Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the...Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.展开更多
This review takes stock of China’s Double Reduction.In the short run,it lowered visible burden and pushed demand from subject tutoring toward on-campus and non-subject services.But with high-stakes selection unchange...This review takes stock of China’s Double Reduction.In the short run,it lowered visible burden and pushed demand from subject tutoring toward on-campus and non-subject services.But with high-stakes selection unchanged,demand reappears as small-group/one-to-one provision,advantaging families with high socioeconomic status and strong schools.Lasting relief will require tighter oversight and admissions reform with targeted,well-funded in-school support.展开更多
The proposal of carbon neutrality target makes decarbonization and hydrogenation typical features of future energy development in China.With a wide range of application scenarios,hydrogen energy will experience rapid ...The proposal of carbon neutrality target makes decarbonization and hydrogenation typical features of future energy development in China.With a wide range of application scenarios,hydrogen energy will experience rapid growth in production and consumption.To formulate an effective hydrogen energy development strategy for the future of China,this study employs the departmental scenario analysis method to calculate and evaluate the future consumption of hydrogen energy in China’s heavy industry,transportation,electricity,and other related fields.Multidimensional technical parameters are selected and predicted accurately and reliably in combination with different development scenarios.The findings indicate that the period from 2030 to 2050 will enjoy rapid development of hydrogen energy,having an average annual growth rate of 2%to 4%.The technological progress and breakthroughs scenario has the greatest potential for hydrogen demand scale among the four development scenarios.Under this scenario,the total demand for hydrogen energy is expected to reach 446.37Mt in 2060.Thetransportation sector will be the sector with the greatest potential for hydrogen deployment growth from 2023 to 2060,which is expected to rise from 0.038Mt to about 163.18Mt,with the ambitious growth in the future.Additionally,hydrogen energy has a considerable development potential in the steel sector,and the trend of de-refueling coke by hydrogenation in this sector will be imperative for this energy-intensive industries.展开更多
In contemporary power systems,delving into the flexible regulation potential of demand-side resources is of paramount significance for the efficient operation of power grids.This research puts forward an innovative mu...In contemporary power systems,delving into the flexible regulation potential of demand-side resources is of paramount significance for the efficient operation of power grids.This research puts forward an innovative multivariate flexible load aggregation control approach that takes dynamic demand response into full consideration.In the initial stage,using generalized time-domain aggregation modelling for a wide array of heterogeneous flexible loads,including temperature-controlled loads,electric vehicles,and energy storage devices,a novel calculation method for their maximum adjustable capacities is devised.Distinct from conventional methods,this newly developed approach enables more precise and adaptable quantification of the load-adjusting capabilities,thereby enhancing the accuracy and flexibility of demand-side resource management.Subsequently,an SSA-BiLSTM flexible load classification prediction model is established.This model represents an innovative application in the field,effectively combining the advantages of the Sparrow Search Algorithm(SSA)and the Bidirectional Long-Short-Term Memory(BiLSTM)neural network.Furthermore,a parallel Markov chain is introduced to evaluate the switching state transfer probability of flexible loads accurately.This integration allows for a more refined determination of the maximum response capacity range of the flexible load aggregator,significantly improving the precision of capacity assessment compared to existing methods.Finally,in consonance with the intra-day scheduling plan,a newly developed diffuse filling algorithm is implemented to control the activation times of flexible loads precisely,thus achieving real-time dynamic demand response.Through in-depth case analysis and comprehensive comparative studies,the effectiveness of the proposed method is convincingly validated.With its innovative techniques and enhanced performance,it is demonstrated that this method has the potential to substantially enhance the utilization efficiency of demand-side resources in power systems,providing a novel and effective solution for optimizing power grid operation and demand-side management.展开更多
The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.Wh...The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA.展开更多
