期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合ECA机制与DenseNet201的水稻病虫害识别方法
被引量:
8
1
作者
潘晨露
张正华
+3 位作者
桂文豪
马家俊
严晨曦
张晓敏
《智慧农业(中英文)》
CSCD
2023年第2期45-55,共11页
[目的/意义]针对传统人工识别病虫害存在的效率过低、成本过高等问题,提出一种融合ECA (Efficient Channel Attention)注意力机制与DenseNet201的水稻图像识别模型GE-DenseNet (G-ECA DenseNet)。[方法]首先在ECA机制上引入Ghost模块的...
[目的/意义]针对传统人工识别病虫害存在的效率过低、成本过高等问题,提出一种融合ECA (Efficient Channel Attention)注意力机制与DenseNet201的水稻图像识别模型GE-DenseNet (G-ECA DenseNet)。[方法]首先在ECA机制上引入Ghost模块的思想构成G-ECA Layer结构,增强其提取特征的能力。其次,在DenseNet201原有的Dense Block前引入G-ECA Layer,使模型具有更优的通道特征提取能力。由于实验所用的数据集较小,将DenseNet201在ImageNet数据集上预训练的权重参数迁移到GE-DenseNet中。训练时,采用Focal Loss函数来解决各分类样本不均衡的问题。同时,使用Adam优化器以避免在模型训练初期由于部分权重随机初始化而导致反向传播的梯度变化剧烈的问题,在一定程度上削弱了网络训练的不确定性。[结果和讨论]在包含水稻胡麻斑病、水稻铁甲虫、稻瘟病与健康水稻的3355张图像数据集上进行了实验测试,识别准确率达到83.52%。由GE-DenseNet模型的消融对比实验可得,引入了Focal Loss函数与G-ECA Layer层之后,模型准确率上升2.27%。将所提模型与经典NasNet (4@1056)、VGG-16和ResNet50模型相比,分类准确率分别提高了6.53%、4.83%和3.69%;相较于原始的DenseNet201,对水稻铁甲虫的识别准确率提升达20.32%。[结论]加入G-ECA Layer结构能够使模型更为准确地捕捉适合于水稻病虫害识别的特征信息,从而使GE-DenseNet模型能够实现对不同水稻病虫害图像更为准确地识别,为及时防治病虫害,减少各类损失提供技术支持。
展开更多
关键词
densetnet201
ECA注意力机制
病虫害识别
迁移学习
卷积神经网络
Ghost模块
在线阅读
下载PDF
职称材料
题名
融合ECA机制与DenseNet201的水稻病虫害识别方法
被引量:
8
1
作者
潘晨露
张正华
桂文豪
马家俊
严晨曦
张晓敏
机构
扬州大学信息工程学院(人工智能学院)
出处
《智慧农业(中英文)》
CSCD
2023年第2期45-55,共11页
基金
2020年江苏省现代农业发展项目(2020-SJ-003-YD03)
扬州大学学科特区学科交叉课题(yzuxk202008)
2022年江苏省大学生创新训练计划项目重点项目(国家级)(202211117065Z)。
文摘
[目的/意义]针对传统人工识别病虫害存在的效率过低、成本过高等问题,提出一种融合ECA (Efficient Channel Attention)注意力机制与DenseNet201的水稻图像识别模型GE-DenseNet (G-ECA DenseNet)。[方法]首先在ECA机制上引入Ghost模块的思想构成G-ECA Layer结构,增强其提取特征的能力。其次,在DenseNet201原有的Dense Block前引入G-ECA Layer,使模型具有更优的通道特征提取能力。由于实验所用的数据集较小,将DenseNet201在ImageNet数据集上预训练的权重参数迁移到GE-DenseNet中。训练时,采用Focal Loss函数来解决各分类样本不均衡的问题。同时,使用Adam优化器以避免在模型训练初期由于部分权重随机初始化而导致反向传播的梯度变化剧烈的问题,在一定程度上削弱了网络训练的不确定性。[结果和讨论]在包含水稻胡麻斑病、水稻铁甲虫、稻瘟病与健康水稻的3355张图像数据集上进行了实验测试,识别准确率达到83.52%。由GE-DenseNet模型的消融对比实验可得,引入了Focal Loss函数与G-ECA Layer层之后,模型准确率上升2.27%。将所提模型与经典NasNet (4@1056)、VGG-16和ResNet50模型相比,分类准确率分别提高了6.53%、4.83%和3.69%;相较于原始的DenseNet201,对水稻铁甲虫的识别准确率提升达20.32%。[结论]加入G-ECA Layer结构能够使模型更为准确地捕捉适合于水稻病虫害识别的特征信息,从而使GE-DenseNet模型能够实现对不同水稻病虫害图像更为准确地识别,为及时防治病虫害,减少各类损失提供技术支持。
关键词
densetnet201
ECA注意力机制
病虫害识别
迁移学习
卷积神经网络
Ghost模块
Keywords
densetnet201
attention mechanism
pest and disease identification
transfer learning
CNN
Ghost module
分类号
S126 [农业科学—农业基础科学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合ECA机制与DenseNet201的水稻病虫害识别方法
潘晨露
张正华
桂文豪
马家俊
严晨曦
张晓敏
《智慧农业(中英文)》
CSCD
2023
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部