期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
A risk-aware coordinated trading strategy for load aggregators with energy storage systems in the electricity spot market and demand response market
1
作者 Ziyang Xiang Chunyi Huang +2 位作者 Kangping Li Chengmin Wang Pierluigi Siano 《iEnergy》 2025年第1期31-42,共12页
The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.Wh... The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA. 展开更多
关键词 Load aggregators demand response energy storage incentive pricing bidding strategy trading risk.
在线阅读 下载PDF
Research on Flexible Load Aggregation and Coordinated Control Methods Considering Dynamic Demand Response
2
作者 Chun Xiao 《Energy Engineering》 2025年第7期2719-2750,共32页
In contemporary power systems,delving into the flexible regulation potential of demand-side resources is of paramount significance for the efficient operation of power grids.This research puts forward an innovative mu... In contemporary power systems,delving into the flexible regulation potential of demand-side resources is of paramount significance for the efficient operation of power grids.This research puts forward an innovative multivariate flexible load aggregation control approach that takes dynamic demand response into full consideration.In the initial stage,using generalized time-domain aggregation modelling for a wide array of heterogeneous flexible loads,including temperature-controlled loads,electric vehicles,and energy storage devices,a novel calculation method for their maximum adjustable capacities is devised.Distinct from conventional methods,this newly developed approach enables more precise and adaptable quantification of the load-adjusting capabilities,thereby enhancing the accuracy and flexibility of demand-side resource management.Subsequently,an SSA-BiLSTM flexible load classification prediction model is established.This model represents an innovative application in the field,effectively combining the advantages of the Sparrow Search Algorithm(SSA)and the Bidirectional Long-Short-Term Memory(BiLSTM)neural network.Furthermore,a parallel Markov chain is introduced to evaluate the switching state transfer probability of flexible loads accurately.This integration allows for a more refined determination of the maximum response capacity range of the flexible load aggregator,significantly improving the precision of capacity assessment compared to existing methods.Finally,in consonance with the intra-day scheduling plan,a newly developed diffuse filling algorithm is implemented to control the activation times of flexible loads precisely,thus achieving real-time dynamic demand response.Through in-depth case analysis and comprehensive comparative studies,the effectiveness of the proposed method is convincingly validated.With its innovative techniques and enhanced performance,it is demonstrated that this method has the potential to substantially enhance the utilization efficiency of demand-side resources in power systems,providing a novel and effective solution for optimizing power grid operation and demand-side management. 展开更多
关键词 demand response flood fill algorithm load aggregation markov chain SSA-BiLSTM
在线阅读 下载PDF
Multiagent,multitimescale aggregated regulation method for demand response considering spatial-temporal complementarity of user-side resources
3
作者 Tingzhe Pan Chao Li +3 位作者 Chen Yang Zijie Meng Zongyi Wang Zean Zhu 《Global Energy Interconnection》 2025年第2期240-257,共18页
The integration of substantial renewable energy and controllable resources disrupts the supply-demand balance in distribution grids.Secure operations are dependent on the participation of user-side resources in demand... The integration of substantial renewable energy and controllable resources disrupts the supply-demand balance in distribution grids.Secure operations are dependent on the participation of user-side resources in demand response at both the day-ahead and intraday levels.Current studies typically overlook the spatial--temporal variations and coordination between these timescales,leading to significant day-ahead optimization errors,high intraday costs,and slow convergence.To address these challenges,we developed a multiagent,multitimescale aggregated regulation method for spatial--temporal coordinated demand response of user-side resources.Firstly,we established a framework considering the spatial--temporal coordinated characteristics of user-side resources with the objective to min-imize the total regulation cost and weighted sum of distribution grid losses.The optimization problem was then solved for two different timescales:day-ahead and intraday.For the day-ahead timescale,we developed an improved particle swarm optimization(IPSO)algo-rithm that dynamically adjusts the number of particles based on intraday outcomes to optimize the regulation strategies.For the intraday timescale,we developed an improved alternating direction method of multipliers(IADMM)algorithm that distributes tasks across edge distribution stations,dynamically adjusting penalty factors by using historical day-ahead data to synchronize the regulations and enhance precision.The simulation results indicate that this method can fully achieve multitimescale spatial--temporal coordinated aggregated reg-ulation between day-ahead and intraday,effectively reduce the total regulation cost and distribution grid losses,and enhance smart grid resilience. 展开更多
