期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
融合DenseNet201网络与Xception网络的外周血白细胞五分类方法研究 被引量:1
1
作者 周鑫 江少锋 甘仿 《医疗卫生装备》 CAS 2023年第3期8-14,共7页
目的:为解决白细胞图像五分类中单一分类网络精度不高、泛化能力差的问题,提出一种融合DenseNet201网络与Xception网络的外周血白细胞分类方法。方法:对输入的白细胞图像分别通过DenseNet201网络与Xception网络的特征提取层进行特征提取... 目的:为解决白细胞图像五分类中单一分类网络精度不高、泛化能力差的问题,提出一种融合DenseNet201网络与Xception网络的外周血白细胞分类方法。方法:对输入的白细胞图像分别通过DenseNet201网络与Xception网络的特征提取层进行特征提取,将提取到的特征进行串联式组合后再通过一个由全连接层、Dropout层、Softmax层构成的白细胞分类器实现白细胞五分类。为验证该方法的适用性和分类性能,分别在公开的单一来源白细胞数据集1和混合来源数据集2上,与基于经典卷积神经网络VGG16、ResNet50、InceptionV3、DenseNet201和Xception的分类方法进行对比实验。结果:在图像质量较好、颜色分布一致的数据集1和图像质量较差、颜色分布各异的数据集2上,融合DenseNet201网络与Xception网络的分类方法的平均分类准确率分别达到99.4%和98.2%,均优于基于经典卷积神经网络的分类方法。结论:提出的融合DenseNet201网络与Xception网络的外周血白细胞分类方法对数据集适用性较好、分类精度较高,可作为一种有效的外周血白细胞五分类方法。 展开更多
关键词 白细胞五分类 卷积神经网络 densenet201 Xception 融合网络
在线阅读 下载PDF
基于深度网络集成的复杂背景甘蔗叶片病害识别 被引量:1
2
作者 马巍巍 陈悦 王咏梅 《智慧农业(中英文)》 2025年第1期136-145,共10页
[目的/意义]农作物病害图像的随机性和复杂性仍给病害识别带来诸多挑战。针对自然条件下甘蔗叶片病害识别难题,本研究提出XEffDa模型。[方法]该模型利用色调、饱和度、亮度(Hue-Saturation-Value,HSV)颜色空间的图像分割与边缘处理技术... [目的/意义]农作物病害图像的随机性和复杂性仍给病害识别带来诸多挑战。针对自然条件下甘蔗叶片病害识别难题,本研究提出XEffDa模型。[方法]该模型利用色调、饱和度、亮度(Hue-Saturation-Value,HSV)颜色空间的图像分割与边缘处理技术去除背景干扰,根据特征融合策略,集成高效网络B0版本(Efficient Network B0,EfficientNetB0)、深度可分离卷积网络(Extreme Inception,Xception)和密集连接卷积网络201(Dense Convolutional Network 201,DenseNet201)作为特征提取器,采用预训练权重,通过贝叶斯优化确定顶层超参数,改进弹性网络(ElasticNet)正则化方法并加入随机失活(Dropout)层,以双重机制遏制过拟合现象。在甘蔗叶片病害数据集上训练并完成分类任务。[结果和讨论]模型集成后的识别准确率为97.62%,对比EfficientNetB0、Xception单模型及EfficientNetB0与其他深度网络结合模型识别准确率分别提高了9.96、6.04、8.09、4.19、1.78个百分点。融合实验进一步表明,加入改进ElasticNet正则化后的网络较主干网络其准确率、精确度、召回率及F1值分别提高了3.76、3.76、3.67及3.72个百分点。最大概率散点图结果显示预测最大概率值不低于0.5的比例高达99.4%。[结论]XEffDa模型具有更好的鲁棒性和泛化能力,能为农作物叶片病害精准防治提供参考。 展开更多
关键词 甘蔗叶片病害 图像识别 EfficientNet Xception densenet201 模型集成
在线阅读 下载PDF
Optimizing CNN Architectures for Face Liveness Detection:Performance,Efficiency,and Generalization across Datasets 被引量:1
3
作者 Smita Khairnar Shilpa Gite +2 位作者 Biswajeet Pradhan Sudeep D.Thepade Abdullah Alamri 《Computer Modeling in Engineering & Sciences》 2025年第6期3677-3707,共31页
Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN model... Face liveness detection is essential for securing biometric authentication systems against spoofing attacks,including printed photos,replay videos,and 3D masks.This study systematically evaluates pre-trained CNN models—DenseNet201,VGG16,InceptionV3,ResNet50,VGG19,MobileNetV2,Xception,and InceptionResNetV2—leveraging transfer learning and fine-tuning to enhance liveness detection performance.The models were trained and tested on NUAA and Replay-Attack datasets,with cross-dataset generalization validated on SiW-MV2 to assess real-world adaptability.Performance was evaluated using accuracy,precision,recall,FAR,FRR,HTER,and specialized spoof detection metrics(APCER,NPCER,ACER).Fine-tuning significantly improved detection accuracy,with DenseNet201 achieving the highest performance(98.5%on NUAA,97.71%on Replay-Attack),while MobileNetV2 proved the most efficient model for real-time applications(latency:15 ms,memory usage:45 MB,energy consumption:30 mJ).A statistical significance analysis(paired t-tests,confidence intervals)validated these