The integration of substantial renewable energy and controllable resources disrupts the supply-demand balance in distribution grids.Secure operations are dependent on the participation of user-side resources in demand...The integration of substantial renewable energy and controllable resources disrupts the supply-demand balance in distribution grids.Secure operations are dependent on the participation of user-side resources in demand response at both the day-ahead and intraday levels.Current studies typically overlook the spatial--temporal variations and coordination between these timescales,leading to significant day-ahead optimization errors,high intraday costs,and slow convergence.To address these challenges,we developed a multiagent,multitimescale aggregated regulation method for spatial--temporal coordinated demand response of user-side resources.Firstly,we established a framework considering the spatial--temporal coordinated characteristics of user-side resources with the objective to min-imize the total regulation cost and weighted sum of distribution grid losses.The optimization problem was then solved for two different timescales:day-ahead and intraday.For the day-ahead timescale,we developed an improved particle swarm optimization(IPSO)algo-rithm that dynamically adjusts the number of particles based on intraday outcomes to optimize the regulation strategies.For the intraday timescale,we developed an improved alternating direction method of multipliers(IADMM)algorithm that distributes tasks across edge distribution stations,dynamically adjusting penalty factors by using historical day-ahead data to synchronize the regulations and enhance precision.The simulation results indicate that this method can fully achieve multitimescale spatial--temporal coordinated aggregated reg-ulation between day-ahead and intraday,effectively reduce the total regulation cost and distribution grid losses,and enhance smart grid resilience.展开更多
This paper aims to explore the cognition and demand of nature education.Through the analysis of its connotation,significance,current situation and challenges,corresponding countermeasures and suggestions are put forwa...This paper aims to explore the cognition and demand of nature education.Through the analysis of its connotation,significance,current situation and challenges,corresponding countermeasures and suggestions are put forward.Nature education is a kind of education mode based on the natural environment,which enables learners to integrate with nature through scientific and effective means.This kind of education method has a far-reaching impact on shaping the overall quality of teenagers and cultivating the correct world outlook and values.By means of literature review,case analysis and other means,combined with the development practice of nature education at home and abroad,this study deeply analyzes the cognitive status and demand characteristics of nature education,which provides guidance and basis for the dissemination and development of nature education.展开更多
Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimens...Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimensionality reduction,temporal modeling,and robust prediction,especially for multi-day forecasting.A novel hybrid model,SLHS-TCN-XGBoost,is proposed for power demand forecasting,leveraging SLHS(dimensionality reduction),TCN(temporal feature learning),and XGBoost(ensemble prediction).Applied to the three-year electricity load dataset of Seoul,South Korea,the model’s MAE,RMSE,and MAPE reached 112.08,148.39,and 2%,respectively,which are significantly reduced in MAE,RMSE,and MAPE by 87.37%,87.35%,and 87.43%relative to the baseline XGBoost model.Performance validation across nine forecast days demonstrates superior accuracy,with MAPE as low as 0.35%and 0.21%on key dates.Statistical Significance tests confirm significant improvements(p<0.05),with the highest MAPE reduction of 98.17%on critical days.Seasonal and temporal error analyses reveal stable performance,particularly in Quarter 3 and Quarter 4(0.5%,0.3%)and nighttime hours(<1%).Robustness tests,including 5-fold cross-validation and Various noise perturbations,confirm the model’s stability and resilience.The SLHS-TCN-XGBoost model offers an efficient and reliable solution for power demand forecasting,with future optimization potential in data preprocessing,algorithm integration,and interpretability.展开更多
Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the ...Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village ofDoleibHill,UpperNile,South Sudan.Using a demand assessment and theMulti-Tier Framework(MTF)approach,it categorizes households,public facilities,private sector,Non-GovernmentalOrganizations(NGOs)and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic(PV),wind turbines,batteries,and a generator.The proposed system,simulated in Hybrid Optimization Model Electric Renewable(HOMER)Pro,demonstrates strong economic viability,with a present worth of$292,145,an annual worth of$22,854,a return on investment(ROI)of 36.5%,and an internal rate of return(IRR)of 42.1%.The simple payback period is 2.31 years,and the discounted payback period is 2.62 years.The system achieves a levelized cost of energy(LCOE)of$0.276/kWh and significantly reduces dependence on diesel,producing 798,800 kWh annually fromwind energy.This research provides a replicable model for cost-effective,sustainable rural electrification,offering valuable insights for policymakers and energy planners seeking to expand electricity access in off-grid communities.展开更多
Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity...Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.展开更多