关键词 demand response User-side resources Aggregated regulation Multitimescale Multiagent spatial--temporal coordination
在线阅读 下载PDF
Distributionally robust optimization-based scheduling for a hydrogen-coupled integrated energy system considering carbon trading and demand response
4
作者 Zhichun Yang Lin Cheng +2 位作者 Huaidong Min Yang Lei Yanfeng Yang 《Global Energy Interconnection》 2025年第2期175-187,共13页
Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainabili... Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty. 展开更多
关键词 Hydrogen-coupled integrated energy system(HIES) Low-carbon operation Distributionally robust optimization(DRO) Carbon trading demand response(DR) ECONOMY
在线阅读 下载PDF
Estimating the carbon emission reduction potential of using carbonoriented demand response for data centers:A case study in China
5
作者 Bojun Du Hongyang Jia +3 位作者 Yaowang Li Ershun Du Ning Zhang Dong Liang 《iEnergy》 2025年第1期54-64,共11页
The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial car... The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%. 展开更多
关键词 Data center temporal and spatial flexibility carbon-oriented demand response carbon reduction planning and operation simulation
在线阅读 下载PDF
Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction
6
作者 Huaihu Wang Wen Chen +5 位作者 Jin Yang Rui Su Jiale Li Liao Yuan Zhaobin Du Yujie Meng 《Energy Engineering》 2025年第9期3867-3890,共24页
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ... Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems. 展开更多
关键词 Carbon-aware demand response bi-level collaborative optimization dynamic carbon emission factor industrial flexible loads
在线阅读 下载PDF
Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios 被引量:1
7
作者 Zhishuo Zhang Xinhui Du +3 位作者 Yaoke Shang Jingshu Zhang Wei Zhao Jia Su 《Energy Engineering》 EI 2024年第6期1577-1605,共29页
To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and ... To address the issues of limited demand response data,low generalization of demand response potential evaluation,and poor demand response effect,the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis.Firstly,based on the demand response process and demand response behavior,obtain demand response characteristics that characterize the process and behavior.Secondly,establish a feature extraction and prediction model based on data mining,including similar day clustering,time series decomposition,redundancy processing,and data prediction.The predicted values of each demand response feature on the response day are obtained.Thirdly,the predicted data of various characteristics on the response day are used as demand response potential evaluation indicators to represent different demand response scenarios and adjustable loads,and a demand response potential evaluation model based on subjective and objective weight allocation is established to calculate the demand response potential of different adjustable loads in different demand response scenarios.Finally,the effectiveness of the method proposed in the article is verified through examples,providing a reference for load aggregators to formulate demand response schemes. 展开更多
关键词 demand response potential demand response scenarios data mining adjustable load evaluation system subjective and objective weight allocation
在线阅读 下载PDF
Optimal dispatching strategy for residential demand response considering load participation 被引量:3
8
作者 Xiaoyu Zhou Xiaofeng Liu +2 位作者 Huai Liu Zhenya Ji Feng Li 《Global Energy Interconnection》 EI CSCD 2024年第1期38-47,共10页
To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimizatio... To facilitate the coordinated and large-scale participation of residential flexible loads in demand response(DR),a load aggregator(LA)can integrate these loads for scheduling.In this study,a residential DR optimization scheduling strategy was formulated considering the participation of flexible loads in DR.First,based on the operational characteristics of flexible loads such as electric vehicles,air conditioners,and dishwashers,their DR participation,the base to calculate the compensation price to users,was determined by considering these loads as virtual energy storage.It was quantified based on the state of virtual energy storage during each time slot.Second,flexible loads were clustered using the K-means algorithm,considering the typical operational and behavioral characteristics as the cluster centroid.Finally,the LA scheduling strategy was implemented by introducing a DR mechanism based on the directrix load.The simulation results demonstrate that the proposed DR approach can effectively reduce peak loads and fill valleys,thereby improving the load management performance. 展开更多
