrated Quality Function Deployment(QFD)and Theory of Inventive Problem Solving(TRIZ).It identified 7 user requirements and 10 related technical features,formulated 11 innovative design solutions,and ultimately adopting an electric drive hybrid power scheme.This scheme effectively addressesd power transmission coupling problems and improve the efficiency of loaders.A 6 m³hybrid power loader prototype has been developed,which reduces operational energy consumption and advances the electrification and green,low-carbon evolution of mining equipment. 展开更多
关键词 quality function deployment TRIZ LHD design solution
在线阅读 下载PDF
Deployment dynamics and experiments of a tendon-actuated flexible manipulator
8
作者 Benteng ZHANG Jialiang SUN Haiyan HU 《Chinese Journal of Aeronautics》 2025年第2期459-477,共19页
The quantity of space debris on Earth orbit has escalated tremendously in recent years, presenting a significant hazard to human space operations. It is urgent to develop effective measures to capture and remove vario... The quantity of space debris on Earth orbit has escalated tremendously in recent years, presenting a significant hazard to human space operations. It is urgent to develop effective measures to capture and remove various space debris. For this purpose, this paper presents a tendon-actuated flexible deployable manipulator. The flexible manipulator consists of several deployable units connected by Cardan joints and actuated by tendons. Compared with the present technologies for capturing space debris such as rigid robotic arm or flying net, this flexible manipulator is deployable, reusable, lightweight and applicable to the capture of large space debris. In order to investigate its deployment dynamics, an accurate dynamic model of the flexible manipulator is established based on the natural coordinate formulation (NCF) and the absolute nodal coordinate formulation (ANCF). Subsequently, numerical simulations are carried out to study the effects of system parameters and the base satellite on its deployment dynamics. Finally, ground experiments for both deployment and bending of the flexible manipulator are conducted to verify its effectiveness and feasibility. 展开更多
关键词 Flexible manipulator Tendon-actuated Dynamic modeling Deployment dynamics Ground experiments
原文传递
Joint spatial optimization of UAV relay system for emergency communications
9
作者 MA Yue QIN Danyang +1 位作者 CHEN Yuhong TANG Huapeng 《黑龙江大学工程学报(中英俄文)》 2025年第2期41-48,87,2,共10页
The rapid evolution of Fifth-Generation(5G)networks and the strategic development of Sixth-Generation(6G)technologies have significantly advanced the implementation of air-ground integrated networks with seamless cove... The rapid evolution of Fifth-Generation(5G)networks and the strategic development of Sixth-Generation(6G)technologies have significantly advanced the implementation of air-ground integrated networks with seamless coverage.Unmanned Aerial Vehicles(UAVs),serving as high-mobility aerial platforms,are extensively utilized to enhance coverage in long-distance emergency communication scenarios.The resource-constrained communication environments in emergencies by classifying UAVs into swarm UAVs and relay UAVs as aerial communication nodes is inversitgated.A horizontal deployment strategy for swarm UAVs is formulated through K-means clustering algorithm optimization,while a vertical deployment scheme is established using convex optimization methods.The minimum-path trajectory planning for relay UAVs is optimized via the Particle Swarm Optimization(PSO)algorithm,enhancing communication reliability between UAV swarms and terrestrial base stations.A three-dimensional heterogeneous network architecture is realized by modeling spatial multi-hop relay links.Experimental results demonstrate that the proposed joint UAV relay optimization framework outperforms conventional algorithms in both coverage performance and relay capability during video stream transmission,achieving significant improvements in coverage enhancement and relay efficiency.This work provides technical foundations for constructing high-reliability air-ground cooperative systems in emergency communications. 展开更多
关键词 emergency communication UAV-assisted networks relay system spatial deployment trajectory optimization
在线阅读 下载PDF
Machine Learning on Blockchain (MLOB): A New Paradigm for Computational Security in Engineering
10
作者 Zhiming Dong Weisheng Lu 《Engineering》 2025年第4期250-263,共14页
Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a part... Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a particular concern.Nevertheless,there is a research gap that prevailing solutions focus primarily on data security using blockchain but ignore computational security,making the traditional ML process vulnerable to off-chain risks.Therefore,the research objective is to develop a novel ML on blockchain(MLOB)framework to ensure both the data and computational process security.The central tenet is to place them both on the blockchain,execute them as blockchain smart contracts,and protect the execution records on-chain.The framework is established by developing a prototype and further calibrated using a case study of industrial inspection.It is shown that the MLOB framework,compared with existing ML and BT isolated solutions,is superior in terms of security(successfully defending against corruption on six designed attack scenario),maintaining accuracy(0.01%difference with baseline),albeit with a slightly compromised efficiency(0.231 second latency increased).The key finding is MLOB can significantly enhances the computational security of engineering computing without increasing computing power demands.This finding can alleviate concerns regarding the computational resource requirements of ML-BT integration.With proper adaption,the MLOB framework can inform various novel solutions to achieve computational security in broader engineering challenges. 展开更多