Accurate prediction of nurse demand plays a crucial role in efficiently planning the healthcare workforce,ensuring appropriate staffing levels,and providing high-quality care to patients.The intricacy and variety of c...Accurate prediction of nurse demand plays a crucial role in efficiently planning the healthcare workforce,ensuring appropriate staffing levels,and providing high-quality care to patients.The intricacy and variety of contemporary healthcare systems and a growing patient populace call for advanced forecasting models.Factors like technological advancements,novel treatment protocols,and the increasing prevalence of chronic illnesses have diminished the efficacy of traditional estimation approaches.Novel forecasting methodologies,including time-series analysis,machine learning,and simulation-based techniques,have been developed to tackle these challenges.Time-series analysis recognizes patterns from past data,whereas machine learning uses extensive datasets to uncover concealed trends.Simulation models are employed to assess diverse scenarios,assisting in proactive adjustments to staffing.These techniques offer distinct advantages,such as the identification of seasonal patterns,the management of large datasets,and the ability to test various assumptions.By integrating these sophisticated models into workforce planning,organizations can optimize staffing,reduce financial waste,and elevate the standard of patient care.As the healthcare field progresses,the utilization of these predictive models will be pivotal for fostering adaptable and resilient workforce management.展开更多
Based on the complexity and regional differences of the political,economic,and cultural environments of countries along the“Belt and Road,”this paper analyzes the new characteristics of the current demand for busine...Based on the complexity and regional differences of the political,economic,and cultural environments of countries along the“Belt and Road,”this paper analyzes the new characteristics of the current demand for business English talents.Combining this with the existing problems in China’s current training models,it proposes a reform path for talent training models that are adapted to the construction of the“Belt and Road”Initiative.The aim is to provide theoretical references and practical guidance for enhancing the international competitiveness of business English talents.展开更多
Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptab...Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptability of the QFD method and supplier selection process in a mass customization environment and puts forward a supplier selection framework based on the QFD idea.Furthermore,both the objective environment of demand factor analysis and the thinking of the customer representatives participating in the analysis have great uncertainty and fuzziness.Therefore,a demand factor analysis method for supplier selection in the mass customization environment based on language phrases of different granularity is proposed.The proposed method allows the customer representatives participating in the selection to use their preferred language phrase set to represent the importance of demand factors.Finally,the effectiveness and feasibility of the proposed method are verified by an example of a vehicle manufacturer.展开更多
This study focuses on the elderly population in Xueyuan Road Street of Haidian District in Beijing.Through KANO questionnaires and the theory of attractive quality,it investigates the demand levels and degrees for dif...This study focuses on the elderly population in Xueyuan Road Street of Haidian District in Beijing.Through KANO questionnaires and the theory of attractive quality,it investigates the demand levels and degrees for different community elderly care services.It introduces the Anderson behavioral model to analyze the influencing factors,categorizes different demographics,and examines the needs of elderly individuals with varying characteristics,proposing suggestions for the improvement of future community elderly care service facilities.展开更多
Based on the demand for complex English talents for the high-quality construction of“Belt and Road,”the study proposes a curriculum restructuring program oriented on“serving professional teaching,career development...Based on the demand for complex English talents for the high-quality construction of“Belt and Road,”the study proposes a curriculum restructuring program oriented on“serving professional teaching,career development,and quality development”in response to the real problems of the current university English curriculum,such as focusing on language but not on application,insufficient vocational relevance,and low degree of integration with the professional field.We propose a curriculum reconstruction plan oriented to“serve professional teaching,career development,and quality development.”We have constructed a three-in-one curriculum goal of“laying a foundation for professionalism,infiltrating humanity,and empowering development,”systematically designed a curriculum content system of“language foundation,industry knowledge,and quality development,”and established an AI-enabled multi-intelligence evaluation system.This will promote the transformation of university English from single-language teaching to a service-oriented curriculum that supports professional development,and cultivate internationalized talents with both workplace language application skills and cross-cultural communication literacy.The study highlights the“vocational”characteristics and“service”functions of college English,and provides an actionable,practical path for the reform of college English curriculum in vocational undergraduate colleges.展开更多