improvements.Cross-dataset experiments identified DenseNet201 and MobileNetV2 as the most generalizable architectures,with DenseNet201 achieving 86.4%accuracy on Replay-Attack when trained on NUAA,demonstrating robust feature extraction and adaptability.In contrast,ResNet50 showed lower generalization capabilities,struggling with dataset variability and complex spoofing attacks.These findings suggest that MobileNetV2 is well-suited for low-power applications,while DenseNet201 is ideal for high-security environments requiring superior accuracy.This research provides a framework for improving real-time face liveness detection,enhancing biometric security,and guiding future advancements in AI-driven anti-spoofing techniques. 展开更多
关键词 Face liveness detection cross-dataset generalization real-time face authentication transfer learning densenet201 VGG16 InceptionV3 deep learning
在线阅读 下载PDF
Hybrid Models of Multi-CNN Features with ACO Algorithm for MRI Analysis for Early Detection of Multiple Sclerosis
4
作者 Mohammed Alshahrani Mohammed Al-Jabbar +3 位作者 Ebrahim Mohammed Senan Fatima Ali Amer jid Almahri Sultan Ahmed Almalki Eman A.Alshari 《Computer Modeling in Engineering & Sciences》 2025年第6期3639-3675,共37页
Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making ... Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy. 展开更多
关键词 ResNet101 densenet201 MobileNet XGBoost multi-CNN features MESbS ACO GVF multiple sclerosis
暂未订购
基于深度学习的玉米病虫害智能诊断系统开发 被引量:3
5
作者 姚强 付忠军 +3 位作者 李君保 吕斌 粟超 郭彩霞 《南方农业》 2023年第17期84-88,共5页
使用自定义CNN和DenseNet201两种基于深度学习的网络,对大斑病、南方锈病、玉米黏虫、玉米蚜虫、玉米叶螨等10种常见玉米病虫害图像样本开展模型训练,并对部分训练结果进行了对比分析。发现所得val_accuracy大于0.8的模型中,基于CNN网... 使用自定义CNN和DenseNet201两种基于深度学习的网络,对大斑病、南方锈病、玉米黏虫、玉米蚜虫、玉米叶螨等10种常见玉米病虫害图像样本开展模型训练,并对部分训练结果进行了对比分析。发现所得val_accuracy大于0.8的模型中,基于CNN网络的模型相对稳定,val_loss值相对较小,说明在特定情况下基于CNN网络的模型收敛性相对较好,但DenseNet201网络更容易取得较高准确率的模型。面向Android系统开发基于深度学习的玉米病虫害智能诊断系统,并对系统开展诊断结果验证。验证结果:系统对于小斑病、纹枯病、茎腐病3种病害的诊断错误率较高,泛化能力不足。结论:开发基于深度学习的玉米病虫害智能诊断系统是可行的,但还需进一步调整完善。 展开更多
关键词 玉米病虫害 深度学习 CNN densenet201 智能诊断系统
在线阅读 下载PDF
基于卷积神经网络与ECOC-SVM的输电线路异物检测 被引量:23
6
作者 余沿臻 邱志斌 +2 位作者 周银彪 朱轩 王青 《智慧电力》 北大核心 2022年第3期87-92,107,共7页
输电线路悬挂异物会引发输电线路单相接地、相间短路等停电事故,因此本文提出一种基于卷积神经网络与ECOC-SVM的输电线路异物检测方法。首先,本文构建气球、风筝、塑料和鸟巢4种输电线路异物图像数据集;然后采用Otsu自适应阈值分割、形... 输电线路悬挂异物会引发输电线路单相接地、相间短路等停电事故,因此本文提出一种基于卷积神经网络与ECOC-SVM的输电线路异物检测方法。首先,本文构建气球、风筝、塑料和鸟巢4种输电线路异物图像数据集;然后采用Otsu自适应阈值分割、形态学处理等方法提取感兴趣区域;再利用DenseNet201提取感兴趣区域的特征;最后对ECOC-SVM模型进行训练、测试与结果分析。所用方法在4类异物上的平均识别准确率可达93.3%,有助于提高输电线路运维的效率。 展开更多
关键词 输电线路 异物检测 densenet201 卷积神经网络 ECOC-SVM
在线阅读 下载PDF
Detection Algorithm of Knee Osteoarthritis Based on Magnetic Resonance Images
7
作者 Xin Wang Shuang Liu Chang-Cai 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期221-234,共14页