关键词 Engineering computing Machine learning Blockchain Blockchain smart contract Deployable framework
在线阅读 下载PDF
Asynchronous deployment scheme and multibody modeling of a ring-truss mesh reflector antenna
11
作者 Baiyan He Kangkang Li +3 位作者 Lijun Jia Rui Nie Yesen Fan Guobiao Wang 《Acta Mechanica Sinica》 2025年第5期190-206,共17页
Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployab... Mesh reflector antennas are the mainstream of large space-borne antennas,and the stretching of the truss achieves their deployment.Currently,the truss is commonly designed to be a single degree of freedom(DOF)deployable mechanism with synchronization constraints.However,each deployable unit’s drive distribution and resistance load are uneven,and the forced synchronization constraints lead to the flexible deformation of rods and difficulties in the deployment scheme design.This paper introduces an asynchronous deployment scheme with a multi-DOF closed-chain deployable truss.The DOF of the truss is calculated,and the kinematic and dynamic models are established,considering the truss’s and cable net’s real-time coupling.An integrated solving algorithm for implicit differential-algebraic equations is proposed to solve the dynamic models.A prototype of a six-unit antenna was fabricated,and the experiment was carried out.The dynamic performances in synchronous and asynchronous deployment schemes are analyzed,and the results show that the cable resistance and truss kinetic energy impact under the asynchronous deployment scheme are minor,and the antenna is more straightforward to deploy.The work provides a new asynchronous deployment scheme and a universal antenna modeling method for dynamic design and performance improvement. 展开更多
关键词 Mesh antenna Deployment dynamic Driving scheme Performance evaluation Numerical analysis
原文传递
Optimization design of launch window for large-scale constellation using improved genetic algorithm
12
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Dynamic behavior recognition in aerial deployment of multi-segmented foldable-wing drones using variational autoencoders
13
作者 Yilin DOU Zhou ZHOU Rui WANG 《Chinese Journal of Aeronautics》 2025年第6期143-165,共23页
The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,wi... The aerial deployment method enables Unmanned Aerial Vehicles(UAVs)to be directly positioned at the required altitude for their mission.This method typically employs folding technology to improve loading efficiency,with applications such as the gravity-only aerial deployment of high-aspect-ratio solar-powered UAVs,and aerial takeoff of fixed-wing drones in Mars research.However,the significant morphological changes during deployment are accompanied by strong nonlinear dynamic aerodynamic forces,which result in multiple degrees of freedom and an unstable character.This hinders the description and analysis of unknown dynamic behaviors,further leading to difficulties in the design of deployment strategies and flight control.To address this issue,this paper proposes an analysis method for dynamic behaviors during aerial deployment based on the Variational Autoencoder(VAE).Focusing on the gravity-only deployment problem of highaspect-ratio foldable-wing UAVs,the method encodes the multi-degree-of-freedom unstable motion signals into a low-dimensional feature space through a data-driven approach.By clustering in the feature space,this paper identifies and studies several dynamic behaviors during aerial deployment.The research presented in this paper offers a new method and perspective for feature extraction and analysis of complex and difficult-to-describe extreme flight dynamics,guiding the research on aerial deployment drones design and control strategies. 展开更多
关键词 Dynamic behavior recognition Aerial deployment technology Variational autoencoder Pattern recognition Multi-rigid-bodydynamics
原文传递
Enhanced Practical Byzantine Fault Tolerance for Service Function Chain Deployment:Advancing Big Data Intelligence in Control Systems
14
作者 Peiying Zhang Yihong Yu +3 位作者 Jing Liu ChongLv Lizhuang Tan Yulin Zhang 《Computers, Materials & Continua》 2025年第6期4393-4409,共17页
As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitati... As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitating data-driven decision making,fostering innovation ecosystems,and maintaining operational stability.In this study,we propose an advanced deployment algorithm for Service Function Chaining(SFC)that leverages an enhanced Practical Byzantine Fault Tolerance(PBFT)mechanism.The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings.By integrating blockchain technology and Deep Reinforcement Learning(DRL),our algorithm not only optimizes resource utilization and quality of service but also ensures robust security during SFC deployment.Specifically,the enhanced PBFT consensus mechanism(VRPBFT)significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable Random Function(VRF)and a node reputation grading model.Experimental results demonstrate that compared to traditional PBFT,the proposed VRPBFT algorithm reduces consensus latency by approximately 30%and decreases the proportion of Byzantine nodes by 40%after 100 rounds of consensus.Furthermore,the DRL-based SFC deployment algorithm(SDRL)exhibits rapid convergence during training,with improvements in long-term average revenue,request acceptance rate,and revenue/cost ratio of 17%,14.49%,and 20.35%,respectively,over existing algorithms.Additionally,the CPU resource utilization of the SDRL algorithmreaches up to 42%,which is 27.96%higher than other algorithms.These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,service quality,and security in SFC deployment. 展开更多