With the advent of the digital economy,there has been a rapid proliferation of small-scale Internet data centers(SIDCs).By leveraging their spatiotemporal load regulation potential through data workload balancing,aggr...With the advent of the digital economy,there has been a rapid proliferation of small-scale Internet data centers(SIDCs).By leveraging their spatiotemporal load regulation potential through data workload balancing,aggregated SIDCs have emerged as promising demand response(DR)resources for future power distribution systems.This paper presents an innovative framework for assessing capacity value(CV)by aggregating SIDCs participating in DR programs(SIDC-DR).Initially,we delineate the concept of CV tailored for aggregated SIDC scenarios and establish a metric for the assessment.Considering the effects of the data load dynamics,equipment constraints,and user behavior,we developed a sophisticated DR model for aggregated SIDCs using a data network aggregation method.Unlike existing studies,the proposed model captures the uncertainties associated with end tenant decisions to opt into an SIDC-DR program by utilizing a novel uncertainty modeling approach called Z-number formulation.This approach accounts for both the uncertainty in user participation intentions and the reliability of basic information during the DR process,enabling high-resolution profiling of the SIDC-DR potential in the CV evaluation.Simulation results from numerical studies conducted on a modified IEEE-33 node distribution system confirmed the effectiveness of the proposed approach and highlighted the potential benefits of SIDC-DR utilization in the efficient operation of future power systems.展开更多
In the context of the energy and climate crises,it is crucial for organizations to utilize advanced methods to reduce energy consumption and energy costs.This study explores the application of deep learning models for...In the context of the energy and climate crises,it is crucial for organizations to utilize advanced methods to reduce energy consumption and energy costs.This study explores the application of deep learning models for predicting energy demands in retail stores,which can enhance market efficiency and contribute to grid stability.We analyze a detailed electricity consumption dataset from a hypermarket in Hungary,focusing on 48-hour forecasts at 15-minute intervals.Our methodology includes the implementation of classical models such as ARIMA and linear regression,as well as state-of-the-art deep learning models like TiDE and foundational models such as Lag-Llama in a“zero shot prediction”as well as a“finetuning”scenario.展开更多
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ...Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.展开更多
The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial car...The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%.展开更多
From AR-enhanced picture books to eco-friendly smart toys,the items now filling children’s shopping carts are more than just products-they epitomize the transformation of consumption in the new era.
基金supported by the Spanish Ministry of Science and Innovation under Projects PID2022-137680OB-C32 and PID2022-139187OB-I00.
文摘Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.
文摘This review takes stock of China’s Double Reduction.In the short run,it lowered visible burden and pushed demand from subject tutoring toward on-campus and non-subject services.But with high-stakes selection unchanged,demand reappears as small-group/one-to-one provision,advantaging families with high socioeconomic status and strong schools.Lasting relief will require tighter oversight and admissions reform with targeted,well-funded in-school support.
基金supported by the National Natural Science Foundation of China(No.71704178)Beijing Municipal Excellent Talents Foundation(No.2017000020124G133)Major consulting project of the Chinese Academy of Engineering(Nos.2023-JB-08,2022-PP-03).
文摘The proposal of carbon neutrality target makes decarbonization and hydrogenation typical features of future energy development in China.With a wide range of application scenarios,hydrogen energy will experience rapid growth in production and consumption.To formulate an effective hydrogen energy development strategy for the future of China,this study employs the departmental scenario analysis method to calculate and evaluate the future consumption of hydrogen energy in China’s heavy industry,transportation,electricity,and other related fields.Multidimensional technical parameters are selected and predicted accurately and reliably in combination with different development scenarios.The findings indicate that the period from 2030 to 2050 will enjoy rapid development of hydrogen energy,having an average annual growth rate of 2%to 4%.The technological progress and breakthroughs scenario has the greatest potential for hydrogen demand scale among the four development scenarios.Under this scenario,the total demand for hydrogen energy is expected to reach 446.37Mt in 2060.Thetransportation sector will be the sector with the greatest potential for hydrogen deployment growth from 2023 to 2060,which is expected to rise from 0.038Mt to about 163.18Mt,with the ambitious growth in the future.Additionally,hydrogen energy has a considerable development potential in the steel sector,and the trend of de-refueling coke by hydrogenation in this sector will be imperative for this energy-intensive industries.