关键词 Residential demand response Flexible loads Load participation Load aggregator
在线阅读 下载PDF
A Novel Defender-Attacker-Defender Model for Resilient Distributed Generator Planning with Network Reconfiguration and Demand Response
9
作者 Wenlu Ji Teng Tu Nan Ma 《Energy Engineering》 EI 2024年第5期1223-1243,共21页
To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a... To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost. 展开更多
关键词 Distribution system RESILIENCE defender-attacker-defender distributed generator demand response microgrids formation
在线阅读 下载PDF
Industry demand response in dispatch strategy for high-proportion renewable energy power system
10
作者 Xinxin Long Zhixian Ni +4 位作者 Yuanzheng Li Tao Yang Zhigang Zeng Mohammad Shahidehpour Tianyou Chai 《Journal of Automation and Intelligence》 2024年第4期191-201,共11页
On the power supply side,renewable energy(RE)is an important substitute to traditional energy,the effective utilization of which has become one of the major challenges in risk-constrained power system operations.This ... On the power supply side,renewable energy(RE)is an important substitute to traditional energy,the effective utilization of which has become one of the major challenges in risk-constrained power system operations.This paper proposes a risk-based power dispatching strategy considering the demand response(DR)and RE utilization in the stochastic optimal scheduling of parallel manufacturing process(PMP)in industrial manufacturing enterprises(IME).First,the specific production behavior model of PMP is formulated to characterize the flexibility of power demand.Then,a two-step strategic model is proposed to comprehensively quantify multiple factors in the optimal scheduling of DR in PMP loads considering risk-based power system dispatch,thermal generators,wind power integration.Case studies are based on the modified IEEE 24-bus power system,which verify the effectiveness of the proposed strategy in optimally coordinating IME assets with generation resources for promoting the RE utilization,as well as the impacts of power transmission risk on decision performance. 展开更多
关键词 Industrial demand response Multi-objective optimization Stochastic optimization approach Wind power utilization
在线阅读 下载PDF
Station-and-network–coordinated planning of integrated energy system considering integrated demand response 被引量:15
11
作者 Xiaojun Lu Jun Wang +2 位作者 Gang Liu Wei Du Dongmei Yang 《Global Energy Interconnection》 CAS CSCD 2021年第1期39-47,共9页
The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDR... The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDRs)of flexible loads,electric vehicles,and energy storage is proposed in this work.First,based on load substitution at the user side,an energy-station model considering the IDR is established.Then,based on the characteristics of the energy network,a collaborative planning model is established for the energy station and energy network of the IES,considering the comprehensive system investment,operation and maintenance,and clean energy shortage penalty costs,to minimize the total cost.This can help optimize the locations of the power lines and natural gas pipelines and the capacities of the equipment in an energy station.Finally,simulations are performed to demonstrate that the proposed planning method can help delay or reduce the construction of new lines and energy-station equipment,thereby reducing the investment required and improving the planning economics of the IES. 展开更多
关键词 Integrated energy system Station-and-network-coordinated planning Integrated demand response Optimization of location and capacity
在线阅读 下载PDF
A robust optimization model for demand response management with source-grid-load collaboration to consume wind-power 被引量:5
12
作者 Xiangfeng Zhou Chunyuan Cai +3 位作者 Yongjian Li Jiekang Wu Yaoguo Zhan Yehua Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期738-750,共13页
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme... To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method. 展开更多
关键词 Renewable power system Optimal dispatching Wind-power consumption Source-grid-load collaboration Load demand response Two-stage robust optimization model
在线阅读 下载PDF
Power system planning with high renewable energy penetration considering demand response 被引量:6
13
作者 Peng Wang Ershun Du +2 位作者 Ning Zhang Xinzhi Xu Yi Gao 《Global Energy Interconnection》 CAS CSCD 2021年第1期69-80,共12页
Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves lar... Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment. 展开更多
关键词 demand response High renewable penetration Operational flexibility Power system planning