关键词 Big data intelligent transformation heterogeneous networks service function chain blockchain deep reinforcement learning trusted deployment
在线阅读 下载PDF
GBiDC-PEST:A novel lightweight model for real-time multiclass tiny pest detection and mobile platform deployment
15
作者 Weiyue Xu Ruxue Yang +2 位作者 Raghupathy Karthikeyan Yinhao Shi Qiong Su 《Journal of Integrative Agriculture》 2025年第7期2749-2769,共21页
Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has b... Deep learning-based intelligent recognition algorithms are increasingly recognized for their potential to address the labor-intensive challenge of manual pest detection.However,their deployment on mobile devices has been constrained by high computational demands.Here,we developed GBiDC-PEST,a mobile application that incorporates an improved,lightweight detection algorithm based on the You Only Look Once(YOLO)series singlestage architecture,for real-time detection of four tiny pests(wheat mites,sugarcane aphids,wheat aphids,and rice planthoppers).GBiDC-PEST incorporates several innovative modules,including GhostNet for lightweight feature extraction and architecture optimization by reconstructing the backbone,the bi-directional feature pyramid network(BiFPN)for enhanced multiscale feature fusion,depthwise convolution(DWConv)layers to reduce computational load,and the convolutional block attention module(CBAM)to enable precise feature focus.The newly developed GBiDC-PEST was trained and validated using a multitarget agricultural tiny pest dataset(Tpest-3960)that covered various field environments.GBiDC-PEST(2.8 MB)significantly reduced the model size to only 20%of the original model size,offering a smaller size than the YOLO series(v5-v10),higher detection accuracy than YOLOv10n and v10s,and faster detection speed than v8s,v9c,v10m and v10b.In Android deployment experiments,GBiDCPEST demonstrated enhanced performance in detecting pests against complex backgrounds,and the accuracy for wheat mites and rice planthoppers was improved by 4.5-7.5%compared with the original model.The GBiDC-PEST optimization algorithm and its mobile deployment proposed in this study offer a robust technical framework for the rapid,onsite identification and localization of tiny pests.This advancement provides valuable insights for effective pest monitoring,counting,and control in various agricultural settings. 展开更多
关键词 mobile counting real-time processing pest detection tiny object identification algorithm deployment
在线阅读 下载PDF
Design and optimization of origami-inspired inflatable deployable tubular structures
16
作者 Bo QIN Shengnan LYU +1 位作者 Shiwei LIU Xilun DING 《Chinese Journal of Aeronautics》 2025年第3期645-661,共17页
Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic ... Inflatable deployable structures inspired by origami have significant applications in space missions such as solar arrays and antennas.In this paper,a generalized Miura-ori tubular cell(GMTC)is presented as the basic cell to design a family of inflatable origami tubular structures with the targeted configuration.First,the classification of rigid foldable degree-4 vertices is studied thoroughly.Since the proposed GMTC is comprised of forming units(FU)and linking units(LU),types of FUs and LUs are investigated based on the classification of degree-4 vertices,respectively.The rigid foldability of the GMTC is presented by studying the kinematics of the FUs and LUs.Volume of the GMTC is analyzed to investigate multistable configurations of the basic cell.The variations in volume of the GMTC offer great potential for developing the inflatable tubular structure.Design method and parametric optimization of the tubular structure with targeted configuration are proposed.The feasibility of the approach is validated by the approximation of four different cases,namely parabolic,semicircular,trapezoidal,and straight-arc hybrid tubular structures. 展开更多
关键词 Rigid origamil Inflatable deployable structure Variable volume Multistable configuration Parametric optimization design
原文传递
Analysis of Supplier Demand Factors Based on QFD in Mass Customization Environment
17
作者 Yunlong Zhang Zengqiang Wang 《Journal of Electronic Research and Application》 2025年第1期128-133,共6页
Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptab... Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptability of the QFD method and supplier selection process in a mass customization environment and puts forward a supplier selection framework based on the QFD idea.Furthermore,both the objective environment of demand factor analysis and the thinking of the customer representatives participating in the analysis have great uncertainty and fuzziness.Therefore,a demand factor analysis method for supplier selection in the mass customization environment based on language phrases of different granularity is proposed.The proposed method allows the customer representatives participating in the selection to use their preferred language phrase set to represent the importance of demand factors.Finally,the effectiveness and feasibility of the proposed method are verified by an example of a vehicle manufacturer. 展开更多