基金the Science and Technology Project of State Grid Shanxi Electric Power Co.,Ltd.,with the project number 52051L240001.
文摘In contemporary power systems,delving into the flexible regulation potential of demand-side resources is of paramount significance for the efficient operation of power grids.This research puts forward an innovative multivariate flexible load aggregation control approach that takes dynamic demand response into full consideration.In the initial stage,using generalized time-domain aggregation modelling for a wide array of heterogeneous flexible loads,including temperature-controlled loads,electric vehicles,and energy storage devices,a novel calculation method for their maximum adjustable capacities is devised.Distinct from conventional methods,this newly developed approach enables more precise and adaptable quantification of the load-adjusting capabilities,thereby enhancing the accuracy and flexibility of demand-side resource management.Subsequently,an SSA-BiLSTM flexible load classification prediction model is established.This model represents an innovative application in the field,effectively combining the advantages of the Sparrow Search Algorithm(SSA)and the Bidirectional Long-Short-Term Memory(BiLSTM)neural network.Furthermore,a parallel Markov chain is introduced to evaluate the switching state transfer probability of flexible loads accurately.This integration allows for a more refined determination of the maximum response capacity range of the flexible load aggregator,significantly improving the precision of capacity assessment compared to existing methods.Finally,in consonance with the intra-day scheduling plan,a newly developed diffuse filling algorithm is implemented to control the activation times of flexible loads precisely,thus achieving real-time dynamic demand response.Through in-depth case analysis and comprehensive comparative studies,the effectiveness of the proposed method is convincingly validated.With its innovative techniques and enhanced performance,it is demonstrated that this method has the potential to substantially enhance the utilization efficiency of demand-side resources in power systems,providing a novel and effective solution for optimizing power grid operation and demand-side management.
基金supported by National Natural Science Foundation of China(52407126).
文摘The demand response(DR)market,as a vital complement to the electricity spot market,plays a key role in evoking user-side regulation capability to mitigate system-level supply‒demand imbalances during extreme events.While the DR market offers the load aggregator(LA)additional profitable opportunities beyond the electricity spot market,it also introduces new trading risks due to the significant uncertainty in users’behaviors.Dispatching energy storage systems(ESSs)is an effective means to enhance the risk management capabilities of LAs;however,coordinating ESS operations with dual-market trading strategies remains an urgent challenge.To this end,this paper proposes a novel systematic risk-aware coordinated trading model for the LA in concurrently participating in the day-ahead electricity spot market and DR market,which incorporates the capacity allocation mechanism of ESS based on market clearing rules to jointly formulate bidding and pricing decisions for the dual market.First,the intrinsic coupling characteristics of the LA participating in the dual market are analyzed,and a joint optimization framework for formulating bidding and pricing strategies that integrates ESS facilities is proposed.Second,an uncertain user response model is developed based on price‒response mechanisms,and actual market settlement rules accounting for under-and over-responses are employed to calculate trading revenues,where possible revenue losses are quantified via conditional value at risk.Third,by imposing these terms and the capacity allocation mechanism of ESS,the risk-aware stochastic coordinated trading model of the LA is built,where the bidding and pricing strategies in the dual model that trade off risk and profit are derived.The simulation results of a case study validate the effectiveness of the proposed trading strategy in controlling trading risk and improving the trading income of the LA.
基金supported by Science and Technology Program of China Southern Power Grid Corporation under grant number 036000KK52222004(GDKJXM20222117)National Key R&D Program of China for International S&T Cooperation Projects(2019YFE0118700).