Knee osteoarthritis(OA)is a common disease that impairs knee function and causes pain.Currently,studies on the detection of knee OA mainly focus on X-ray images,but X-ray images are insensitive to the changes in knee ... Knee osteoarthritis(OA)is a common disease that impairs knee function and causes pain.Currently,studies on the detection of knee OA mainly focus on X-ray images,but X-ray images are insensitive to the changes in knee OA in the early stage.Since magnetic resonance(MR)imaging can observe the early features of knee OA,the knee OA detection algorithm based on MR image is innovatively proposed to judge whether knee OA is suffered.Firstly,the knee MR images are preprocessed before training,including a region of interest clipping,slice selection,and data augmentation.Then the data set was divided by patient-level and the knee OA was classified by the deep transfer learning method based on the DenseNet201 model.The method divides the training process into two stages.The first stage freezes all the base layers and only trains the weights of the embedding neural networks.The second stage unfreezes part of the base layers and trains the unfrozen base layers and the weights of the embedding neural network.In this step,we design a block-by-block fine-tuning strategy for training based on the dense blocks,which improves detection accuracy.We have conducted training experiments with different depth modules,and the experimental results show that gradually adding more dense blocks in the fine-tuning can make the model obtain better detection performance than only training the embedded neural network layer.We achieve an accuracy of 0.921,a sensitivity of 0.960,a precision of 0.885,a specificity of 0.891,an F1-Score of 0.912,and an MCC of 0.836.The comparative experimental results on the OAI-ZIB dataset show that the proposed method outperforms the other detection methods with the accuracy of 92.1%. 展开更多
关键词 Knee joint OSTEOARTHRITIS magnetic resonance images two-stage transfer learning densenet201
在线阅读 下载PDF
Detection of COVID-19 and Pneumonia Using Deep Convolutional Neural Network
8
作者 Md.Saiful Islam Shuvo Jyoti Das +2 位作者 Md.Riajul Alam Khan Sifat Momen Nabeel Mohammed 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期519-534,共16页
COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over th... COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over the world.The healthcare sector of the world is facing great challenges tackling COVID cases.One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases.In this article,we propose a deep Convo-lutional Neural Network(CNN)based approach to detect COVID+(i.e.,patients with COVID-19),pneumonia and normal cases,from the chest X-ray images.COVID-19 detection from chest X-ray is suitable considering all aspects in compar-ison to Reverse Transcription Polymerase Chain Reaction(RT-PCR)and Computed Tomography(CT)scan.Several deep CNN models including VGG16,InceptionV3,DenseNet121,DenseNet201 and InceptionResNetV2 have been adopted in this pro-posed work.They have been trained individually to make particular predictions.Empirical results demonstrate that DenseNet201 provides overall better performance with accuracy,recall,F1-score and precision of 94.75%,96%,95%and 95%respec-tively.After careful comparison with results available in the literature,we have found to develop models with a higher reliability.All the studies were carried out using a publicly available chest X-ray(CXR)image data-set. 展开更多
关键词 COVID-19 convolutional neural network deep learning densenet201 model performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部