在线阅读 下载PDF
Aggregator-based demand response mechanism for electric vehicles participating in peak regulation in valley time of receiving-end power grid 被引量:9
14
作者 Chen Fang Xiaojin Zhao +3 位作者 Qin Xu Donghan Feng Haojing Wang Yun Zhou 《Global Energy Interconnection》 2020年第5期453-463,共11页
With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this prob... With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies. 展开更多
关键词 Peak regulation in valley time demand response Electric vehicles AGGREGATORS Rolling unit commitment
在线阅读 下载PDF
Price-Based Residential Demand Response Management in Smart Grids:A Reinforcement Learning-Based Approach 被引量:3
15
作者 Yanni Wan Jiahu Qin +2 位作者 Xinghuo Yu Tao Yang Yu Kang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期123-134,共12页
This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involv... This paper studies price-based residential demand response management(PB-RDRM)in smart grids,in which non-dispatchable and dispatchable loads(including general loads and plug-in electric vehicles(PEVs))are both involved.The PB-RDRM is composed of a bi-level optimization problem,in which the upper-level dynamic retail pricing problem aims to maximize the profit of a utility company(UC)by selecting optimal retail prices(RPs),while the lower-level demand response(DR)problem expects to minimize the comprehensive cost of loads by coordinating their energy consumption behavior.The challenges here are mainly two-fold:1)the uncertainty of energy consumption and RPs;2)the flexible PEVs’temporally coupled constraints,which make it impossible to directly develop a model-based optimization algorithm to solve the PB-RDRM.To address these challenges,we first model the dynamic retail pricing problem as a Markovian decision process(MDP),and then employ a model-free reinforcement learning(RL)algorithm to learn the optimal dynamic RPs of UC according to the loads’responses.Our proposed RL-based DR algorithm is benchmarked against two model-based optimization approaches(i.e.,distributed dual decomposition-based(DDB)method and distributed primal-dual interior(PDI)-based method),which require exact load and electricity price models.The comparison results show that,compared with the benchmark solutions,our proposed algorithm can not only adaptively decide the RPs through on-line learning processes,but also achieve larger social welfare within an unknown electricity market environment. 展开更多
关键词 demand response management(DRM) Markovian decision process(MDP) Monte Carlo simulation reinforcement learning(RL) smart grid
在线阅读 下载PDF
Optimal operation of cold–heat–electricity multi-energy collaborative system based on price demand response 被引量:4
16
作者 Yuwei Cao Liying Wang +3 位作者 Shigong Jiang Weihong Yang Ming Zeng Xiaopeng Guo 《Global Energy Interconnection》 2020年第5期430-441,共12页
In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improv... In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems. 展开更多
关键词 Multi-energy collaborative system Energy hub demand response Market elasticity Optimized operation
在线阅读 下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:2
17
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
在线阅读 下载PDF
Bio-Inspired Optimal Dispatching of Wind Power Consumption Considering Multi-Time Scale Demand Response and High-Energy Load Participation 被引量:1
18
作者 Peng Zhao Yongxin Zhang +2 位作者 Qiaozhi Hua Haipeng Li Zheng Wen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期957-979,共23页
Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this ... Bio-inspired computer modelling brings solutions fromthe living phenomena or biological systems to engineering domains.To overcome the obstruction problem of large-scale wind power consumption in Northwest China,this paper constructs a bio-inspired computer model.It is an optimal wind power consumption dispatching model of multi-time scale demand response that takes into account the involved high-energy load.First,the principle of wind power obstruction with the involvement of a high-energy load is examined in this work.In this step,highenergy load model with different regulation characteristics is established.Then,considering the multi-time scale characteristics of high-energy load and other demand-side resources response speed,a multi-time scale model of coordination optimization is built.An improved bio-inspired model incorporating particle swarm optimization is applied to minimize system operation and wind curtailment costs,as well as to find the most optimal energy configurationwithin the system.Lastly,we take an example of regional power grid in Gansu Province for simulation analysis.Results demonstrate that the suggested scheduling strategy can significantly enhance the wind power consumption level and minimize the system’s operational cost. 展开更多