文摘The integration of substantial renewable energy and controllable resources disrupts the supply-demand balance in distribution grids.Secure operations are dependent on the participation of user-side resources in demand response at both the day-ahead and intraday levels.Current studies typically overlook the spatial--temporal variations and coordination between these timescales,leading to significant day-ahead optimization errors,high intraday costs,and slow convergence.To address these challenges,we developed a multiagent,multitimescale aggregated regulation method for spatial--temporal coordinated demand response of user-side resources.Firstly,we established a framework considering the spatial--temporal coordinated characteristics of user-side resources with the objective to min-imize the total regulation cost and weighted sum of distribution grid losses.The optimization problem was then solved for two different timescales:day-ahead and intraday.For the day-ahead timescale,we developed an improved particle swarm optimization(IPSO)algo-rithm that dynamically adjusts the number of particles based on intraday outcomes to optimize the regulation strategies.For the intraday timescale,we developed an improved alternating direction method of multipliers(IADMM)algorithm that distributes tasks across edge distribution stations,dynamically adjusting penalty factors by using historical day-ahead data to synchronize the regulations and enhance precision.The simulation results indicate that this method can fully achieve multitimescale spatial--temporal coordinated aggregated reg-ulation between day-ahead and intraday,effectively reduce the total regulation cost and distribution grid losses,and enhance smart grid resilience.
基金Research Project of Basic Education in Jiangxi Province(SZUNDZH2021-1136,SZUNDZH2020-1138).
文摘This paper aims to explore the cognition and demand of nature education.Through the analysis of its connotation,significance,current situation and challenges,corresponding countermeasures and suggestions are put forward.Nature education is a kind of education mode based on the natural environment,which enables learners to integrate with nature through scientific and effective means.This kind of education method has a far-reaching impact on shaping the overall quality of teenagers and cultivating the correct world outlook and values.By means of literature review,case analysis and other means,combined with the development practice of nature education at home and abroad,this study deeply analyzes the cognitive status and demand characteristics of nature education,which provides guidance and basis for the dissemination and development of nature education.
基金supported by Mahasarakham University for Piyapatr Busababodhin’s work.Guoqing Chen’s research was supported by Chengdu Jincheng College Green Data Integration Intelligence Research and Innovation Project(No.2025-2027)the High-Quality Development Research Center Project in the Tuojiang River Basin(No.TJGZL2024-07)+1 种基金the Open Fund ofWuhan Gravitation and Solid Earth Tides,National Observation and Research Station(No.WHYWZ202406)the Scientific Research Fund of the Institute of Seismology,CEA,and the National Institute of Natural Hazards,MEM(No.IS202236328).
文摘Existing power forecasting models struggle to simultaneously handle high-dimensional,noisy load data while capturing long-term dependencies.This critical limitation necessitates an integrated approach combining dimensionality reduction,temporal modeling,and robust prediction,especially for multi-day forecasting.A novel hybrid model,SLHS-TCN-XGBoost,is proposed for power demand forecasting,leveraging SLHS(dimensionality reduction),TCN(temporal feature learning),and XGBoost(ensemble prediction).Applied to the three-year electricity load dataset of Seoul,South Korea,the model’s MAE,RMSE,and MAPE reached 112.08,148.39,and 2%,respectively,which are significantly reduced in MAE,RMSE,and MAPE by 87.37%,87.35%,and 87.43%relative to the baseline XGBoost model.Performance validation across nine forecast days demonstrates superior accuracy,with MAPE as low as 0.35%and 0.21%on key dates.Statistical Significance tests confirm significant improvements(p<0.05),with the highest MAPE reduction of 98.17%on critical days.Seasonal and temporal error analyses reveal stable performance,particularly in Quarter 3 and Quarter 4(0.5%,0.3%)and nighttime hours(<1%).Robustness tests,including 5-fold cross-validation and Various noise perturbations,confirm the model’s stability and resilience.The SLHS-TCN-XGBoost model offers an efficient and reliable solution for power demand forecasting,with future optimization potential in data preprocessing,algorithm integration,and interpretability.