关键词 Mass customization Supplier selection Quality function deployment Demand factors
在线阅读 下载PDF
Strategic Global Deployment of Photovoltaic Technology:Balancing Economic Capacity and Decarbonization Potential
18
作者 Ian Marius PETERS 《Advances in Atmospheric Sciences》 2025年第2期261-268,共8页
This study investigates the disparities in the deployment of photovoltaic(PV)technology for carbon emissions reduction across different nations,highlighting the mismatch between countries with high economic capacity a... This study investigates the disparities in the deployment of photovoltaic(PV)technology for carbon emissions reduction across different nations,highlighting the mismatch between countries with high economic capacity and those where PV installation would maximize global decarbonization benefits.This mismatch is discussed based on three key factors influencing decarbonization via PV technology:per capita gross domestic product;carbon intensity of the energy system;and solar resource availability.Current PV deployment is predominantly concentrated in economically advanced countries,and does not coincide with regions where the environmental and economic impact of such installations would be most significant.Through a series of thought experiments,it is demonstrated how alternative prioritization strategies could significantly reduce global carbon emissions.Argument is put forward for a globally coordinated approach to PV deployment,particularly targeting high-impact sunbelt regions,to enhance the efficacy of decarbonization efforts and promote equitable energy access.The study underscores the need for international policies that support sustainable energy transitions in economically less developed regions through workforce development and assistance with the activation of capital. 展开更多
关键词 photovoltaic deployment decarbonization strategies solar resource availability global energy equity carbon emission reductions
在线阅读 下载PDF
A Base Station Deployment Algorithm for Wireless Positioning Considering Dynamic Obstacles
19
作者 Aiguo Li Yunfei Jia 《Computers, Materials & Continua》 2025年第3期4573-4591,共19页
In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of personnel.Most studies focus on optimizing base station deploym... In the context of security systems,adequate signal coverage is paramount for the communication between security personnel and the accurate positioning of personnel.Most studies focus on optimizing base station deployment under the assumption of static obstacles,aiming to maximize the perception coverage of wireless RF(Radio Frequency)signals and reduce positioning blind spots.However,in practical security systems,obstacles are subject to change,necessitating the consideration of base station deployment in dynamic environments.Nevertheless,research in this area still needs to be conducted.This paper proposes a Dynamic Indoor Environment Beacon Deployment Algorithm(DIE-BDA)to address this problem.This algorithm considers the dynamic alterations in obstacle locations within the designated area.It determines the requisite number of base stations,the requisite time,and the area’s practical and overall signal coverage rates.The experimental results demonstrate that the algorithm can calculate the deployment strategy in 0.12 s following a change in obstacle positions.Experimental results show that the algorithm in this paper requires 0.12 s to compute the deployment strategy after the positions of obstacles change.With 13 base stations,it achieves an effective coverage rate of 93.5%and an overall coverage rate of 97.75%.The algorithm can rapidly compute a revised deployment strategy in response to changes in obstacle positions within security systems,thereby ensuring the efficacy of signal coverage. 展开更多
关键词 Wireless positioning base station deployment dynamic obstacles dynamic obstacle wireless positioning
在线阅读 下载PDF
Optimized Deployment Method for Finite Access Points Based on Virtual Force Fusion Bat Algorithm
20
作者 Jian Li Qing Zhang +2 位作者 Tong Yang Yu’an Chen Yongzhong Zhan 《Computer Modeling in Engineering & Sciences》 2025年第9期3029-3051,共23页
In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployme... In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployment method of multi-objective optimization with virtual force fusion bat algorithm(VFBA)using the classical four-node regular distribution as an entry point.The introduction of Lévy flight strategy for bat position updating helps to maintain the population diversity,reduce the premature maturity problem caused by population convergence,avoid the over aggregation of individuals in the local optimal region,and enhance the superiority in global search;the virtual force algorithm simulates the attraction and repulsion between individuals,which enables individual bats to precisely locate the optimal solution within the search space.At the same time,the fusion effect of virtual force prompts the bat individuals to move faster to the potential optimal solution.To validate the effectiveness of the fusion algorithm,the benchmark test function is selected for simulation testing.Finally,the simulation result verifies that the VFBA achieves superior coverage and effectively reduces node redundancy compared to the other three regular layout methods.The VFBA also shows better coverage results when compared to other optimization algorithms. 展开更多
关键词 Multi-objective optimization deployment virtual force algorithm bat algorithm fusion algorithm
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部