关键词 Biological system multi-time scale wind power consumption demand response bio-inspired computermodelling particle swarm optimization
在线阅读 下载PDF
Transactive Demand Response Operation at the Grid Edge using the IEEE 2030.5 Standard 被引量:1
19
作者 Javad Fattahi Mikhak Samadi +1 位作者 Melike Erol-Kantarci Henry Schriemer 《Engineering》 SCIE EI 2020年第7期801-811,共11页
This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laborator... This paper presents a transactive demand response(TDR)scheme for a network of residential customers with generation assets that emphasizes interoperability within a transactive energy architecture.A complete laboratory-based implementation provides the first(to our knowledge)realization of a comprehensive TDR use case that is fully compliant with the Institute of Electrical and Electronics Engineers(IEEE)2030.5 standard,which addresses interoperability within a cybersecure smart energy profile(SEP)context.Verification is provided by a full system integration with commercial hardware using Internet Protocol(IP)-based(local area network(LAN)and Wi-Fi)communication protocols and transport layer security(TLS)1.2 cryptographic protocol,and validation is provided by emulation using extensive residential smart meter data.The demand response(DR)scheme is designed to accommodate privacy concerns,allows customers to select their DR compliance level,and provides incentives to maximize their participation.The proposed TDR scheme addresses privacy through the implementation of the SEP 2.0 messaging protocol between a transactive agent(TA)and home energy management system(HEMS)agents.Customer response is handled by a multi-input multi-output(MIMO)fuzzy controller that manages negotiation between the customer agent and the TA.We take a multi-agent system approach to neighborhood coordination,with the TA servicing multiple residences on a common transformer,and use a reward mechanism to maximize customer engagement during the event-based optimization.Based on a set of smart meter data acquired over an extended time period,we engage in multiple TDR scenarios,and demonstrate with a fully-functional IEEE 2030.5-compliant implementation that our scheme can reduce network peak power consumption by 22%under realistic conditions. 展开更多
关键词 Transactive demand response IEEE 2030.5 Smart grid Multi-agent system Neighborhood coordination
在线阅读 下载PDF
Research on Multi-Objective Optimization Model of Industrial Microgrid Considering Demand Response Technology and User Satisfaction 被引量:1
20
作者 Junhui Li Jinxin Zhong +3 位作者 Kailiang Wang Yu Luo Qian Han Jieren Tan 《Energy Engineering》 EI 2023年第4期869-884,共16页
In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering dema... In the process of wind power,coal power,and energy storage equipment participating in the operation of industrial microgrids,the stable operation of wind-storage industrial microgrids is guaranteed by considering demand response technology and user satisfaction.This paper firstly sorts out the status quo of microgrid operation optimization,and determines themain requirements for user satisfaction considering three types of load characteristics,demand response technology,power consumption benefit loss,user balance power purchase price and wind power consumption evaluation indicators in the system.Secondly,the operation architecture of the windstorage industrialmicrogrid is designed,and themulti-objective optimizationmodel of the wind-storage industrial microgrid is established with the comprehensive operating cost and user satisfaction as the target variables,and the corresponding solution method is mentioned.Finally,a typical wind-storage industrial microgrid is selected for simulation analysis,and the results showthat,(1)Considering the demand response technology,the comprehensive operating cost of the wind-storage industrial microgrid per day is 5292.63 yuan,the user satisfaction index is 0.953,and the wind power consumption rate reaches 100%.(2)By setting four scenarios,it highlights that the grid-connected operation mode is superior to the off-grid operation mode.Considering the demand response technology,the load curve can be optimized,and the time-of-use electricity price can be fully used to coordinate the operation of each unit,which enhances the wind power consumption capacity.The compromise solution of the system comprehensive operating cost and user satisfaction under the confidence level of 0.95 is obtained,namely(5343.22,0.94).(3)The frontier curve shows that in the process of model solving,it is impossible to optimize any sub-objective by changing the control variables,which proves that there is a close relationship between the comprehensive operating cost of the system and the confidence level,which can provide effective guidance for the optimal operation of industrial microgrids. 展开更多
关键词 Wind storage industrial microgrid demand response user satisfaction
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部