文摘Energy access remains a critical challenge in rural South Sudan,with communities heavily relying on expensive and unfriendly environmental energy sources such as diesel generators and biomass.This study addresses the predicament by evaluating the feasibility of renewable energy-based decentralized electrification in the selected village ofDoleibHill,UpperNile,South Sudan.Using a demand assessment and theMulti-Tier Framework(MTF)approach,it categorizes households,public facilities,private sector,Non-GovernmentalOrganizations(NGOs)and business energy needs and designs an optimized hybrid energy system incorporating solar Photovoltaic(PV),wind turbines,batteries,and a generator.The proposed system,simulated in Hybrid Optimization Model Electric Renewable(HOMER)Pro,demonstrates strong economic viability,with a present worth of$292,145,an annual worth of$22,854,a return on investment(ROI)of 36.5%,and an internal rate of return(IRR)of 42.1%.The simple payback period is 2.31 years,and the discounted payback period is 2.62 years.The system achieves a levelized cost of energy(LCOE)of$0.276/kWh and significantly reduces dependence on diesel,producing 798,800 kWh annually fromwind energy.This research provides a replicable model for cost-effective,sustainable rural electrification,offering valuable insights for policymakers and energy planners seeking to expand electricity access in off-grid communities.
文摘Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.
文摘Accurate prediction of nurse demand plays a crucial role in efficiently planning the healthcare workforce,ensuring appropriate staffing levels,and providing high-quality care to patients.The intricacy and variety of contemporary healthcare systems and a growing patient populace call for advanced forecasting models.Factors like technological advancements,novel treatment protocols,and the increasing prevalence of chronic illnesses have diminished the efficacy of traditional estimation approaches.Novel forecasting methodologies,including time-series analysis,machine learning,and simulation-based techniques,have been developed to tackle these challenges.Time-series analysis recognizes patterns from past data,whereas machine learning uses extensive datasets to uncover concealed trends.Simulation models are employed to assess diverse scenarios,assisting in proactive adjustments to staffing.These techniques offer distinct advantages,such as the identification of seasonal patterns,the management of large datasets,and the ability to test various assumptions.By integrating these sophisticated models into workforce planning,organizations can optimize staffing,reduce financial waste,and elevate the standard of patient care.As the healthcare field progresses,the utilization of these predictive models will be pivotal for fostering adaptable and resilient workforce management.
文摘Based on the complexity and regional differences of the political,economic,and cultural environments of countries along the“Belt and Road,”this paper analyzes the new characteristics of the current demand for business English talents.Combining this with the existing problems in China’s current training models,it proposes a reform path for talent training models that are adapted to the construction of the“Belt and Road”Initiative.The aim is to provide theoretical references and practical guidance for enhancing the international competitiveness of business English talents.
文摘Supplier selection in a mass customization environment is a systematic engineering,and Quality Function Deployment(QFD)based on customer demand is a systematic product development method.This paper studies the adaptability of the QFD method and supplier selection process in a mass customization environment and puts forward a supplier selection framework based on the QFD idea.Furthermore,both the objective environment of demand factor analysis and the thinking of the customer representatives participating in the analysis have great uncertainty and fuzziness.Therefore,a demand factor analysis method for supplier selection in the mass customization environment based on language phrases of different granularity is proposed.The proposed method allows the customer representatives participating in the selection to use their preferred language phrase set to represent the importance of demand factors.Finally,the effectiveness and feasibility of the proposed method are verified by an example of a vehicle manufacturer.
文摘This study focuses on the elderly population in Xueyuan Road Street of Haidian District in Beijing.Through KANO questionnaires and the theory of attractive quality,it investigates the demand levels and degrees for different community elderly care services.It introduces the Anderson behavioral model to analyze the influencing factors,categorizes different demographics,and examines the needs of elderly individuals with varying characteristics,proposing suggestions for the improvement of future community elderly care service facilities.
基金Special Project of Foreign Language Education Reform in Vocational Colleges and Universities in 2023 by the Foreign Language Education Working Committee of China Society for Vocational and Technical Education(WYW2023A05)Teaching Reform Project of Shandong Vocational and Technical University of International Studies(JG202314).
文摘Based on the demand for complex English talents for the high-quality construction of“Belt and Road,”the study proposes a curriculum restructuring program oriented on“serving professional teaching,career development,and quality development”in response to the real problems of the current university English curriculum,such as focusing on language but not on application,insufficient vocational relevance,and low degree of integration with the professional field.We propose a curriculum reconstruction plan oriented to“serve professional teaching,career development,and quality development.”We have constructed a three-in-one curriculum goal of“laying a foundation for professionalism,infiltrating humanity,and empowering development,”systematically designed a curriculum content system of“language foundation,industry knowledge,and quality development,”and established an AI-enabled multi-intelligence evaluation system.This will promote the transformation of university English from single-language teaching to a service-oriented curriculum that supports professional development,and cultivate internationalized talents with both workplace language application skills and cross-cultural communication literacy.The study highlights the“vocational”characteristics and“service”functions of college English,and provides an actionable,practical path for the reform of college English curriculum in vocational undergraduate colleges.
基金supported in part by the National Natural Science Foundation of China under Grant 52177082in part by the Beijing Nova Program under Grant 20220484007.
文摘With the advent of the digital economy,there has been a rapid proliferation of small-scale Internet data centers(SIDCs).By leveraging their spatiotemporal load regulation potential through data workload balancing,aggregated SIDCs have emerged as promising demand response(DR)resources for future power distribution systems.This paper presents an innovative framework for assessing capacity value(CV)by aggregating SIDCs participating in DR programs(SIDC-DR).Initially,we delineate the concept of CV tailored for aggregated SIDC scenarios and establish a metric for the assessment.Considering the effects of the data load dynamics,equipment constraints,and user behavior,we developed a sophisticated DR model for aggregated SIDCs using a data network aggregation method.Unlike existing studies,the proposed model captures the uncertainties associated with end tenant decisions to opt into an SIDC-DR program by utilizing a novel uncertainty modeling approach called Z-number formulation.This approach accounts for both the uncertainty in user participation intentions and the reliability of basic information during the DR process,enabling high-resolution profiling of the SIDC-DR potential in the CV evaluation.Simulation results from numerical studies conducted on a modified IEEE-33 node distribution system confirmed the effectiveness of the proposed approach and highlighted the potential benefits of SIDC-DR utilization in the efficient operation of future power systems.
文摘In the context of the energy and climate crises,it is crucial for organizations to utilize advanced methods to reduce energy consumption and energy costs.This study explores the application of deep learning models for predicting energy demands in retail stores,which can enhance market efficiency and contribute to grid stability.We analyze a detailed electricity consumption dataset from a hypermarket in Hungary,focusing on 48-hour forecasts at 15-minute intervals.Our methodology includes the implementation of classical models such as ARIMA and linear regression,as well as state-of-the-art deep learning models like TiDE and foundational models such as Lag-Llama in a“zero shot prediction”as well as a“finetuning”scenario.
基金supported by the Science and Technology Project of Yunnan Power Grid Co.,Ltd.under Grant No.YNKJXM20222410.
文摘Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.
基金supported by the Scientific&Technical Project of the State Grid(5700--202490228A--1--1-ZN).
文摘The rapid advancement of artificial intelligence(AI)has significantly increased the computational load on data centers.AI-related computational activities consume considerable electricity and result in substantial carbon emissions.To mitigate these emissions,future data centers should be strategically planned and operated to fully utilize renewable energy resources while meeting growing computational demands.This paper aims to investigate how much carbon emission reduction can be achieved by using a carbonoriented demand response to guide the optimal planning and operation of data centers.A carbon-oriented data center planning model is proposed that considers the carbon-oriented demand response of the AI load.In the planning model,future operation simulations comprehensively coordinate the temporal‒spatial flexibility of computational loads and the quality of service(QoS).An empirical study based on the proposed models is conducted on real-world data from China.The results from the empirical analysis show that newly constructed data centers are recommended to be built in Gansu Province,Ningxia Hui Autonomous Region,Sichuan Province,Inner Mongolia Autonomous Region,and Qinghai Province,accounting for 57%of the total national increase in server capacity.33%of the computational load from Eastern China should be transferred to the West,which could reduce the overall load carbon emissions by 26%.
文摘From AR-enhanced picture books to eco-friendly smart toys,the items now filling children’s shopping carts are more than just products-they epitomize the transformation of consumption in the new era.